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Total variation cutoff in a tree

Yuval Peres(1), Perla Sousi(2)

RÉSUMÉ. — On construit une famille d’arbres sur laquelle la marche
aléatoire paresseuse présente un phénomène de transition abrupte à l’équi-
libre au sens de la variation totale. L’idée principale de la construction
est le fait que les temps d’atteinte de grands sous-ensembles doivent se
concentrer autour de leurs moyennes. Pour cette famille d’arbres, nous
calculons le temps de mélange, le temps de relaxation et la fenêtre de
transition abrupte.

ABSTRACT. — We construct a family of trees on which a lazy simple
random walk exhibits total variation cutoff. The main idea behind the
construction is that hitting times of large sets should be concentrated
around their means. For this sequence of trees we compute the mixing
time, the relaxation time and the cutoff window.

1. Introduction

Let X be an irreducible aperiodic Markov chain on a finite state space
with stationary distribution π and transition matrix P . The lazy version
of X is a Markov chain with transition matrix (P + I)/2. Let ε > 0. The
ε-total variation mixing time is defined to be

tmix(ε) = min{t � 0 : max
x
‖P t(x, ·)− π‖ � ε},

where ‖µ− ν‖ = supA |µ(A)− ν(A)| is the total variation distance between
the measures µ and ν. When ε = 1/4, we simply write tmix = tmix(1/4).

Suppose P is reversible. Let 1 = λ1 � λ2 � λ3, . . . be its eigenvalues
in decreasing order. Let λ∗ = maxi�2 |λi| and define the relaxation time
trel = (1− λ∗)−1. Note that for a lazy chain λ∗ = λ2.
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We say that a sequence of chains Xn exhibits total variation cutoff if for
all 0 < ε < 1

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

We say that a sequence wn is a cutoff window for a family of chains Xn if
wn = o(tmix) and for all ε > 0 there exists a positive constant cε such that
for all n

tmix(ε)− tmix(1− ε) � cεwn.
Loosely speaking cutoff occurs when over a negligible period of time the
total variation distance from stationarity drops abruptly from near 1 to
near 0. It is standard that if trel and tmix are of the same order, then there
is no cutoff (see for instance [5, Proposition 18.4]). From that it follows that
a lazy simple random walk on the interval [0, n] or a lazy simple random
walk on a finite binary tree on n vertices do not exhibit cutoff, since in both
cases trel � tmix (see for instance [5, Examples 18.5 and 18.6]).

Although the above two extreme types of trees do not exhibit cutoff, in
this paper we construct a sequence of trees, where a lazy simple random
exhibits total variation cutoff. We start by describing the tree and then
state the results concerning the mixing and the relaxation time of the lazy
simple random walk on it.

Let nj = 22j for j ∈ N. We construct the tree T of Figure 1 by placing
a binary tree at the origin consisting of N = n3

k vertices. Then for all
j ∈ {[k/2], . . . , k} we place a binary tree at distance nj from the origin
consisting of N/nj vertices.

For each j we call Tj the binary tree attached at distance nj and T0 the
binary tree at 0. We abuse notation and denote by nj the root of Tj and by
0 the root of T0.

nk

n[k/2]

0

N
nj

nj

N
n[k/2]

N

Figure 1. — The tree T (not drawn to scale)
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Theorem 1.1.— The lazy simple random walk on the tree T exhibits
total variation cutoff and for all ε

tmix(ε) ∼ 2Nk.

Further, the cutoff window is of size N
√
k, i.e. for all 0 < ε < 1

tmix(ε)− tmix(1− ε) � cεN
√
k,

where cε is a positive constant.

By Chen and Saloff-Coste [2] cutoff also holds for the continuous time
random walk on T .

The main ingredient in the proof of Theorem 1.1 is to establish the con-
centration of the first hitting time of 0 starting from nk. Once this has been
completed, cutoff follows easily. In Section 2, we prove the concentration re-
sult of the hitting time, which then gives a lower bound on the mixing time.
Then in Section 3 we describe the coupling that will yield the matching
upper bound on the mixing time.

Remark 1.2.— We note that the same idea of showing concentration
of hitting times was used in [3] in order to establish cutoff for birth and
death chains satisfying tmix/trel →∞. Connection of hitting times to cutoff
is presented in greater generality in [4].

It follows from Theorem 1.1 and [5, Proposition 18.4] that trel = o(tmix).
In the next theorem we give the exact order of the relaxation time. We prove
it in Section 4.

We use the notation ak � bk if there exists a constant C such that
C−1bk � ak � Cbk for all k and we write ak � bk if there exists a constant
C ′ such that ak � C ′bk for all k.

Theorem 1.3.— The relaxation time for the lazy simple random walk
on the tree T satisfies

trel � N.

To the best of our knowledge the tree T is the first example of a tree
for which tmix is not equivalent to trel. A related problem was studied in [7]
and we recall it here.

Suppose that we assign conductances to the edges of a tree in such a
way that c � c(e) � c′ for all edges e, where c and c′ are two positive
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constants. It is proved in [7, Theorem 9.1] that the mixing time of the
weighted lazy random walk is up to constants the same as the mixing time
of the lazy simple random walk on the original tree. Since the relaxation
time is given by a variational formula, it is immediate that after assigning
bounded conductances trel is only changed up to multiplicative constants.
Hence if in the original tree the quantities trel and tmix are of the same order,
then there is no way of assigning weights to the edges in order to make the
weighted random walk exhibit cutoff.

2. Concentration of the hitting time

Let X denote a lazy simple random walk on the tree T . Define for all
x ∈ T

τx = inf{s � 0 : Xs = x}.
Lemma 2.1.— We have as k →∞

Enk [τ0] = 2Nk + o
(
N
√
k
)

and Varnk(τ0) � N2k.

We will prove the above concentration lemma in this section. We start
by stating standard results about hitting times and excursions that will be
used in the proof of Lemma 2.1. We include their proofs for the sake of
completeness.

Claim 2.2.— Let τ and τ̃ denote hitting times of the same state for a
discrete time non-lazy and lazy walk respectively. Then

E[τ̃ ] = 2E[τ ] and Var(τ̃) = 4Var(τ) + 2E[τ ] ,

assuming that both the lazy and non-lazy walks start from the same vertex.

Proof. — It is easy to see that we can write τ̃ =
∑τ−1
i=0 ξi, where (ξi)i is

an i.i.d. sequence of geometric variables with success probability 1/2. By
Wald’s identity we get

E[τ̃ ] = E[τ ]E[ξ1] = 2E[τ ] .

Using the independence between τ and the sequence (ξi)i gives the identity
for the variance of τ̃ .

Claim 2.3.— Let T be the time spent in an excursion from the root o
by a simple random walk in a binary tree of size n. Let L be the length of
an excursion from the root conditioned not to hit the leaves. Then for C a
positive constant

E[T ] = n− 1, E
[
T 2

]
� n2 and E[L] � C.
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Proof. — It is standard that E[T ] = π(o)−1 = n − 1. With probability at
least 1/2 an excursion from the root hits the leaves. Therefore, the expected
hitting time of the root starting from the leaves is upper bounded by cn
for some positive constant c. Starting from any point x on the tree, the
expected hitting time of the root is thus upper bounded by cn. Hence by
performing independent experiments and using the Markov property we get
for a positive constant c′

P(T > 2kn) � e−c′k.

Therefore, we deduce that E
[
T 2

]
� c′′n2.

For the last part of the claim, first note that the distance from the root
behaves as a biased random walk X on the interval [0, h], where h is the
depth of the tree, with

P(Xk+1 = x+ 1 | Xk = x) =
2

3
= 1− P(Xk+1 = x− 1 | Xk = x) .

Conditioning X to return to 0 before hitting h we obtain a new process
up until it hits 0, which can be dominated by a biased random walk Y on
[0, h− 1] with

P(Yk+1 = x− 1 | Yk = x) =
2

3
= 1− P(Yk+1 = x+ 1 | Yk = x) .

We thus conclude that E[L] � E0[T0] � C, where T0 = inf{k � 1 :
Yk = 0}.

Claim 2.4. — Let X be a simple random walk on the interval [0, n]
started from n and Li be the number of visits to i before the first time X
hits 0. Then Li is a geometric random variable taking values in {1, 2, . . .}
and success probability (2i)−1 for i �= n and 1/n for i = n.

We are now ready to give the proof of the concentration result.

Proof of Lemma 2.1. — By Claim 2.2 it suffices to consider a non-lazy ran-
dom walk. We write τ0 for the first hitting time of 0 for a simple random
walk on the tree T .

Every time we visit a vertex nj for some j with probability 1/2 we
make an excursion in the binary tree attached to this vertex. Since we are
interested in the time it takes to hit 0 we can think of the problem in the
following way: we replace a binary tree by a self-loop representing a delay
which is the time spent inside the tree in an excursion from the root. It will
be helpful to have Figure 2 in mind.
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0 nk

Figure 2. — Delays represented by self loops

Let Y be a simple random walk on the line [0, nk] starting from nk. Let S
be the time it takes Y to reach 0. For i = [k/2], . . . , k we let Li be the local
time at ni before the first time Y hits 0, i.e.

Li =

S∑

=0

1(Y = ni).

For every vertex ni we let (T
(i)
 )�Li be the delays incurred during the Li

visits to ni, i.e.

T
(i)
 =

Gi,�∑

m=1

ξ(i)m ,

where (ξ
(i)
m )m is an i.i.d. sequence of excursions from ni in the binary tree

rooted at ni and Gi, is an independent geometric random variable of success

probability 1/2. Note that the random variables T
(i)
 are independent over

different i and &. Having defined these times we can now write

τ0 = S +

k∑

i=[k/2]

Li∑

=1

T
(i)
 = S +D, (2.1)

where D =
∑k
i=[k/2]

∑Li
=1 T

(i)
 . From Claims 2.3 and 2.4 and the indepen-

dence between Li and T
(i)
 using the above representation of τ0 we immedi-

ately get

Enk [τ0] = n2
k+

k−1∑

i=[k/2]

2ni

(
N

ni
− 1

)
+nk

(
N

nk
− 1

)
= Nk+o(N

√
k) as k →∞,

and hence multiplying by 2 gives the required expression. We now turn to
estimate the variance. Using (2.1) we have

Varnk(τ0) = Enk
[
((S − Enk [S]) + (D − Enk [D]))

2
]

= Varnk(S) + Varnk(D) + 2Enk [(S − Enk [S])(D − Enk [D])] .

Since S is the first time that a simple random walk on [0, nk] ∩ Z hits 0
started from nk it follows that

Varnk(S) � n4
k = o(N2k). (2.2)
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This follows by using that X4
n − 6nX2

n + 3n2 + 2n is a martingale when X
is a simple random walk on Z.

By Cauchy Schwarz we get

Enk [(S − Enk [S])(D − Enk [D])] �
√

Varnk(S) Varnk(D),

so if we prove that

Varnk(D) � N2k, (2.3)

then using (2.2) we get
√

Varnk(S) Varnk(D) � Nn2
k

√
k = o(N2k), and

hence Varnk(τ0) � N2k. Therefore, it suffices to show (2.3).

To simplify notation further we write Di =
∑Li
=1 T

(i)
 . We have

Varnk(D) =

k∑

i,j=[k/2]

Enk [(Di − Enk [Di])(Dj − Enk [Dj ])]

=

k∑

j=[k/2]

Varnk(Dj) + 2

k∑

j=[k/2]

k∑

i=j+1

Enk [(Di − Enk [Di])(Dj − Enk [Dj ])] .

(2.4)

By Claims 2.3 and 2.4 and the independence between Li and T
(i)
 , we get

that for all i

Varnk(Di) = Enk
[
T

(i)
1

]2

Varnk(Li) + Enk [Li] Varnk

(
T

(i)
1

)
� N2,

and hence
∑k
i=[k/2] Varnk(Di) � N2k. In view of that, it suffices to show

that for i > j

|Enk [(Di − Enk [Di])(Dj − Enk [Dj ])]| � N2nj
ni
, (2.5)

since then using the double exponential decay of (n) completes the proof
of the lemma.

Since in order to hit 0 starting from nk the random walk must first hit
ni and then nj , it makes sense to split the local time Li into two terms: the
time Li,1 that Y spends at ni before the first hitting time of nj and the
time Li,2 that Y spends at ni after the first hitting time of nj . Writing

Di,1 =

Li,1∑

=1

T
(i)
 and Di,2 =

Li,2∑

=1

T̃
(i)
 ,
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where T̃ is an independent copy of T , we have that Di,1 is independent
of Dj , and hence

Enk [(Di − Enk [Di])(Dj − Enk [Dj ])] = Enk [(Di,2 − Enk [Di,2])(Dj − Enk [Dj ])] .
(2.6)

Using the independence between the local times and the delays we get

Enk [Di,2Dj ] = Enk


Enk



Li,2∑

=1

T̃
(i)


Lj∑

r=1

T (j)
r | Li,2, Lj







= Enk
[
Li,2Enk

[
T

(i)
1

]
LjEnk

[
T

(j)
1

]]

= Enk [Li,2Lj ]Enk
[
T

(i)
1

]
Enk

[
T

(j)
1

]
.

(2.7)

We let τx = inf{t � 0 : Yt = x} and τ+
x = inf{t � 1 : Yt = x} be the first

hitting time of x by Y and the first return time to x respectively. We then
get

Pnj
(
τni < τ0 ∧ τ+

nj

)
=

1

2(ni − nj)
.

Once the random walk Y visits ni, then the total number of returns to ni
before hitting nj again is a geometric random variable independent of Lj
and of parameter

Pni
(
τnj < τ+

ni

)
=

1

2(ni − nj)
.

Hence we can write

Li,2 =

Lj−1∑

=1

η,

where η = 0 with probability 1 − 1/(2(ni − nj)) and θ with probability
1/(2(ni−nj)), where θ is a geometric random variable with E[θ] = 2(ni−
nj). Note that η is independent of Lj . Therefore we deduce

Enk [Li,2Lj ] = Enk


Lj

Lj−1∑

=1

η


 = Enk


E


Lj

Lj−1∑

=1

η | Lj







= (Enk
[
L2
j

]
− Enk [Lj ])Enk [η1] � n2

j ,

where in the last step we used Claim 2.4 and the fact that Enk [η] = 1 for
all &. Hence combining the above with (2.7) and Claim 2.3 we conclude

Enk [Di,2Dj ] � n2
j

N

ni

N

nj
= N2nj

ni
. (2.8)
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Using Wald’s identity we obtain

Enk [Di,2]Enk [Dj ] � N2nj
ni

and combined with (2.6) and (2.8) proves (2.5) and thus finishes the proof
of the lemma. �

Proof of Theorem 1.1 (lower bound). — Let t = Enk [τ0] − γ
√

Varnk(τ0),
where the constant γ will be determined later. By the definition of the total
variation distance we get

d(t) � ‖Pnk(Xt ∈ ·)− π‖ � π(T0)− Pnk(Xt ∈ T0) � 1− o(1)− Pnk(τ0 < t) ,

since π(T0) = 1− o(1). Chebyshev’s inequality gives

Pnk(τ0 < t) � Pnk
(
|τ0 − Enk [τ0]| > γ

√
Varnk(τ0)

)
� 1

γ2
.

Hence by choosing γ big enough we deduce that for all sufficiently large k

d(t) � 1− o(1)− 1

γ2
> ε,

which implies that tmix(ε) � t. By Lemma 2.1 we thus get that

tmix(ε) � 2Nk − c1N
√
k (2.9)

for a positive constant c1. �

3. Coupling

In this section we prove the upper bound on tmix(ε) via coupling.

Proof of Theorem 1.1 (upper bound). — Let X0 = x and Y0 ∼ π. Con-
sider the following coupling. We let X and Y evolve independently until
the first time that X hits 0. After that we let them continue independently
until the first time they collide or reach the same level of the tree T0 in
which case we change the coupling to the following one: we let X evolve as
a lazy simple random walk and couple Y to X so that Y moves closer to
(or further from) the root if and only if X moves closer to (or further from)
the root respectively. Hence they coalesce if they both hit 0.

Let τ be the coupling time and t = Enk [τ0] + γ
√

Varnk(τ0), where the
constant γ will be determined later in order to make P(τ > t) as small as
we like.
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Define τ∗x = inf{s � τ0 : Xs = x} for all x and

L =

τ∗n[k/2]∑

s=τ0

1 (Xs−1 /∈ T0, Xs ∈ T0) ,

i.e. L is the number of returns to the tree T0 in the time interval [τ0, τ
∗
n[k/2]

].

Then L has the geometric distribution with parameter 1/n[k/2]. Setting
AL = {L > √n[k/2]} we get by the union bound

P(AcL) = P
(
L � √n[k/2]

)
� 1
√
n[k/2]

. (3.1)

We also define the event that after time τ0 the random walk hits the
leaves of the tree T0 before exiting the interval [0, n[k/2]], i.e.

E =
{
τ∗∂T0 < τ∗n[k/2]

}
. (3.2)

Since at every return to the tree T0 with probability at least 1/3 the random
walk hits the leaves of T0 before exiting the tree T0, it follows that

P
(
τ∗∂T0 > τ∗n[k/2]

| L
)
�

(
2

3

)L
. (3.3)

By decomposing into the events AL and E we obtain

P(τ > t) � P(τ > t,AL) +
1

√
n[k/2]

� P(τ > t,AL, E) +

(
2

3

)√n[k/2]

+
1

√
n[k/2]

, (3.4)

where the first inequality follows from (3.1) and the second one from (3.3)
and the fact that we are conditioning on the event {L > √n[k/2]}. We now
define S to be the first time after τ∗∂T0 that X hits 0, i.e. S = inf{s � τ∗∂T0 :
Xs = 0}.

Let (ξi)i be i.i.d. random variables, where ξ1 is distributed as the length
of a random walk excursion on the interval [0, n[k/2]] conditioned not to
hit n[k/2]. Let (&i,j)i,j be i.i.d. random variables with &1,1 distributed as the
length of a random walk excursion from the root on the tree T0 conditioned
not to hit the leaves and (Gi)i be i.i.d. geometric random variables of success
probability 1/3. Then on the event E we have

S − τ0 ≺
L∑

i=1

ξi +

L∑

i=1

Gi∑

j=1

&i,j + ζ,
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where ζ is independent of the excursion lengths and is distributed as the
commute time between the root and the leaves of the tree T0 and ≺ denotes
stochastic domination. Hence, by Wald’s identity we obtain

E[(S − τ0)1(E)] � E[L]E[ξ1] + E[L]E[G1]E[&1,1] + E[ζ]

� n2
[k/2] + n[k/2] +N � N. (3.5)

Here we used Claim 2.3 to get that E[&1,1] � C for a positive constant C.

Let A = {Yτ0 ∈ T0}. Then P(Ac) = o(1) as k → ∞, because at time τ0
the random walk Y is stationary, since until this time it evolves indepen-
dently of X, and also the stationary probability of the tree is 1 − o(1). It
then follows

P(τ > t,AL, E) � P(τ > t,AL, E,A) + o(1). (3.6)

Let τ1 be the time it takes to hit the line [0, nk] starting from x. Let τ2
be the time it takes to hit 0 starting from Xτ1 . Then clearly τ2 is smaller
than the time it takes to hit 0 starting from nk. Thus setting B = {τ0 <
Enk [τ0] + γ

√
Varnk(τ0)/2} we obtain

Px(Bc) � Px

(
τ2 > Enk [τ0] +

γ
√

Varnk(τ0)

4

)
+ Px

(
τ1 �

γ
√

Varnk(τ0)

4

)

� Pnk

(
τ0 > Enk [τ0] +

γ
√

Varnk(τ0)

4

)
+ o(1) � 16

γ2
+ o(1), (3.7)

where the second inequality follows from Markov’s inequality and the fact
that Ex[τ1] � N for all x and the third one follows from Chebyshev’s in-
equality. Ignoring the o(1) terms we get

P(τ > t,AL, E,A) � P(τ > t,AL, E,A,B) +
16

γ2
. (3.8)

We finally define the event F = {S − τ0 > γ
√

Varnk(τ0)/2}. We note that
on the events E and A the two walks X and Y must have coalesced by
time S. (Indeed, if Y stays in T0 during the time interval [τ0, τ

∗
∂T0 ], then

they must have coalesced. If Y leaves T0 during this time interval, since X
is always in [0, n[k/2]] until time S on the event E, then coalescence must
have happened again.) Therefore

A ∩ E ∩B ∩ F c ⊆ {τ < t}.
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This in turn implies that for a positive constant c1

P(τ > t,AL, E,A,B) = P(τ > t,AL, E,A,B, F ) � P(E,F ) � c1

γ
√
k
, (3.9)

where the last inequality follows by applying Markov’s inequality to (S −
τ0)1(E) and using (3.5) and Lemma 2.1. Plugging (3.6), (3.8) and (3.9)
into (3.4) gives as k →∞

P(τ > t) � 16

γ2
+ o(1).

Hence choosing γ sufficiently large depending on ε we can make P(τ > t) < ε
and this shows that for a positive constant cε

tmix(ε) � Enk [τ0] + γε
√

Varnk(τ0) � 2Nk + c2N
√
k,

where the last inequality follows by Lemma 2.1. Combining this with the
lower bound on tmix(ε) from (2.9) shows that there exists cε > 0 such that
for all 0 < ε < 1

tmix(ε)− tmix(1− ε) < cεN
√
k

and this completes the proof of the theorem.

4. Relaxation time

In this section we give the proof of Theorem 1.3. We start by stating
standard results for random walks on the interval [0, n] and the binary tree.
We include their proofs here for the sake of completeness. A detailed analysis
of relaxation time for birth and death chains can be found in [1].

Claim 4.1.— Let f be a function defined on [0, n] satisfying f(0) = 0.
Then

n∑

k=1

f(k)2 � n2
n∑

=1

(f(&)− f(&− 1))2.

Proof. — We set β−2
 = (n − &) for all & ∈ [0, n]. Then by Cauchy Schwarz

we get

f(k)2 =

(
k∑

=1

(f(&)− f(&− 1))

)2

�
k∑

=1

β2
 (f(&)− f(&− 1))2

k∑

=1

β−2
 .

Since
∑k
=1 β

−2
 � n2 for all k ∈ [0, n] we get summing over all k and

interchanging sums
n∑

k=1

f(k)2 � n2
n∑

=1

(f(&)− f(&− 1))2

and this completes the proof of the claim.
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Claim 4.2.— Let T be a binary tree on m vertices with root o. Then
there exists a universal constant c such that for all functions g defined on T
with g(o) = 0 we have

‖g‖2 � cmE(g, g),
where ‖g‖2 =

∑
x π(x)g(x)2 and E is the Dirichlet form E(f, g) = 〈f, (I −

P )g〉π. Here π and P are the stationary distribution and transition matrix
of a simple random walk on T respectively.

Proof. — Since the stationary measure of a simple random walk on the tree
satisfies π(x) � m−1 for all x and P (x, y) � c for all x ∼ y, we will omit
them from the expressions.

Let the depth of the tree T be n = �log2m�. Let xk be a vertex in T of
level k. Then there exists a unique path x0 = o, x1, . . . , xk going from the
root to xk. We can now write

g(xk)
2 =




k∑

j=1

(g(xj−1)− g(xj))




2

=




k∑

j=1

(g(xj−1)− g(xj))2j/2
1

2j/2




2

�
k∑

j=1

2j(g(xj−1)− g(xj))2,

where the last inequality follows by Cauchy Schwarz. Let Lk denote all the
vertices of the tree at distance k from the root. For any x ∈ T we write

G(x) =

|x|∑

j=1

2j(g(yj)− g(yj−1))
2,

where |x| denotes the level of x and y0 = o, y1, . . . , y|x| = x is the unique
path joining x to the root. By interchanging sums we obtain

∑

x∈T0
g(x)2 =

n∑

k=1

∑

x∈Lk
g(x)2 �

∑

k

∑

x∈Lk
G(x). (4.1)

Let e be an edge of T . We write e = 〈e−, e+〉 where |e−| < |e+| and | · |
stands for the distance from the root. For every edge e we let N(e) be the
number of times the term (g(e−) − g(e+))2 appears in the sum appearing
on the right hand side of (4.1). We then get

∑

x∈T
g(x)2 �

∑

e∈T
2|e
−|N(e)(g(e−)− g(e+))2.
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Notice that N(e) is the number of paths in T joining the root to the leaves
and pass through e. Hence since the tree is of depth n we get that N(e) =

2n−|e
−|−1. Therefore we deduce

∑

x∈T
g(x)2 �

∑

e∈T
2|e
−|2n−|e

−|−1(g(e−)− g(e+))2 = 2n−1
∑

e∈T
(g(e−)− g(e+))2

� mE(g, g)

and this completes the proof of the claim.

Proof of Theorem 1.3. — To prove the lower bound on trel we use the bot-
tleneck ratio Φ∗ as in [5, Theorem 13.14]. By setting S = T0, we see that

Φ∗ �
1

N
,

and hence trel � N . It remains to prove a matching upper bound. We do
that by using the variational formula for the spectral gap, which gives

trel = sup
Varπ(f) 
=0

Varπ(f)

E(f, f)
.

Notice that by subtracting from f its value at 0 the ratio above remains
unchanged. So we restrict to functions f with f(0) = 0. It suffices to show
that for any such f

Varπ(f) � NE(f, f). (4.2)

Let f be defined on the tree T with f(0) = 0. Then we can write f = g+h,
where g is zero on T c0 and h is zero on T0 and g(0) = h(0) = 0. We then
have

Varπ(f) � ‖g + h‖2 = ‖g‖2 + ‖h‖2, (4.3)

since by the definition of the functions g and h it follows that 〈g, h〉π = 0.
Similarly we also get

E(f, f) = E(g, g) + E(h, h).

Claim 4.3.— There exists a positive constant c such that

‖h‖2 � cNE(h, h).

Proof. — Using Claim 4.2 for the function (h(x)−h(nj)) restricted to x ∈ Tj
we obtain

∑

v∈Tj
(h(v)− h(nj))2 �

N

nj

∑

u,v∈Tj
u∼v

(h(u)− h(v))2. (4.4)
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Using that (a+ b)2 � 2a2 + 2b2 and (4.4) we get

∑

v∈Tj
h(v)2 � 2

∑

v∈Tj
(h(v)− h(nj))2 + 2

N

nj
h(nj)

2 � N

nj

(
E(h, h) + h(nj)

2
)
.

From the above inequality it immediately follows

∑

v/∈T0
h(v)2 �

∑

v∈[0,nk]

h(v)2 +

k∑

j=[k/2]

∑

v∈Tj
h(v)2

�
∑

v∈[0,nk]

h(v)2 +

k∑

j=[k/2]

N

nj
h(nj)

2 +NE(h, h)

and hence it suffices to show

∑

v∈[0,nk]

h(v)2 +

k∑

j=[k/2]

N

nj
h(nj)

2 � N
nk∑

=1

(h(&)− h(&− 1))2. (4.5)

Claim 4.1 gives

∑

v∈[0,nk]

h(v)2 � n2
k

nk∑

=1

(h(&)− h(&− 1))2 � N
nk∑

=1

(h(&)− h(&− 1))2,

since N = n3
k, and hence it suffices to show

k∑

j=[k/2]

h(nj)
2

nj
�

nk∑

=1

(h(&)− h(&− 1))2. (4.6)

Setting ∆ = h(&)− h(&− 1) and using Cauchy Schwarz

h(nj)
2 � 2h(nj−1)

2 + 2(h(nj)− h(nj−1))
2

= 2

(
nj−1∑

=1

∆

)2

+ 2




nj∑

=nj−1+1

∆




2

� 2nj−1

nj−1∑

=1

∆2
 + (nj − nj−1)

nj∑

=nj−1+1

∆2
 ,

and hence dividing by nj we get

k∑

j=[k/2]

h(nj)
2

nj
� 2

k∑

j=[k/2]

nj−1

nj

nj−1∑

=1

∆2
 + 2

nk∑

=1

∆2
 .
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If we fix & ∈ [0, nk], then the coefficient of ∆2
 in the first sum appearing

on the right hand side of the above inequality is bounded from above by∑k
j=1 nj−1/nj <∞, and hence we conclude

k∑

j=[k/2]

h(nj)
2

nj
�

nk∑

=1

∆2


and this finishes the proof of the claim.

Since g satisfies the assumptions of Claim 4.2 it follows that

‖g‖2 � cNE(g, g).

This together with Claim 4.3 and (4.3) proves (4.2) and completes the proof
of the theorem.

5. Concentration of hitting times

By changing the parameters of our construction, for some C < ∞ and
infinitely many n, an n-vertex tree Tn is presented in [6] with the following
property: There exist vertices x, y in Tn such that lazy simple random walk
on Tn satisfies

Varx(τy) � C
(Ex[τy])2

log n
(5.1)

Is there a general matching lower bound, i.e., is there c > 0 such that for
every n, the inequality

Varx(τy) � c
(Ex[τy])2

log n
(5.2)

holds for lazy simple random walk on all n-vertex simple graphs?

Acknowledgments. — We thank the referee for useful comments.
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