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Regular foliations on weak Fano manifolds (∗)

Stéphane Druel (1)

ABSTRACT. — In this paper we prove that a regular foliation on a
complex weak Fano manifold is algebraically integrable.

RÉSUMÉ. — Dans cette note, nous montrons que tout feuilletage ré-
gulier sur une variété de Fano faible est algébriquement intégrable.

1. Introduction

This paper is concerned with a sufficient criterion to guarantee that a
given foliation has algebraic leaves. In [4], Bost proved an algebraicity cri-
terion for leaves of algebraic foliations defined over a number field. The
geometric counterpart of this result, independently obtained by Bogomolov
and McQuillan, is the following.

Theorem 1.1 ([3, Theorem 0.1], [4, Theorem 3.5]). — Let X be a com-
plex projective manifold, and let F be a foliation on X. Let C ⊂ X be a
complete curve disjoint from the singular locus of F . Suppose that the re-
striction F|C is an ample vector bundle on C. Then the leaf of F through
any point of C is an algebraic variety.

We also would like to mention the recent paper of Campana and Păun [6]
which present very interesting developments related to Theorem 1.1 above.

In this paper, we provide some evidence for the following conjecture.

Conjecture 1.2 (F. Touzet). — Let X be a complex projective
manifold, and let F be a regular foliation on X. Suppose that X is rationally
connected. Then the leaves of F are algebraic varieties.

(*) Reçu le 20 octobre 2015, accepté le 14 avril 2016.
Math. classification: 37F75.
(1) Institut Fourier, UMR 5582 du CNRS, Université Grenoble Alpes, CS 40700,

38058 Grenoble cedex 9, France — stephane.druel@univ-grenoble-alpes.fr
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Stéphane Druel

The statement is a tautology in the case of curves. For surfaces, it follows
from the classification of foliation by curves on surfaces ([5]). It was also
known to be true if X is a rational homogeneous space (see [9] and [13]).
Our result is the following. Recall that a weak Fano manifold is a complex
projective manifold X such that −KX is nef and big.

Theorem 1.3. — Let X be a complex weak Fano manifold, and let F ⊆
TX be a regular foliation. Then the foliation F is given by the fibers of a
smooth morphism X → Y onto a projective manifold.

Remark 1.4. — In the setup of Theorem 1.3, Y is a weak Fano manifold
by [8, Theorem 1.1].

Remark 1.5. — Let n > 2 be an integer, and let F be a foliation on
Pn induced by a general global holomorphic vector field. Then the leaf of
F through a general point is not algebraic. This shows that Theorem 1.3 is
wrong if one drops the regularity assumption on F .

In order to prove Theorem 1.1, we consider the normal bundle N :=
TX/F of the foliation F . We show first that det(N ) is nef. This follows from
a foliated version of the bend-and-break lemma (see also Proposition 3.7).

Proposition 1.6. — Let X be a complex projective manifold, and let
F ( TX be a regular foliation with normal bundle N . Let C ⊂ X be a ratio-
nal curve with det(N ) ·C 6= 0, and let x be a point on C. If det(F ) ·C > 1,
then there exist a nonzero effective rational 1-cycle Z passing through x, a
rational curve C1, and a positive integer m such that C ≡ mC1 +Z and such
that Supp(Z) is tangent to F .

From the base-point-free theorem, we conclude that det(N ) is semi-
ample. We then prove that the corresponding morphism ϕ : X → Y yields
a first integral for F as follows. Let F be a general fiber of ϕ. By the
adjunction formula, F is a weak Fano manifold. In particular, F does not
carry differential forms. This easily implies that F is tangent to F (see
Lemma 2.4). On the other hand, the Baum–Bott vanishing theorem yields
dimY 6 dimX−rank F , and hence dimF = rank F , completing the proof
of the claim.

Acknowledgments. — We would like to thank Jorge V. Pereira and
Frédéric Touzet for helpful discussions. We also thank the referee for their
thoughtful suggestions on how to improve the presentation of some of the
results.

2. Recollection: Foliations

In this section we recall the basic facts concerning foliations.
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2.1. Foliations

Definition 2.1. — A foliation on a complex manifold X is a coherent
subsheaf F ⊆ TX such that

• F is closed under the Lie bracket, and
• F is saturated in TX . In other words, the quotient TX/F is torsion
free.

The rank r of F is the generic rank of F . The codimension of F is defined
as q := dimX − r. Let X◦ ⊂ X be the maximal open set where F is a
subbundle of TX . We say that F is regular if X◦ = X.

A leaf of F is a connected, locally closed holomorphic submanifold L ⊂
X◦ such that TL = F|L. A leaf is called algebraic if it is open in its Zariski
closure.

The foliation F is said to be algebraically integrable if its leaves are
algebraic.

Definition 2.2. — Let F be a foliation on a smooth variety X. The
canonical class KF of F is any Weil divisor on X such that OX(−KF ) ∼=
det(F ).

2.3 (Foliations defined by q-forms). — Let q and n be positive integers.
Let F be a codimension q foliation on an n-dimensional complex manifold
X. The normal sheaf of F is N := (TX/F )∗∗. The q-th wedge prod-
uct of the inclusion N ∗ ↪→ (Ω1

X)∗∗ gives rise to a nonzero global section
ω ∈ H0(X,Ωq

X ⊗ det(N )
)
whose zero locus has codimension at least 2 in

X. Such ω is locally decomposable and integrable. To say that ω is locally
decomposable means that, in a neighborhood of a general point of X, ω
decomposes as the wedge product of q local 1-forms ω = ω1 ∧ · · · ∧ ωq. To
say that it is integrable means that for this local decomposition one has
dωi ∧ ω = 0 for every i ∈ {1, . . . , q}. The integrability condition for ω is
equivalent to the condition that F is closed under the Lie bracket.

Conversely, let L be a line bundle on X, q > 1, and ω ∈ H0(X,Ωq
X⊗L )

a global section whose zero locus has codimension at least 2 in X. Suppose
that ω is locally decomposable and integrable. Then one defines a foliation
of rank r = n−q on X as the kernel of the morphism TX → Ωq−1

X ⊗L given
by the contraction with ω. These constructions are inverse of each other.

We will need the following easy observation.

Lemma 2.4. — Let q be a positive integer, and let F be a codimension q
foliation on a complex projective manifold X. Let ϕ : X → Y be a surjective
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morphism with connected fibers onto a normal projective variety Y , with
general fiber F . Set N := TX/F and L := det(N ). Suppose that L|F ∼ 0
and that h0(F,Ωi

F ) = 0 for all 1 6 i 6 dimF . Then F is tangent to F . In
particular, we have dimY > q.

Proof. — Let ω ∈ H0(X,Ωq
X ⊗ L ) be a twisted q-form defining F

(see 2.3). The short exact sequence

0→ N ∗
F/X

∼= O⊕ dim X−dim Y
F → Ω1

X |F → Ω1
F → 0

yields a filtration

{0} = Eq+1 ⊆ Eq ⊆ · · · ⊆ E0 = Ωq
X |F

with
Ei/Ei+1 ∼= ∧i

(
N ∗

F/X

)
⊗ Ωq−i

F .

Since h0(F,Ωq−i
F ) = 0 for all 0 6 i 6 q − 1, we conclude that

ω|F ∈ H0(F,Eq) = H0(F,∧q(N ∗
F/X) ⊂ H0(F,Ωq

X |F ).

This implies that q 6 dimY and that N ∗
|F ◦ ⊂ N ∗

F/X |F ◦
⊂ Ω1

X |F ◦ , where
X◦ ⊂ X denotes the maximal open set where F is a subbundle of TX , and
F ◦ := F ∩X◦. Thus TF ◦ ⊂ F|F ◦ , proving the lemma. �

2.2. Bott (partial) connection

2.5. — Let X be a complex manifold, let F ⊂ TX be a regular codimen-
sion q foliation with 0 < q < dimX, and set N = TX/F . Let p : TX → N
denotes the natural projection. For sections U of N , T of TX , and V of
F over some open subset of X with U = p(T ), set DV U = p([V,U ]). This
expression is well-defined, OX -linear in V and satisfies the Leibnitz rule
DV (fU) = fDV U + (V f)U so that D is an F -connection on N (see [2]).

Lemma 2.6. — Let X be a complex manifold, and let F ( TX be a
regular foliation with normal bundle N = TX/F . Let f : Z → X be a
compact manifold, and suppose that f(Z) is tangent to F . Then f∗N admits
a holomorphic flat connection. In particular, characteristic classes of f∗N
vanish.

Proof. — This follows from 2.5 and [1]. �
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3. Deformations of a morphism along a foliation

In this section, we provide a technical tool for the proof of the main result
(see Corollary 3.9).

3.1. — Let Z, Y and X be normal complex projective varietes, and let
g : Z → X be a morphism. Let Hom

(
Y,X

)
denotes the space of morphisms

f : Y → X, and let Hom
(
Y,X; g

)
⊂ Hom

(
Y,X

)
denotes the Zariski closed

subspace parametrizing morphisms f : Y → X such that f|Z = g (see [16,
Proposition 1]).

Suppose now that Z, Y and X are complex projective manifolds, and
consider a codimension q regular foliation F ⊆ TX on X with 0 < q <
dimX. Pick [f ] ∈ Hom

(
Y,X

)
. Let Def

(
[f ],F

)
denotes the germ of analytic

space parametrizing small deformations of [f ] along F . It is constructed as
follows (see [15, Section 6], or [11, Corollary 5.6]). Choose an open cover
(Ui)i∈I of X with respect to the Euclidean topology such that, for each
i ∈ I, F|Ui

is induced by a holomorphic submersion ϕi : Ui →Wi of complex
analytic spaces. Let (Vj)j∈J be a finite open cover of Y . By replacing (Vj)j∈J

with a refinement, we may assume that, for each j ∈ J , there exist ij ∈ I and
an open neighborhood Hj of [f ] such that h(y) ∈ Uij for each [h] ∈ Hj and
each y ∈ Vj . Let Def

(
[f ],F

)
be the connected component of the intersection⋂

j∈J

{
[h] ∈ Hj

∣∣∣ ϕij
◦ (h|Vj

) = ϕij
◦ (f|Vj

)
}

which contains [f ]. Notice that Def
(
[f ],F

)
is a locally closed (possibly nonre-

duced) analytic subset. Set
Def
(
[f ],F ; g

)
= Def

(
[f ],F

)
∩Hom

(
Y,X; g

)
.

Remark 3.2. — Let ϕ : X → Y be a surjective morphism with connected
fibers of projective manifolds, let Z be a projective manifold, and let f : Z →
X be a morphism. Let F be the foliation on X given by the fibers of ϕ.
Recall that the space of deformations of [f ] over Y are parametrized by the
fiber HomY

(
Z,X

)
of [ϕ ◦ f ] under the map

Hom
(
Z,X

)
→ Hom

(
Z, Y

)
.

Suppose that F is regular. Then we have an embedding
(
Def
(
[f ],F

)
, [f ]

)
⊆(

HomY

(
Z,X

)
, [f ]

)
of pointed analytic spaces but they are not isomorphic

in general. Indeed, suppose that dimY = 1. Let y be a point on Y , and set
F := ϕ−1(y)red. Suppose that the multiplicity m of F is > 1. Let Z be a
reduced point {z}, and suppose that f(z) ⊂ F . Then

(
Def
(
[f ],F

)
, [f ]

)
∼=(

F, z
) ∼= (HomY

(
Z,X

)
red, [f ]

)
while

(
HomY

(
Z,X

)
, [f ]

)
∼=
(
ϕ−1(y), z

)
.
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The following observation will prove to be crucial. It is due to Loray,
Pereira and Touzet (see proof of [14, Proposition 6.12]).

Notation 3.3. — Let (A, a) be a pointed analytic space. We denote by
Â the formal completion of A at a. Given a morphism of pointed analytic
spaces λ : (A, a)→ (B, b), we denote by λ̂ : Â→ B̂ the induced morphism of
formal analytic spaces.

Lemma 3.4. — Let Y and X be complex projective manifolds, and let
F ⊆ TX be a regular foliation. Let f : Y → X be a morphism, and let
y be a point on Y . Then the Zariski closure T of Def

(
[f ],F ; f|{y}

)
red in

Hom
(
Y,X; f|{y}

)
red parametrizes deformations of [f ] along F , i.e., for each

y′ ∈ Y , ev
(
T ×{y′}

)
is tangent to F , where ev : Hom

(
Y,X; f|{y}

)
×Y → X

denotes the evaluation morphism.

Proof. — Set x := f(y), and let U be an open neighborhood of x in
X with respect to the Euclidean topology such that F|U is induced by a
submersion ϕ : U → W of complex analytic spaces. Let T̂ be the connected
component containing [f ] of the Zariski closed subset{

[h]∈Hom
(
Y,X; f|{y}

)
red

∣∣∣ ϕ̂ ◦ h = ϕ̂ ◦ f : Ŷ → Ŵ
}
⊂ Hom

(
Y,X; f|{y}

)
red.

Notice that T ⊂ T̂ . Let [h] ∈ T̂ , and consider an open neighborhood V of
y and an open neighborhood H of [h] in T̂ (with respect to the Euclidean
topology) such that for each [h′] ∈ H and each y′ ∈ V , we have h′(y′) ∈ U .
If [h′] ∈ H, then

ϕ ◦ (h′|V ) = ϕ ◦ (h|V ) : V →W since ϕ̂ ◦ h′ = ϕ̂ ◦ f = ϕ̂ ◦ h : Ŷ → Ŵ .

This implies that ev
(
H×{y′}

)
is tangent to F for each y′ ∈ V , and hence

so is ev
(
T̂ × {y′}

)
. Since the set of points y′ ∈ Y such that ev

(
T̂ × {y′}

)
is

tangent to F is Zariski closed in Y , we conclude that ev
(
T̂×{y′}

)
is tangent

to F for any y′ ∈ Y . This proves the lemma. �

Remark 3.5. — One might ask whether Lemma 3.4 holds for a larger
class of foliations. What we actually proved is the following. If F is induced
on an open neighborhood U of y (with respect to the Euclidean topology)
by a holomorphic map U → V of complex spaces, then the conclusion of
Lemma 3.4 holds.

The following lemma provides a lower bound for the dimension of
Def([f ],F ; f|B) at a point [f ], thereby allowing us in certain situations to
produce many deformations of f (see Proposition 1.6).
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Lemma 3.6. — Let X be a complex projective manifold, and let F ⊆ TX

be a regular rank r foliation on X. Let f : C → X be a smooth curve, and
let B be a finite subscheme of C. Then

dim[f ] Def
(
[f ],F ; f|B

)
> −KF · f∗C +

(
1− g(C)− `(B)

)
· r.

Proof. — Let (O,m) be local ring of the germ of analytic space
Def
(
[f ],F ; f|B

)
at [f ], and let Ô be its m-adic completion. Then Ô pro-

represents the functor of infinitesimal deformations of [f ] along F with fixed
subscheme B. We refer to [15, Section 6] for the definition of this functor. The
lemma then follows from [15, Theorem 6.2] (see also [15, Corollary 6.6]). �

The proof of Proposition 3.7 below is very similar to that of [7, Proposi-
tion 3.1] (see also [14, Proposition 6.13]), and so we leave some easy details
to the reader.

Proposition 3.7. — Let X be a complex projective manifold, and let
F ⊆ TX be a regular foliation. Let f : C → X be a smooth complete curve,
and let c be a point on C. If C ∼= P1, suppose that f(C) is transverse to F at
a general point on f(C). Suppose furthermore that dim[f ] Def

(
[f ],F ; f|{c}

)
>

1. There exist a morphism g : C → X, a nonzero effective rational 1-cycle Z
on X passing through f(c) such that f∗C ≡ g∗C +Z and such that Supp(Z)
is tangent to F .

Proof. — Denote by Def
(
[f ],F ; f|{c}

)
red ⊂ Hom

(
Y,X; f|{c}

)
red the

Zariski closure of Def
(
[f ],F ; f|{c}

)
red. Let T → Def

(
[f ],F ; f|{c}

)
red be the

normalization of a 1-dimensional subvariety passing through [f ], and let
T be a smooth compactification. Let e : S ε→ C × T

ev
99K X be a resolu-

tion of the indeterminacies of the rational map ev : C × T 99K X coming
from T → Hom

(
C,X; f|{c}

)
, where ε : S → C×T is obtained by blowing-up

points. From the rigidity lemma, we conclude that there exists a point t0 ∈ T
such that ev is not defined at (c, t0). The fiber of t0 under the projection
S → T is the union of the strict transform of C×{t0} and a (connected) ex-
ceptional rational 1-cycle E which is not entirely contracted by e and meets
the strict transform of {c} × T . Since the latter is contracted by e to the
point f(c), the rational 1-cycle Z := e∗E passes throuh f(c).

By Lemma 3.4, Def
(
[f ],F ; f|{c}

)
red parametrizes deformations of [f ]

along F . Therefore, if C is transverse to F at a general point on C,
Aut(C, c) · [f ] and Def

(
[f ],F ; f|{c}

)
red intersect at finitely many points in

Hom
(
C,X; f|{c}

)
. If C is irrational, then the orbit Aut(C, c) · [f ] is finite be-

cause the group Aut(C, c) is. In either case, we conclude that dim e(S) = 2.

Let G ⊆ TC×T be the foliation on C×T induced by ev∗F ∩TC×T , and set
GS := ε−1(G ). If C is tangent to F , then G = TC×T (and hence GS = TS).
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If C is transverse to F at a general point on C, then G is induced by the
projection C × T → C. In either case, any ε-exceptional curve is tangent
to GS . Hence Supp(Z) is tangent to F . This completes the proof of the
proposition. �

Proof of Proposition 1.6. — Let X be a complex projective manifold,
and let F ( TX be a regular foliation with normal bundle N . Let C ⊂ X
be a rational curve with det(N ) ·C 6= 0, and let x be a point on C. Suppose
that −KF ·C > 1. Let f : P1 → C ⊂ X be the normalization morphism, and
let p ∈ P1 such that f(p) = x. Notice that C is tranverse to F at a general
point on C by Lemma 2.6. By Lemma 3.6, we have

dim[f ] Def
(
[f ],F ; f|{p}

)
> −KF · C > 1

so that Proposition 3.7 applies. There exist a morphism g : P1 → X and a
nonzero effective rational 1-cycle Z on X such that f∗P1 ≡ g∗P1 + Z, and
such that Supp(Z) is tangent to F . From Lemma 2.6 again, we deduce that
det(N ) · Z = 0. Thus

0 6= det(N ) · f∗P1 = det(N ) · g∗P1 + det(N ) · Z = det(N ) · g∗P1.

In particular, g is a nonconstant morphism. Set C1 := g(P1) andm := deg(g).
Then C ≡ mC1 + Z, completing the proof of the proposition. �

We now provide a technical tool for the proof of the main result.

Corollary 3.8. — Let X be a complex projective manifold, and let
F ( TX be a regular foliation with normal bundle N . Suppose that −KX

is nef. If C ⊂ X is a rational curve, then det(N ) · C > 0.

Proof. — Set L := det(N ), and pick an ample divisor H on X. We
argue by contradiction, and assume that L · C < 0 for some rational curve
C. We have −KF ·C = −KX ·C−L ·C > 1 so that Proposition 1.6 applies.
There exist a nonzero effective rational 1-cycle Z, a rational curve C1, and a
positive integer m such that C ≡ mC1 +Z and such that Supp(Z) is tangent
to F . Notice that H · C1 < H · C. By Lemma 2.6, we have

L · C1 = 1
m

L · (mC1 + Z) = 1
m

L · C < 0.

This construction yields an infinite sequence of rational curves on X with
decreasing H-degrees. This is absurd and the corollary is proved. �

Let X be a complex projective manifold and consider the finite dimen-
sional R-vector space

N1(X) =
(
{1− cycles}/ ≡

)
⊗ R,

where ≡ denotes numerical equivalence. Recall that the Mori cone of X
is the closure NE(X) ⊂ N1(X) of the cone spanned by classes of effective
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curves. An extremal ray is a subcone R ⊂ NE(X) of dimension 1 such that
any two elements of NE(X) whose sum is in R are both in R.

We believe that the following result will be useful when considering reg-
ular foliations on arbitrary projective manifold. Its proof is similar to that
of Corollary 3.8 above.

Corollary 3.9. — Let X be a complex projective manifold, and let
F ( TX be a regular foliation with normal bundle N . Let C ⊂ X be a
rational curve with det(N ) · C 6= 0. If [C] ∈ NE(X) generates an extremal
ray, then KF · C > 0.

Proof. — Pick an ample divisor H on X. Let us assume to the contrary
that −KF · C > 1. By Proposition 1.6, C is numerically equivalent to a
connected nonintegral effective rational 1-cycle. Thus, there exists a rational
curve C1 on X with [C1] ∈ R+[C] and such that H · C1 < H · C. Since
[C1] ∈ R+[C], we must have −KF · C1 > 1. This construction yields an
infinite sequence of rational curves on X with decreasing H-degrees. This is
absurd, proving the corollary. �

4. Proof of Theorem 1.3

We are now in position to prove our main result.

Proof of Theorem 1.3. — Set N = TX/F , and denote by q its rank.
Suppose that 0 < q < dimX, and set L = det(N ).

By the cone theorem, there exist finitely many rational curves C1, . . . , Cm

such that
NE(X) = R+[C1] + · · ·+ R+[Cm]

where the R+[Ci] are the extremal rays of NE(X) ([12, Theorem 3.7]). By
Corollary 3.8, L ·Ci > 0 for any 1 6 i 6 m, and thus L is nef. By the base-
point-free theorem (see [12, Theorem 3.3]), the line bundle L ⊗m is globally
generated for all integers m sufficiently large. Let ϕ : X → Y be the induced
morphism.

We will show that F is induced by ϕ. By [2, Corollary 3.4], we have
L q+1 ≡ 0, and hence dimY 6 q. Let F be a general fiber of ϕ. Notice that
F is a smooth projective variety with −KF = (−KX)|F nef and big by the
adjunction formula, and that L|F ≡ 0. By [17], F is simply connected and
h0(F,Ωi

F ) = 0 for all 1 6 i 6 dimF , so that Lemma 2.4 applies. We have
dimY > q, and F is tangent to F . This in turn implies that dimY = q, and
that F is induced by ϕ. By Lemma 4.1 below, we infer that ϕ is a smooth
morphism, completing the proof of the theorem. �
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Lemma 4.1. — Let X be a complex projective manifold, and let ϕ : X →
Y be a surjective morphism with connected fibers onto a normal projective
variety Y . Suppose that −KX is ϕ-nef and ϕ-big. Suppose furthermore that
the foliation F on X induced by ϕ is regular. Then ϕ is a smooth morphism.

Proof. — Pick x ∈ X, and set y := ϕ(x) and F0 := ϕ−1(y)red. By [10,
Proposition 2.5], F0 has finite holonomy groupG. By the holomorphic version
of Reeb stability theorem (see [10, Theorem 2.4]), there exist a saturated
open neighborhood U of F0 in X with respect to the Euclidean topology, a
(local) transversal section S at x with a G-action, an unramified Galois cover
Û → U with group G, a smooth proper G-equivariant morphism Û → S, an
isomorphism S/G ∼= ϕ(U), and a commutative diagram:

Û
p //

ϕ̂

��

U,

ϕ

��
S

q
// S/G ∼= ϕ(U).

Recall that G is given by the holonomy representation
π1(F0, x)→ Diff(S, x).

Set F̂0 := ϕ̂−1(x)red, and consider a general fiber F̂ of ϕ̂. Notice that
−K

Û
∼= −p∗KU is ϕ̂-nef and ϕ̂-big. It follows that −K

F̂
is nef and big.

Since Kdim F̂0

F̂0
= Kdim F̂

F̂
, we infer that −K

F̂0
is nef and big as well. Since the

restriction of q to F̂0 induces an étale morphism q|F̂0
: F̂0 → F0 of projec-

tive manifolds, we conclude that −KF0 is also nef and big. By [17], we must
have π1(F0, x) = {1}. Therefore, the holonomy group G is trivial, and ϕ is
a smooth morphism. This proves the lemma. �

Question 4.2. — Let X be a complex projective manifold, and let F be
a regular foliation on X. Suppose that h1(X,OX) = 0, and that −KX is nef.
Is F algebraically integrable?
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