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Computable upper bounds on the distance
to stationarity for Jovanovski
and Madras’s Gibbs sampler

James P. Hobert(1), Kshitij Khare(1)

RÉSUMÉ. — Une borne supérieure est obtenue pour la distance de Wasser-
stein à la stationnarité pour une classe de châınes de Markov sur R. Ce
résultat, qui est une généralisation du théorème 2.2 de Diaconis et al.
(2009), est appliqué à l’échantillonneur de Gibbs introduit et analysé par
Jovanovski et Madras (2014). La borne de Wasserstein qui en résulte est
transformée en une borne en variation totale (en utilisant des résultats
de Madras et Sezer (2010)), qui est ensuite comparée à une autre borne
obtenue par Jovanovski et Madras (2014).

ABSTRACT. — An upper bound on the Wasserstein distance to station-
arity is developed for a class of Markov chains on R. This result, which
is a generalization of Diaconis et al.’s (2009) Theorem 2.2, is applied
to a Gibbs sampler Markov chain that was introduced and analyzed
by Jovanovski and Madras (2014). The resulting Wasserstein bound is
converted into a total variation bound (using results from Madras and
Sezer (2010)), and the total variation bound is compared to an alterna-
tive bound derived by Jovanovski and Madras (2014).

1. Introduction

We begin by describing a Markov chain that was introduced in [5]. Fix
positive constants {ai}4i=1, z0 and z4, and consider the probability density
function (with respect to Lebesgue measure on R3) given by

π(w, x, y) = (1.1)

cwa1+a2−1xa2+a3−1ya3+a4−1e−z0w−wx−xy−yz4IR+
(w)IR+

(x)IR+
(y),

(1) Department of Statistics, University of Florida
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where c is the normalizing constant, and R+ := (0,∞). The density (1.1)
arises as the posterior density of a four-level Bayesian hierarchical model
that we now describe. Suppose that (Z0|W = w,X = x, Y = y) ∼
Gamma(a1, w), (W |X = x, Y = y) ∼ Gamma(a2, x), (X|Y = y) ∼
Gamma(a3, y), and, finally, Y ∼ Gamma(a4, z4). It’s easy to see that (1.1)
is the posterior density of the parameter (W,X, Y ), given the data Z0 = z0.

Assume that (W,X, Y ) ∼ π(w, x, y), and note that W and Y are condi-
tionally independent givenX. In fact, (W |X = x) ∼ Gamma(a1+a2, z0+x)
and (Y |X = x) ∼ Gamma(a3 + a4, x + z4), and (X |W = w, Y = y) ∼
Gamma(a2 + a3, w + y). Let gα,β(t) denote the Gamma(α, β) density eval-
uated at t, i.e.,

gα,β(t) =
βα

Γ(α)
tα−1e−βtIR+

(t) .

Consider a block Gibbs sampler Markov chain {(Wn, Yn), Xn}∞n=0 with state
space R3

+ and Markov transition density (Mtd) given by

k((w′, y′), x′ | (w, y), x
)

= π(x′|w′, y′)π(w′, y′|x) (1.2)

= ga2+a3,w′+y′(x
′)ga3+a4,x+z4(y

′)ga1+a2,x+z0(w
′) .

It is a block Gibbs sampler because W and Y form a block of variables
that are updated jointly. Routine arguments show that this chain is Harris
ergodic with π(w, x, y) as its (unique) invariant density. Note that the right-
hand side of (1.2) does not depend on (w, y). It follows that the marginal
sequence, {Xn}∞n=0, is itself a Markov chain, and its Mtd is

kG(x′ |x
)

=

∫

R2
+

ga2+a3,w+y(x
′)ga3+a4,x+z4(y)ga1+a2,x+z0(w) dw dy .

This marginal chain is equivalent to the chain defined at the beginning of
Section 7 in [5]. It is Harris ergodic and its invariant density is πG(x) :=∫
R2

+
π(w, x, y) dw dy. The chains driven by k and kG converge to stationarity

(in total variation distance) at exactly the same rate (see, for example, [2]
and [8]).

Jovanovski and Madras (2014) (hereafter J&M) used a highly technical
one-shot coupling argument to develop an upper bound on the total varia-
tion distance to stationarity for the chain {Xn}∞n=0. While it is difficult to
give a concise statement of their bound due to its complexity, J&M do state
their bound for a particular special case, which we now describe. Fix z0 = 1,
z4 = 2, and ai = i for i = 1, 2, 3, 4, and consider starting the chain at the
point X0 = x0 = 1. In this particular situation, their bound simplifies to

– 936 –



Computable upper bounds for Jovanovski and Madras’s Gibbs sampler

the following

‖PnG(1, ·)−ΠG(·)‖TV � 600

(
78

79

)n−2
20

+ 6

(
7

9

)	n2 
+2

, (1.3)

where PnG(x, ·) is the n-step Markov transition function (Mtf) for the chain
started at x ∈ R+, and ΠG(·) is the invariant measure, i.e., ΠG(A) =∫
A
πG(x) dx. (We note that there is a typo in J&M: 1 − 78

79 should be 78
79 .)

Equation (1.3) implies that roughly 28,500 steps are sufficient for the total
variation distance to be less than 10−5.

In this paper, we perform a new analysis of J&M’s Gibbs sampler using
a much simpler coupling argument that leads to an upper bound on the
Wasserstein distance to stationarity. We then use a result from [6] to convert
this Wasserstein bound into a total variation bound. The resulting total
variation bound, which is given in Section 2, has a very simple form, and
can give results that are orders of magnitude better than those of J&M.
Indeed, for the specific example described above, our bound becomes

‖PnG(1, ·)−ΠG(·)‖TV �
[
273

10

](
5

6

)n
,

which implies that only 82 steps are enough to get the total variation dis-
tance below 10−5.

To be fair, the chain we consider here is actually the simplest (and only
univariate) member of the family of chains analyzed by J&M. While J&M’s
one-shot coupling technique works for all members of their family, it’s not
clear whether our technique will extend to handle the other chains. On the
other hand, each member of their family has an associated set of parameters
(analogous to {ai}4i=1, z0, z4), and the conditions that J&M require on the
parameters (in order to get a total variation bound) become more complex
and restrictive as the dimension grows.

Finally, we note that the problem we study here is not practically rele-
vant in the sense that the Gibbs sampler described above would likely not
be used in practice to explore the intractable density π(w, x, y). Indeed, note
that

πG(x) =
c′xa2+a3−1

(z0 + x)a1+a2(z4 + x)a3+a4
IR+

(x) ,

where c′ is another normalizing constant. It would not be difficult to design a
rejection sampler to make iid draws from this univariate density. Of course,
given an exact draw from πG(x), we can get an exact draw from π(w, x, y)
by simulating two additional independent gamma variates. Thus, classical
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Monte Carlo methods could be employed to study π(w, x, y), and hence more
complex Markov chain Monte Carlo methods, such as the Gibbs sampler,
would not be required. Despite this, a convergence rate analysis of the Gibbs
sampler is still an interesting endeavor!

The remainder of this paper is organized as follows. In Section 2, we gen-
eralize Theorem 2.2 in [3]. The original result provides an upper bound on
the Wasserstein distance to stationarity for stochastically monotone Markov
chains for which an exact eigen-solution is available. Our version of the the-
orem does not require an exact eigen-solution. The heart of the paper is
Section 3. There we apply the new result to the chain of J&M (which has
no obvious exact eigen-solutions), and we convert the resulting Wasserstein
bound into a total variation bound. Finally, in Section 4, we briefly compare
our Wasserstein bound to an alternative bound derived by [9].

2. A bound on the Wasserstein distance to stationarity

Fix X ⊂ R and let B(X) denote the Borel sets in X. Let P : X×B(X)→
[0, 1] be a Mtf, and assume that the Markov chain defined by P is ergodic
with invariant (probability) measure Π(·). (For background and definitions,
see [7].) Let Pn denote the n-step Mtf, where, as usual, P 1 ≡ P . We are in-
terested in bounding the distance between the probability measures Pn(x, ·)
and Π(·).

Suppose that µ and ν are probability measures on the the real line. The
L1-Wasserstein distance, dW , between µ and ν is defined as

dW (µ, ν) = inf
Y∼µ,Z∼ν

E|Y − Z| ,

where the infimum is taken over all joint distributions for (Y,Z) such that
the marginals of Y and Z are µ and ν, respectively. Here is our first result.

Theorem 2.1. — Consider the ergodic Markov chain on X described
above whose invariant measure is Π. For each fixed (u0, v0) ∈ X × X with
u0 < v0, suppose there exist coupled copies of the Markov chain, {Un}∞n=0

and {Vn}∞n=0, such that (U0, V0) = (u0, v0) and Un � Vn for all n ∈
{1, 2, 3, . . . }. Suppose further that there exist an increasing function g : X→
R and λ ∈ [0, 1) (neither depending on (u0, v0)) such that, for all n ∈ N and
all u < v,

E
[
g(Vn)− g(Un)

∣∣Vn−1 = v, Un−1 = u
]
� λ

[
g(v)− g(u)

]
. (2.1)

Assume that

c := inf
(u,v)∈X×X,u<v

g(v)− g(u)
v − u > 0 .
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Then for x ∈ X and n ∈ N,

dW
(
Pn(x, ·),Π(·)

)
� λ

n

c
E

∣∣g(Z)− g(x)
∣∣ ,

where Z ∼ Π.

Remark 2.2.— Theorem 2.1 can be regarded as a generalization of Theo-
rem 2.2 in [3]. In particular, while the conclusions of the two theorems are
exactly the same, it’s not hard to see that the hypotheses of Theorem 2.1
are weaker than those of Theorem 2.2 in [3]. Indeed, if the Markov chain
is stochastically monotone, then the proof of Theorem 2.2 in [3] shows that
the coupled chains required by Theorem 2.1 do indeed exist. It then follows
that if equation (2.2) in [3] is satisfied, then so is our equation 2.1 (with the
same λ).

Proof of Theorem 2.1. — Using the definitions of the Wasserstein distance
and the constant c, we have

dW
(
Pn(u0, ·), Pn(v0, ·)

)
� E

[
Vn − Un

∣∣V0 = v0, U0 = u0

]

� 1

c
E

[
g(Vn)− g(Un)

∣∣V0 = v0, U0 = u0

]
.

Now, iterated expectation and application of (2.1) leads to

E
[
g(Vn)− g(Un)

∣∣V0 = v, U0 = u
]

= E
[
E

[
g(Vn)− g(Un)

∣∣Vn−1, Un−1

] ∣∣∣V0 = v0, U0 = u0

]

� λE
[
g(Vn−1)− g(Un−1)

∣∣V0 = v0, U0 = u0

]
,

and repeated application of this argument yields

dW
(
Pn(u0, ·), Pn(v0, ·)

)
� λ

n

c

[
g(v0)− g(u0)

]
. (2.2)

If u0 � v0, by exchanging the roles of u and v in the above argument, we
get that

dW
(
Pn(u0, ·), Pn(v0, ·)

)
� λ

n

c

[
g(u0)− g(v0)

]
. (2.3)

Combining (2.2) and (2.3), we have that for arbitrary (u0, v0) ∈ X× X,

dW
(
Pn(u0, ·), Pn(v0, ·)

)
� λ

n

c

∣∣g(v0)− g(u0)
∣∣ . (2.4)

Now let L denote the set of functions φ : X→ R such that |φ(x)− φ(y)| �
|x− y| for all x, y ∈ X, and consider the alternative characterization of dW
given by

dW (µ, ν) = sup
φ∈L

∣∣∣
∫
φdµ−

∫
φdν

∣∣∣ (2.5)
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(see, e.g., [4]). If Z ∼ Π, then it follows from (2.5) that

dW
(
Pn(u0, ·),Π(·)

)
= dW

(
Pn(u0, ·), E

[
Pn(Z, ·)

])

� E
[
dW

(
Pn(u0, ·), Pn(Z, ·)

)]
.

Finally, it follows from (2.4) that

dW
(
Pn(u0, ·),Π(·)

)
� λ

n

c
E

∣∣g(Z)− g(u0)
∣∣ .

3. Analysis of Jovanovski and Madras’s chain

We begin by constructing coupled copies of the Markov chain driven by
kG. Assume that z0 � z4. (The case z0 > z4 can be easily handled using sim-
ilar arguments.) Fix (u0, v0) ∈ R2

+ with u0 < v0. Let {G1,n}∞n=1, {G2,n}∞n=1,
and {G3,n}∞n=1 be mutually independent iid sequences of Gamma(a1+a2, 1),
Gamma(a3 + a4, 1), and Gamma(a2 + a3, 1) random variables, respectively.
Now, define {Un}∞n=0 and {Vn}∞n=0 as follows. Set (U0, V0) = (u0, v0), and,
for all n ∈ N, define

Un =
G3,n

G1,n

z0+Un−1
+

G2,n

z4+Un−1

and Vn =
G3,n

G1,n

z0+Vn−1
+

G2,n

z4+Vn−1

.

It’s easy to see that Un � Vn for all n. J&M used these same coupled chains
in their analysis.

In order to apply Theorem 2.1, we must establish (2.1). Let G1, G2 and
G3 be independent random variables with obvious distributions. Also, let
c = (z4 + u)/(z0 + u) and d = (z4 + v)/(z0 + v). Then we have

E
[
Vn − Un

∣∣Vn−1 = v, Un−1 = u
]

= E

[
G3

G1

z0+v
+ G2

z4+v

− G3

G1

z0+u
+ G2

z4+u

]

= E[G3]E

[
(z0 + v)(z4 + v)

G1(z4 + v) +G2(z0 + v)
− (z0 + u)(z4 + u)

G1(z4 + u) +G2(z0 + u)

]

= (a2 + a3)(v − u)E
[

(z4 + u)(z4 + v)G1 + (z0 + u)(z0 + v)G2(
G1(z4 + u) +G2(z0 + u)

)(
G1(z4 + v) +G2(z0 + v)

)
]

= (a2 + a3)(v − u)E
[

cdG1 +G2(
cG1 +G2

)(
dG1 +G2

)
]
. (3.1)
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Note that c, d ∈ [1, k], where k := z4/z0. Now,

cdG1 +G2(
cG1 +G2

)(
dG1 +G2

) =
1

dG1 +G2

[
d− (d− 1)G2

cG1 +G2

]
,

and hence, this quantity is an increasing function of c. By symmetry, it’s
also increasing in d. Consequently,

cdG1 +G2(
cG1 +G2

)(
dG1 +G2

) � k2G1 +G2(
kG1 +G2

)2 .

Therefore,

E
[
Vn − Un

∣∣Vn−1 = v, Un−1 = u
]
� λG(v − u) , (3.2)

where

λG = (a2 + a3)E

[
k2G1 +G2(
kG1 +G2

)2

]
.

Of course, Theorem 2.1 is not applicable unless λG < 1, and, unfortunately,
this is not always the case. In fact, λG is not always finite. Indeed,

k2G1 +G2(
kG1 +G2

)2 �
kG1 +G2(
kG1 +G2

)2 =
1

kG1 +G2
� 1

k
(
G1 +G2

) ,

and E
[
1/

(
G1 + G2

)]
= ∞ if a1 + a2 + a3 + a4 � 1. (We note that J&M’s

result also fails in this case.) The following result provides some useful upper
bounds on λG.

Proposition 3.1.— If a1 > a3 + 1, then

λG �
a2 + a3

a1 + a2 − 1
< 1 .

If k � 2 and a4 > a2 + 1, then

λG �
a2 + a3

a3 + a4 − 1
< 1 .

Proof. — We provide a proof for the first part. The second part is is proved
in a similar way. Fix g1 ∈ (0,∞), k � 1, and define h : [0,∞)→ (0,∞) by

h(g2) =
k2g1 + g2(
kg1 + g2

)2 .
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It’s easy to see that h is decreasing, so h(g2) � h(0) = 1/g1. Thus, assuming
a1 + a2 > 1,

λG = (a2 + a3)E

[
k2G1 +G2(
kG1 +G2

)2

]
� (a2 + a3)E

[
G−1

1

]
=

a2 + a3
a1 + a2 − 1

,

and the result follows immediately.

Assuming that {ai}4i=1 and k are such that λG < 1, Theorem 2.1 implies
that, for x ∈ R+ and n ∈ N, we have

dW
(
Pn(x, ·),Π(·)

)
� λnGE

∣∣Z − x
∣∣ ,

where Z ∼ πG. We now establish an upper bound for E
∣∣Z − x

∣∣ using a
standard Lyapunov (or drift) function argument. First, since Z and x are
both positive, we have E

∣∣Z − x
∣∣ � E[Z] + x. Now fix u ∈ R+, and assume

that a1 + a4 > 1. Then we have

E
[
Xn+1 |Xn = u

]

=

∫

R+

x′
[ ∫

R2
+

ga2+a3,w+y(x
′) ga3+a4,u+z4(y) ga1+a2,u+z0(w) dw dy

]
dx′

= (a2 + a3)

∫

R2
+

(
1

w + y

)
ga3+a4,u+z4(y) ga1+a2,u+z0(w) dw dy

� (a2 + a3)
(
u+ max{z0, z4}

) ∫

R2
+

ga3+a4,u+z4(y)ga1+a2,u+z0(w)

(z0 + u)w + (z4 + u)y
dw dy

=
(a2 + a3)(u+ z4)

a1 + a2 + a3 + a4 − 1

= γu+ L , (3.3)

where

γ =
a2 + a3

a1 + a2 + a3 + a4 − 1
and L =

z4(a2 + a3)

a1 + a2 + a3 + a4 − 1
.

Note that γ < 1 since a1 + a4 > 1. Now, integrating both sides of (3.3)
with respect to the invariant density, πG(u), yields E[Z] � γE[Z] + L, or,
equivalently E[Z] � L

1−γ . (Note that E[Z] <∞ since a1 + a4 > 1.) Putting
all of this together, we have

E
∣∣Z − x

∣∣ � E[Z] + x � z4(a2 + a3)

a1 + a4 − 1
+ x .

– 942 –



Computable upper bounds for Jovanovski and Madras’s Gibbs sampler

Remark 3.2.— Note that if z0 = z4 and a1 +a4 > 1, then the arguments
above show that

E
[
Xn+1 |Xn = u

]
= γu+ L ,

from which we see that E[Z] = L
1−γ . It follows that the function e(x) =

x− E[Z] is an eigen-function with eigenvalue γ; i.e.,

E
[
e(Xn+1) |Xn = u

]
= γ e(u) .

However, if z0 �= z4, there is no obvious eigen-solution.

We now formally state our Wasserstein bound for J&M’s chain.

Proposition 3.3.— Assume that z0 � z4, a1 + a4 > 1, and λG < 1.
Then for x ∈ R+ and n ∈ N, we have

dW
(
PnG(x, ·),ΠG(·)

)
� λnGE

∣∣Z − x
∣∣ � λnG

[
z4(a2 + a3)

a1 + a4 − 1
+ x

]
. (3.4)

In order to compare our results with the total variation bounds in J&M,
we use a result from [6] to convert our Wasserstein bound into a total
variation bound. Here is the conversion result.

Proposition 3.4.— If a1 +a2 � 1 and a3 +a4 � 1, then, for all n ∈ N,

‖PnG(x, ·)−ΠG(·)‖TV � AdW
(
Pn−1
G (x, ·),ΠG(·)

)
,

where

A =

(
a1 + a2
z0

+
a3 + a4
z4

)
.

Proof. — According to Theorem 12 in [6], it is enough to show that, for all
u, v ∈ R+, ∫ ∞

0

∣∣kG(x|u)− kG(x|v)
∣∣ dx � 2A|u− v| .

Now

∣∣kG(x|u)− kG(x|v)
∣∣

=

∣∣∣∣
∫

R2
+

ga2+a3,w+y(x)
[
ga3+a4,u+z4

(y)ga1+a2,u+z0
(w)− ga3+a4,v+z4

(y)ga1+a2,v+z0
(w)

]
dw dy

∣∣∣∣

�
∫

R2
+

ga2+a3,w+y(x)
∣∣∣ga3+a4,u+z4 (y)ga1+a2,u+z0 (w)− ga3+a4,v+z4 (y)ga1+a2,v+z0 (w)

∣∣∣ dw dy .
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It follows that

∫

R+

∣∣kG(x|u)− kG(x|v)
∣∣ dx

�
∫

R2
+

∣∣∣ga3+a4,u+z4(y)ga1+a2,u+z0(w)− ga3+a4,v+z4(y)ga1+a2,v+z0(w)
∣∣∣ dw dy .

Adding and subtracting ga3+a4,u+z4(y)ga1+a2,v+z0(w) inside the absolute
value, and applying the triangle inequality yields

∫

R+

∣∣kG(x|u)− kG(x|v)
∣∣ dx

�
∫

R+

∣∣∣ga1+a2,u+z0(w)− ga1+a2,v+z0(w)
∣∣∣ dw

+

∫

R+

∣∣∣ga3+a4,u+z4(y)− ga3+a4,v+z4(y)
∣∣∣ dy . (3.5)

Now, let α > 0 and let β1 > β2 > 0. A simple calculation shows that
gα,β1

(t) > gα,β2
(t) if and only if

t < t∗ :=
α

β1 − β2
log

β1

β2
.

Now fix α � 1 and let Z ∼ Gamma(α, 1). Then

∫

R+

∣∣gα,β1(t)− gα,β2(t)
∣∣ dt = 2

[ ∫ t∗

0

gα,β1(t) dt−
∫ t∗

0

gα,β2(t) dt

]

= 2 Pr
(
β2t
∗ < Z < β1t

∗)

� 2t∗(β1 − β2)

[
sup
t∈R+

e−ttα−1

Γ(α)

]

= 2t∗(β1 − β2)

[
e−(α−1)(α− 1)α−1

Γ(α)

]

� 2α log
β1

β2
, (3.6)

where the last inequality is due to the fact that, for s > 0, Γ(s+1) � e−sss
(see, e.g., Batir, 2008). Applying (3.6) and then the mean value theorem,
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we have that
∫

R+

∣∣∣ga1+a2,u+z0(w)− ga1+a2,v+z0(w)
∣∣∣ dw

� 2(a1 + a2) log

[
z0 + max{u, v}
z0 + min{u, v}

]

= 2(a1 + a2)
[
log

(
z0 + max{u, v}

)
− log

(
z0 + min{u, v}

)]

� 2(a1 + a2)
|v − u|
z0

. (3.7)

Similarly,

∫

R+

∣∣∣ga3+a4,u+z4(y)− ga3+a4,v+z4(y)
∣∣∣ dy � 2(a3 + a4)

|v − u|
z4

. (3.8)

Finally, combining (3.5), (3.7) and (3.8), we have

∫

R+

∣∣kG(x|u)− kG(x|v)
∣∣ dx � 2|v − u|

[
a1 + a2
z0

+
a3 + a4
z4

]
.

Putting together Propositions 3.3 and 3.4, we have the following result.

Proposition 3.5.— Assume that z0 � z4, a1 + a2 � 1, a3 + a4 � 1,
a1 + a4 > 1, and that λG < 1. Then for x ∈ R+ and n ∈ N, we have

‖PnG(x, ·)−ΠG(·)‖TV � λn−1
G

[
z4(a2 + a3)

a1 + a4 − 1
+ x

][
a1 + a2
z0

+
a3 + a4
z4

]
.

Remark 3.6.— It is important to reiterate that we assumed z0 � z4 only
to simplify the exposition. An analogous result can be proven for the case
where z0 > z4 by reversing the roles of these two quantities in the proof of
Proposition 3.5.

Note that λG is the expectation of a very simple function of two inde-
pendent gamma random variables. Hence, it is a simple matter to use the
classical Monte Carlo method to get an accurate estimate of λG. For the
numerical example considered in the Introduction, a simple Monte Carlo
experiment (strongly) suggests that λG is slightly less than 0.62. Using 0.62
in place of 5/6 shows that 32 steps are actually enough. (Of course, we can-
not conclude that λG � 0.62 based on Monte Carlo, no matter how large
the sample is.)
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4. A comparison to the bound of Steinsaltz

In this section, we compare the Wasserstein bound in Theorem 2.1 to
an alternative bound from [9] (see also [6]). Assume that the Markov chain
corresponding to P can be represented as an iterated (random) function
system; that is, assume that there exists a random function f (with domain
and range both equal X) such that f(x) ∼ P (x, ·). (This is, of course, true
of the chain analyzed in the previous section with X = R+.) Assume further
that the coupled Markov chains in Theorem 2.1 are based on the same iid
sequence of random functions as at the beginning of Section 3. That is,
Un = fn ◦ fn−1 ◦ · · · ◦ f1(u) and Vn = fn ◦ fn−1 ◦ · · · ◦ f1(v), where {fi}∞i=1

is a sequence of iid random functions each with the same distribution as f .
Finally, to keep things simple, assume that g(x) = x, so that c = 1. Under
these assumptions, (2.1) is equivalent to

E

[∣∣f(v)− f(u)
∣∣

|v − u|

]
� λ , (4.1)

for all v �= u. Thus, for every v ∈ X,

lim sup
u→v

E

[∣∣f(v)− f(u)
∣∣

|v − u|

]
� λ .

Then, assuming that this inequality still holds when limsup and integral are
interchanged (as is the case for the chain analyzed in the previous section),
we have

sup
v∈X

E

[
lim sup
u→v

∣∣f(v)− f(u)
∣∣

|v − u|

]
� λ .

Under these conditions, Theorem 2 in [9] is applicable (with φ(·) ≡ 1 and
r = λ), and it follows that

dW
(
Pn(x, ·),Π(·)

)
� λn

1− λE
∣∣f(x)− x

∣∣ .

This is similar to the bound in Theorem 2.1, except that the term E|Z −x|
has been replaced by E|f(x)−x|

1−λ . To compare the bounds, suppose that Z ∼
Π, and that f and Z are independent. Of course, f(Z) ∼ Π since Π is
stationary. Now, it follows from (4.1) that

E
∣∣f(Z)− f(x)

∣∣ = E
[
E

[∣∣f(Z)− f(x)
∣∣
∣∣∣Z

]]
� λE

∣∣Z − x
∣∣ .

Hence,

E
∣∣Z−x

∣∣ = E
∣∣f(Z)−x

∣∣ � E
∣∣f(Z)−f(x)

∣∣+E
∣∣f(x)−x

∣∣ � λE
∣∣Z−x

∣∣+E
∣∣f(x)−x

∣∣ .
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Consequently,

E
∣∣Z − x

∣∣ � E
∣∣f(x)− x

∣∣
1− λ ,

which shows that, at least in the scenario we’ve described here, the bound
in Theorem 2.1 is at least as good as that of [9]. Of course, in most practical
applications, both E|Z − x| and E|f(x)− x| would be intractable integrals
that would have to be either approximated analytically or estimated via
Monte Carlo methods.
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