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Stochastic partial differential equations: a rough paths
view on weak solutions via Feynman–Kac

Joscha Diehl (1), Peter K. Friz (2) and Wilhelm Stannat (3)

ABSTRACT. — We discuss regular and weak solutions to rough partial
differential equations (RPDEs), thereby providing a (rough path-)wise
view on important classes of SPDEs. In contrast to many previous works
on RPDEs, our definition gives honest meaning to RPDEs as integral
equations, based on which we are able to obtain existence, uniqueness
and stability results. The case of weak “rough” forward equations, may
be seen as robustification of the (measure-valued) Zakai equation in the
rough path sense. Feynman–Kac representation for RPDEs, in formal
analogy to similar classical results in SPDE theory, play an important
role.

RÉSUMÉ. — Nous discutons des solutions régulières et faibles d’équa-
tions aux dérivées partielles rugueuses (EDPR), fournissant ainsi un point
de vue « chemins rugueux » sur des classes importantes d’ EDPS. Contrai-
rement à de nombreux travaux antérieurs sur le sujet, notre définition
donne un sens honnête aux EDPR en tant qu’équations intégrales, sur la
base duquel nous sommes en mesure d’obtenir l’existence, l’unicité et la
stabilité des résultats. Le cas d’équations forward faibles « rugueuses »
peut être vu comme une robustification de l’équation de Zakai à va-
leurs mesure, au sens des chemins rugueux. Des représentations de type
Feynman–Kac pour EDPR, par analogie formelle avec les résultats clas-
siques similaires dans la théorie des EDPS, jouent un rôle important.

Keywords: stochastic partial differential equations, Zakai equation, Feynman–Kac for-
mula, rough partial differential equations, rough paths.
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1. Introduction

Consider a diffusion process X on Rd with generator given by a second
order differential operator L. In its simplest form, the Feynman–Kac formula
asserts that, for suitable data g,

u (t, x) = Et,x [g (XT )] , t 6 T, x ∈ Rd, (1.1)

solves a parabolic partial differential equation, namely the terminal value
problem {

−∂tut = Lut

u(T, · ) = g .

(Below we will consider slightly more general operators including zero order
terms, causing additional exponential factors in the Feynman–Kac formula.)
On the other hand, the law of Xt started at X0 = x, solves the forward (or
Fokker–Planck) equation {

∂tρt = L∗ρt

ρ(0, · ) = δx .

Formally at least, an infinitesimal version of (1.1) is given by

∂t 〈ut, ρt〉 = 〈−Lut, ρt〉+ 〈ut, L∗ρt〉 = 0 ,

and indeed the resulting duality 〈uT , ρT 〉 = 〈u0,ρ0〉 is nothing than restate-
ment of (1.1), at t = 0.

In both cases, forward and backward, there may not exist a classical C1,2

solution. Indeed, it suffices to consider the case of degenerate X so that ρt
remains a measure; in the backward case consider g /∈ C2. In both cases one
then needs a concept of weak solutions. A natural way to do this, consists
in testing the equation in space; that is, to consider the evolution for 〈ut, φ〉
and 〈ρt, f〉 where φ and f are suitable test functions defined on Rd.

Applications from filtering theory lead to (backward) SPDEs of the form{
−dut = L[ut]dt+ Γ[ut] ◦ dWt

u(T, · ) = g ,

where W = (W 1, . . . ,W e) and Γ = (Γ1, . . . ,Γe) are first order differential
operators,(1) in duality with the forward (or Zakai) equation{

dρt = L∗[ρt]dt+ Γ∗[ρt] ◦ dWt

ρ(0, · ) = δx .

(1) Write Γ[u] ◦ dW =
∑e

k=1 Γk[u] ◦ dW k.
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SPDEs and rough paths

Such SPDEs were studied extensively in classical works [22, 24, 25]. It is a
natural question, studied for instance in a series of papers by Gyöngy [17, 18],
to what extent such SPDEs are approximated by (random) PDEs, upon
replacing the (Stratonovich) differential dW = dW (ω) by Ẇ ε (ω) dt, given
a suitable family of smooth approximation (W ε) to Brownian motion. In
recent works [10, 14], also [12, Ch. 12], it was shown that the backward
solutions uε, interpreted as viscosity solution (assuming g ∈ Cb) actually
converge locally uniformly, with limit u only depending on the rough path
limit of (W ε). Writing W = (W,W) for such a (deterministic!) rough path
(see the Appendix and [12] for notation) say, α-Hölder for 1/3 < α < 1/2,
the question arises if one can give an honest meaning to the equations

−dut = L[ut]dt+ Γ[ut]dWt,

dρt = L∗[ρt]dt+ Γ∗[ρt]dWt.
(1.2)

In the aforementioned works, these “rough partial differential equations”
(RPDEs) had only formal meaning. The actual definition was then given ei-
ther in terms of a (flow)transformed equation in the spirit of Kunita (e.g. [14],
also [12, p. 177]) or in terms of a unique continuous extension of the PDE
solution as function of driving noise, [5, 14].

There are two difficulties with such rough partial differential equations.
The first one is the temporal roughness of W, a problem that has been well-
understood from the rough path analysis of SDEs. Indeed, following Davie’s
approach to RDEs [8], the (rough) pathwise meaning of

dX = β (X) dW

is, by definition, and writing Xs,t = Xt −Xs for path increments,

Xs,t = β (Xs)Ws,t + β′β (Xs)Ws,t + o(|t− s|) .

Under suitable assumptions on β, uniqueness and local/global existence re-
sults are well-known. This quantifies the statement that X is controlled by
W , with “Gubinelli derivative” β (X), and in turn implies the integral rep-
resentation in terms of a bona-fide rough integral (cf. [12, Ch. 4])

Xt −Xs =
∫ t

s

β (X) dW = lim
∑

[u,v]∈P

β (Xu)Wu,v + β′β (Xu)Wu,v .

This suggests that the meaning of the backward equation (1.2) is

u (s, x)− u (t, x) =
∫ t

s

L[ur] dr +
∫ t

s

Γ[ur] dWr ,

provided u is sufficiently regular (in space) such as to make L[u],Γ[u] mean-
ingful, and provided the last term makes sense as rough integral. The other
difficulty is exactly that u may not be regular in space so that L[u],Γ[u]
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require a weak meaning. More precisely, we propose the following spatially
weak(2) formulation, of the form

〈us, φ〉 − 〈ut, φ〉 =
∫ t

s

〈ur, L∗φ〉dr +
∫ t

s

〈ur,Γ∗φ〉dWr ,

where, again, we can hope to understand the last term as rough integral.
(Everything said for backward equations translates, mutatis mutandis, to
the forward setting.)

The main result of this paper is that — in all cases — one has existence
and uniqueness results. Loosely speaking (and subject to suitable regularity
assumptions on the coefficients of L,Γ; but no ellipticity assumptions) we
have

Theorem 1.1. — For nice terminal data g there exists a unique (spa-
tially) regular solution to the backward RPDE. Similarly, for nice initial data
ρ0 (with nice density p0, say) the forward RPDE has a unique (spatially) reg-
ular solution.

If the terminal data g is only bounded and continuous, we have exis-
tence and uniqueness of a weak solution to the backward RPDE. Similarly,
if the initial data ρ0 of the forward RPDE is only a finite measure, we have
existence and uniqueness of a weak (here: measure-valued) solution to the
forward RPDE.

In all cases, the (unique) solution depends continuously on the driving
rough path and we have Feynman–Kac type representation formulae.

Let us briefly discuss the strategy of proof. In all cases (regular/weak, for-
ward/backward) existence of a solution is verified via an explicit Feynman–
Kac type formula, based on a notion of “hybrid” Itô/rough differential equa-
tion, which already appeared in previous works [7, 10], see also [12]. We
then use regular forward existence to show weak backward uniqueness (Theo-
rem 2.8), which actually requires us to work with exponentially decaying test
functions. Next, regular backward existence leads to weak (actually, measure-
valued) forward uniqueness (Theorem 3.5), here we just need boundedness
and some control in the sense of Gubinelli. Then weak (measure-valued)
forward existence gives regular backward uniqueness. At last, we note that,
subject to suitable smoothness assumptions on the coefficients, regular for-
ward equations can be reformulated as regular backward equations, from
which we deduce regular forward uniqueness.

(2) There is no probability here, for W is a deterministic rough path. Nevertheless, with
a view to later applications to SPDEs and to avoid misunderstandings, let us emphasize
that in this paper “weak” is always understood as “analytically weak”.
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SPDEs and rough paths

It is a natural question what the above RPDE solutions have to do with
classical SPDE solutions. To this end, recall [12, Ch. 9] consistency of RDEs
with SDEs in the following sense: RDE solutions driven by W = WStrato (ω),
the usual (random) geometric rough path associated to Brownian motion
W via iterated Stratonovich integration, are solutions to the corresponding
(Stratonovich) SDEs. Consider now - for the sake of argument - a regular
backward RPDE solution; that is, the unique solution u = u (t, x; W) to

−dut = L[ut]dt+ Γ[ut]dWt

(with fixed C2
b time-T terminal data). We expect that

ũ (t, x) = ũ (t, x;ω) = u
(
t, x; WStrato (ω)

)
(1.3)

is also a (and hopefully: the unique) solution to the (backward) SPDE, again
with fixed terminal data,

−dũt = L[ũt]dt+ Γ[ũt] ◦ dWt .

(Similar for weak backward and weak/regular forward equations.) Unfortu-
nately, we cannot hope for a general RPDE/SPDE consistency statement
for the simple reason that the choice of spaces in which SPDE existence and
uniqueness statements are proven are model-dependent and therefore vary
from paper to paper. In other words, checking that ũ(t, x;ω) is a — and then
the (unique) — SPDE solution within a given SPDE setting will necessarily
require to check details specific to this setting. Luckily, there are arguments
which do not force us into such a particular setting.

• Consider a notion of (Stratonovich) SPDE solution for which there
are existence, uniqueness results and Wong–Zakai stability, by which
we mean that the (unique bounded, or finite-measure valued) solu-
tions to the random PDEs obtained by replacing dW (ω) by the
mollified Ẇ ε(ω)dt converge to the unique SPDE solution. (Such
Wong–Zakai results are found e.g. in the works of Gyöngy.) Assume
also that our regularity assumptions fall within the scope of these
existence and uniqueness results. Then, for fixed terminal (resp.
initial) data, our unique RPDE solution, with driving rough path
W = WStrato(ω), coincides with (and in fact, may be a very pleas-
ant version of) the unique SPDE solution. (This follows immediately
from continuous dependence of our RPDE solutions on the driving
rough paths, together with well-known rough path convergence of
mollifier approximations [16].) In a context of viscosity solutions,
this argument was spelled out in [14].

• Consider a notion of (Stratonovich) SPDE solution for which there
are existence, uniqueness results and a Feynman–Kac representation
formula. (This is the case in essentially every classical work on linear
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SPDEs, especially in the filtering context.) Recall that such SPDE
Feynman–Kac formulas are conditional expectations, given W (ω)
(the observation, in the filtering context). In contrast, the Feynman–
Kac formula alluded to in Theorem 1.1, is of unconditional form
Et,x( . . .), the expectation taken over some hybrid Itô-rough process
(with rough driver dW). By a stochastic Fubini argument (similar
to the one in [10]) one can show that the Feynman–Kac formula,
evaluated at W = WStrato(ω), indeed yields the SPDE Feynman–
Kac formula. In particular, our unique RPDE solution, with driving
rough path W = WStrato(ω), then coincides with the unique SPDE
solution.
• At last, we consider an immediate consequence of our (rough path-)
wise definition in case of W = WStrato(ω). For the sake of argument,
let us now focus on the weak backward equation,

〈us, φ〉 − 〈ut, φ〉 =
∫ t

s

〈ur, L∗φ〉dr +
∫ t

s

〈ur,Γ∗φ〉dWr.

With ũ(t, x;ω) = u(t, x; WStrato(ω)), as before it follows from con-
sistency of rough with classical (backward) Stratonovich integra-
tion [12, Ch. 5] that

〈ũs, φ〉 − 〈ũt, φ〉 =
∫ t

s

〈ũr, L∗φ〉dr +
∫ t

s

〈ũr,Γ∗φ〉 ◦ dW,

for the same class of spatial test functions. Such notion of weak (or
distributional) SPDE solutions appear for instance in the works of
Krylov, e.g. [21, Def. 4.6]. Hence, whenever such a notion of SPDE
solution comes with uniqueness results, it is straight-forward to see
that ũ, i.e. our solution constructed via rough paths, must coincide
with the unique SPDE solution.

1.1. Notation

The second resp. first oder operators we shall consider are of the following
form,

Lu := 1
2 Tr

(
σ (x)σT (x)D2u

)
+ 〈b (x) , Du〉+ c (x)u

Γku := 〈βk (x) , Du〉+ γk (x)u ;
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SPDEs and rough paths

with σ = (σ1, . . . , σdB ), β = (β1, . . . , βe) and b vector fields on Rd and scalar
functions c, γ1, . . . , γe. We note that the formal adjoints are given as,

L∗ϕ = 1
2 Tr[ã(x)D2ϕ] + 〈b̃(x), Dϕ〉+ c̃(x)ϕ,

Γ∗kϕ = 〈β̃k(x), Dϕ〉+ γ̃k(x)ϕ
where

ã(x) := a(x) := σσT (x)
b̃i(x) := ∂jaji(x)− bi(x)

c̃(x) := 1
2∂ijaij(x)− div(b)(x) + c(x)

β̃k(x) := −βk(x)
γ̃k(x) := −div(βk)(x) + γk(x) .

(1.4)

Precise assumptions on the coefficients will appear in the theorems below.
Let us remark, however, that we did not push for optimal assumptions.
As is typical in rough path theory, Cnb -regularity (bounded, with bounded
derivatives up to order n) can often be improved to Lipγ-regularity (in the
sense of Stein) with γ ∈ (n− 1, n), depending on the Hölder exponent of the
driving rough path.

2. The backward equation

Replacing the rough path by a smooth path, say W ∈ C1 ([0, T ] ,Re) we
certainly want to recover a solution to the PDE{

−∂tut = Lut +
∑e
k=1ΓkutẆ k

t (≡ Lut + ΓutẆt)
u(T, · ) = g .

(2.1)

For the precise statement of the following lemma, let us now introduce
a suitable class of test functions with exponential decay, that will become
important in the concept of weak solutions.

Definition 2.1. — For n > 0 denote with Cnexp(Rd) the class of func-
tions φ ∈ Cn(Rd) such that there exists c > 0 such that

|Dkφ(x)| 6 ce− 1
c |x|, k = 0, 1, . . . , n .

Define the quasinorm(3) ‖ · ‖Cnexp(Rd) as the infimum over the values of c
satisfying the bound. Define moreover the space Cm,nexp ([0, T ]× Rd) to be the

(3) which we shall need in order to speak of bounded sets in Cn
exp(Rd).
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class of functions φ ∈ Cm,n([0, T ] × Rd) such that there exists c > 0 such
that

|Dj,kφ(t, x)| 6 ce− 1
c |x|, j = 0, . . . ,m, k = 0, 1, . . . , n.

We then recall the following Feynman–Kac representation for solutions
to the classical equation (2.1).

Lemma 2.2. — Assume c, b, σi, γj , βk ∈ C2
b , i= 1, . . . , dB, j, k = 1, . . . , e.

Let u be given as

u (t, x) = Et,x
[
g (XT ) exp

(∫ T

t

c (Xr) dr +
∫ T

t

γ (Xr) Ẇr dr
)]

(2.2)

with
dXt = σ(Xt) dB(ω) + b(Xt) dt+ β(Xt)Ẇt dt ,

where B is a dB-dimensional Brownian motion and W ∈ C1([0, T ],Re).

(1) If g ∈ C2
b (Rd) then u is the unique C1,2

b ([0, T ]×Rd) solution to (2.1).
If moreover g ∈ C2

exp(Rd) then u ∈ C1,2
exp([0, T ]× Rd).

(2) If g ∈ Cb(Rd) then u ∈ Cb([0, T ]×Rd) and it is the unique bounded
analytically weak solution to (2.1), that is, for ϕ ∈ D(Rd)

〈ut, ϕ〉 = 〈g, ϕ〉+
∫ T

t

〈ur, L∗ϕ〉dr +
∫ T

t

〈ur,Γ∗ϕ〉dWr . (2.3)

Proof. — Let us first note that the expectation actually exists, since g,
c, γ and |Ẇ | are bounded.

(1): The proof amounts to taking derivatives under the expectation, see
for example Theorem V.7.4 in [19], which shows that u is a C1,2

b solu-
tion.(4) Uniqueness follows from the maximum principle, see for example
Theorem 8.1.4 in [20].

If g ∈ C2
exp(Rd) then one can show that actually u ∈ C1,2

exp([0, T ] × Rd).
This is similar to the rough case in Theorem 2.8, so we omit the proof here.

(2): Take some gn ∈ C2
b (Rd) converging to g locally uniformly, uniformly

bounded by 2‖g‖∞. Let un be the corresponding classical solution from
part (1). Then un satisfies (2.3) with g replaced by gn. Now by the Feynman–
Kac representation, we get for every N > 0,
|un(t, x)− u(t, x)| . E[ |gn(Xt,x

T )− g(Xt,x
T )|2]1/2

6 sup
|y|6N

|gn(y)− g(y)|+ 2‖g‖∞E[1[−N,N ]C (|Xt,x
T )] .

(4) In [19] it is assumed that the term in the exponential is non-positive, but a term
bounded from below poses no additional difficulty: just replace u(t, x) by u(t, x)e−c(T −t)

for c sufficiently large.

– 918 –



SPDEs and rough paths

Hence for every R > 0

sup
|x|6R

|un(t, x)− u(t, x)| . sup
|y|6N

|gn(y)− g(y)|+ 1
N

sup
|x|6R

E[|Xt,x
T |] ,

from which the locally uniform convergence of unt to ut follows, uniformly
in t 6 T . Taking the limit in the integral equation, we then see that u
satisfies (2.3).

To show uniqueness, let u ∈ Cb([0, T ]×Rd) be any solution to (2.3). It is
immediate that the equation then also holds for test functions ϕ ∈ C2

c (Rd).
It is straightforward to show that for ϕ ∈ C1,2

c ([0, T ]× Rd) we have

〈ut, ϕt〉 = 〈g, ϕT 〉+
∫ T

t

〈ur,−∂tϕr + L∗ϕr〉dr +
∫ T

t

〈ur,Γ∗ϕr〉dWr . (2.4)

Finally, via dominated convergence, (2.4) also holds for ϕ ∈ C1,2
exp([0, T ]×Rd).

Now, an application of Lemma 3.1(2) yields, for every t ∈ [0, T ) and
every φ ∈ C4

exp(Rd), a ϕ ∈ C1,2
exp([t, T ]× Rd) that satisfies

∂sϕs = L∗ϕs + Γ∗ϕsẆs ,

ϕt = φ.

Then, by (2.4),

〈ut, φ〉 = 〈ut, ϕt〉 = 〈g, ϕT 〉.

So, tested against φ ∈ C4
c (Rd), all solutions coincide at every t ∈ [0, T ],

which gives uniqueness in Cb([0, T ]× Rd). �

In (2.1), replacing W by a rough path W, we are interested in the fol-
lowing formal equation { −du = Ludt+ ΓudW

u(T, · ) = g .
(2.5)

We will next introduce two solution concepts, weak and regular in nature
(see Definitions 2.3 and 2.6 below). Both rely on the (standard) notion of a
controlled rough path space D2α

W - see Appendix, Definition 4.1, for a recall.

Definition 2.3 (Analytically weak backward RPDE solution). — Given
an α-Hölder rough path W = (W,W), α ∈ (1/3, 1/2], we say that a bounded,
measurable function u = u (t, x; W) = ut (x; W) is an analytically weak
solution to (2.5), if for all functions ϕ ∈ C3

exp(Rd), we have (Y ϕ, (Y ϕ)′) ∈
D2α
W with

(Yt)ϕi := 〈ut,Γ∗iϕ〉, (Y ϕt )′ij := −
〈
ut,Γ∗jΓ∗iϕ

〉
,
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that is
‖Y ϕ, (Y ϕ)′‖W,2α <∞ , (2.6)

and the following equation is satisfied:

〈ut, ϕ〉 = 〈g, ϕ〉+
∫ T

t

〈ur, L∗ϕ〉dr +
∫ T

t

〈ur,Γ∗ϕ〉dWr , 0 6 t 6 T. (2.7)

Here,
∫
Y dW is the rough integral against (Y, Y ′).

Remark 2.4. — Different from the smooth case, Lemma 2.2, we work
with test functions in the larger class C3

exp here. This is necessary, since with
presence of the rough integral we were not able to automatically enlarge the
space of functions for which the integral equation holds, as was done in the
proof of Lemma 2.2.

Remark 2.5. — Heuristically, the origin of the compensator term Y ′t =
〈ut,Γ∗Γ∗ϕ〉 can be seen as follows. One certainly expects that∫ t

s

〈ur,Γ∗ϕ〉dWr ≈ 〈us,Γ∗ϕ〉Ws,t

where a ≈ b means a− b = O
(
|t− s|2α

)
. Hence, in view of (2.7),

〈ut, ϕ〉 − 〈us, ϕ〉 ≈ −
∫ t

s

〈u,Γ∗ϕ〉dW ≈ −〈us,Γ∗ϕ〉Ws,t

Replacing ϕ by Γ∗ϕ (note that the latter is not in C3
exp though) gives

〈ut,Γ∗ϕ〉 − 〈us,Γ∗ϕ〉 = −〈us,Γ∗Γ∗ϕ〉Ws,t +O
(
|v − u|2α

)
so that t 7→ 〈ut,Γ∗ϕ〉 is controlled by W , with Gubinelli derivative
−〈ut,Γ∗Γ∗ϕ〉.

Definition 2.6 (Regular backward RPDE solution). — Given an α-
Hölder rough path W = (W,W), α ∈ (1/3, 1/2], we say that a function
u = u(t, x; W) ∈ C0,2 (with respect to t, x) is a solution to (2.5) if, for all
x ∈ Rd, (Γu( · , x),ΓΓu( · , x)) is controlled by W (Definition 4.1) and

u(t, x) = g(x) +
∫ T

t

Lu(r, x) dr +
∫ T

t

Γu(r, x) dWr . (2.8)

Remark 2.7. — If a regular solution in the sense of Definition 2.6 pos-
sesses a uniform bound on the control (see for example (2.10) below) then
it is also a weak solution in the sense of Definition 2.3.

Recall that geometric rough paths are limits of smooth paths under the
appropriate rough path metric. While rough path integration does not rely
on this assumption (indeed, (2.7), resp. (2.8) were formulated for a general
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α-Hölder rough path), it is a very natural assumption when it comes to
stability results.

Theorem 2.8. — Throughout, W is a geometric α-Hölder rough path,
α ∈ (1/3, 1/2]. Assume σi, βj ∈ C3

b (Rd), b ∈ C1
b (Rd), c ∈ C1

b (Rd), γk ∈
C2
b (Rd). Consider g ∈ C0

b (Rd).

(1) Stability. Let u = uW be the solution to (2.1) as given by the
Feynman–Kac representation (2.2), wheneverW∈C1. PickW ε∈C1

convergent in rough path sense to W. Then there exists a bounded,
continuous function uW, independent of the choice of the approxi-
mating sequence, so that uW ε → uW uniformly. The resulting map
W 7→ uW is continuous. Moreover, the following Feynman–Kac
representation holds:

uW(t, x) = Et,x
[
g (XT ) exp

(∫ T

t

c(Xr) dr +
∫ T

t

γ(Xr) dWr

)]
,

where X solves the rough SDE (see Appendix, Lemma 4.19)

dXt = σ(Xt) dB(ω) + b(Xt) dt+ β(Xt) dWt , (2.9)

where B is a dB-dimensional Brownian motion.
(2) Analytically weak backward RPDE solution. Let u = uW be the

function constructed in (1). Then u = uW ∈ Cb([0, T ] × Rd) is a
bounded solution to (2.5) in the sense of Definition 2.3. Moreover,
(2.6) is bounded, uniformly over bounded sets of ϕ in C3

exp(Rd), and
uW is the only solution in the class of Cb functions u satisfying this
uniform bound on (2.6).

(3) Regular backward RPDE solution. Assume σi, βj ∈ C6
b (Rd), b ∈

C4
b (Rd), c ∈ C4

b (Rd), γk ∈ C6
b (Rd) and g ∈ C4

b (Rd). Then u =
uW ∈ C0,4

b ([0, T ] × Rd) is a bounded solution to (2.5) in the sense
of Definition 2.6. It is the only solution in the class of functions in
C0,4
b ([0, T ]× Rd) that satisfies

sup
x
‖Γu( · , x),ΓΓu( · , x)‖W,2α <∞ . (2.10)

If moreover g ∈ C4
exp(Rd), then u ∈ C0,4

exp([0, T ]× Rd).

Remark 2.9. — We consider solutions in C0,4
b , instead of the obvious

choice C0,2
b , because of two reasons. First, in order to show that u is

controlled by W we need g ∈ C4
b (Rd) which automatically gives us u ∈

C0,4
b ([0, T ]×Rd). Second, this additional regularity is needed for the unique-

ness proof via duality.
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Remark 2.10. — Results of the type in Theorem 2.8(1), even in nonlin-
ear situations, were obtained in [4, 5, 9, 7, 14]. However, in all these refer-
ences, the only intrinsic meaning of these equations was given in terms of a
transformed equation, somewhat in the spirit of the Lions–Souganidis [23]
theory of stochastic viscosity solutions. On the contrary, parts (2) and (3)
of the above theorem present a direct intrinsic characterization. See also [3,
Ch. 3].

Proof. — (1): This follows from stability of “rough SDEs”, see Lem-
ma 4.19.

(2): Existence. — For simplicity only, we take c = γ = b = 0 so that

u (s, x) = E [g (Xs,x
T )] ,

dXt = σ (Xt) dBt (ω) + β (Xt) dWt .

(By Xs,x we mean the unique solution started at Xs = x.) In the following
we consider the above SDE as an RDE w.r.t. the joint lift Z = (Z,Z) of
W and the Brownian motion B (see Lemma 4.18 and Lemma 4.19 below).
Denote with Φ its associated flow.

Recall Yt = 〈ut, ϕ̄〉, Y ′t = −〈ut,Γ∗ϕ̄〉, where ϕ̄ := Γ∗ϕ. Since ϕ ∈ C3
exp

and βj ∈ C2
b , j = 1, . . . , e, we have that ϕ̄ ∈ C2

exp. Then

Yt − Ys − Y ′tWs,t

= E
[∫

Rd
{g(Φt,T (x))− g(Φs,T (x))} ϕ̄(x) + g(Φt,T (x))Γ∗ϕ̄(x)Ws,t dx

]
= E

[∫
Rd
g(y)

{
ϕ̄(Φ−1

t,T (y)) det(DΦ−1
t,T (y))− ϕ̄(Φ−1

s,T (y)) det(DΦ−1
s,T (y))

+ Γ∗ϕ̄(Φ−1
t,T (y)) det(DΦ−1

t,T (y))Ws,t

}
dy
]

= E
[∫

Rd
g(y)

{
ϕ̄(Φ−1

t,T (y)) det(DΦ−1
t,T (y))− ϕ̄(Φ−1

s,T (y)) det(DΦ−1
s,T (y))

+ Γ∗ϕ̄(Φ−1
t,T (y)) det(DΦ−1

t,T (y))Ws,t

+ Γ∗ϕ̄(Φ−1
t,T (y)) det(DΦ−1

t,T (y))Bs,t
}

dy
]
.

Note that Γ∗ϕ = −div (bϕ). Hence the term in curly brackets is bounded in
absolute value, using Lemma 4.9, by a constant times

‖ϕ̄‖C3
b

(M(y)) exp(CN1;[0,T ](Z)) (‖Z‖α + 1)17+3d |t− s|2α.
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Hence

|Yt − Ys − Y ′tWs,t|

.
∫
Rd

E
[
‖ϕ‖C3

b
(M(y)) exp(CN1;[0,T ](Z)) (‖Z‖α + 1)17+3d

]
dy |t− s|2α .

Next observe that

E
[
‖ϕ‖C3

b
(M(y)) exp(CN1;[0,T ](Z)) (‖Z‖α + 1)17+3d

]
6 E

[
‖ϕ‖2

C3
b

(M(y))

]1/2
E
[
exp(2CN1;[0,T ](Z)) (‖Z‖α + 1)34+6d

]1/2
,

and Lemma 4.18 now implies that the last term is bounded and Lemma 4.21
implies that the first term decays exponentially in y. Therefore

|Yt − Ys − Y ′tWs,t| . |t− s|2α,

as desired.

The estimate |Y ′t − Y ′s | 6 C|t− s|α is shown analogously, and then

|Yt − Ys − Y ′sWs,t| 6 |Yt − Ys − Y ′tWs,t|+ |Y ′s,tWs,t| = O(|t− s|2α) ,

as desired.

It remains to show that the integral equation (2.7) is satisfied. For this
let Wn be a sequence of smooth paths converging to W in α-rough path
metric. Let un be the solution to (2.3) as given by Lemma 2.2(2).

Part (1) of the theorem now implies that un converges locally uniformly
to u, hence the convergence of all the terms in (2.7) except the rough integral
is immediate. For the rough integral, in view of Theorem 4.16 in [12], it is
enough to show that

sup
n
‖Y ′n‖α <∞ sup

n
‖Y ′n − Y ′‖∞ → 0

sup
n
‖Rn‖2α <∞ sup

n
‖Rn −R‖∞ → 0 ,

with Y nt := 〈unt ,Γ∗ϕ〉, Y ′
n := 〈unt ,Γ∗Γ∗ϕ〉 and

Rns,t = 〈unt − uns ,Γ∗ϕ〉 − 〈uns ,Γ∗Γ∗ϕ〉Wn
s,t .

The first two statements follow from the fact that the preceding considera-
tions were uniform for W bounded in rough path norm. Finally, convergence
in supremum norm of Y ′nt − Y ′t = 〈unt − ut,Γ∗Γ∗ϕ〉 and Rns,t − Rs,t follows
from local uniform convergence of un.
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Uniqueness. — Let φ ∈ C0,3
exp([t, T ],Rd) be such that(5)

φ(t, x) = ϕ(x) +
∫ T

t

α(r, x) dr +
∫ T

t

ηi(r, x) dWi
r,

with α ∈ C0,3
exp([0, T ]×Rd), and (ηi=1,...,e, η

′
i,j=1,...,e) controlled byW . Assume

moreover for some δ > 0

‖η(x), η′(x)‖W,2α . e−δ|x|,

‖Dη(x), Dη′(x)‖W,2α . e−δ|x|.

Then by Lemma 4.17

〈uT , φT 〉 = 〈ut, φt〉 −
∫ T

t

〈ur, L∗φr〉dr −
∫ T

t

〈ur,Γ∗kφr〉dWk
r

+
∫ T

t

〈ur, α(r)〉dr +
∫ T

t

〈ur, ηk(r)〉dWk
r .

So it remains to find, for given ϕ, such a φ with α(r) = L∗φ(r), ηi(r) =
Γ∗iφ(r) and η′i,j(r) = Γ∗jΓ∗iφ(r). But this is exactly what Theorem 3.5(3)
gives us for ϕ ∈ C4

exp(Rd). Then

〈g, φT 〉 = 〈uT , φT 〉 = 〈ut, φt〉 = 〈ut, ϕ〉 ,

which gives uniqueness of ut. This holds for all t ∈ [0, T ], which gives unique-
ness of u.

(3): Again, for simplicity only, we take c = γ = b = 0 so that

u(t, x) = E
[
g
(
Xt,x
T

)]
.

Then

Du(t, x) = E[Dg(Xt,x
T )DXt,x

T ] .

Indeed, using the integrability of DX given by Lemma 4.19 and the fact that
Dg is bounded, the statement follows from interchanging differentiation and
integration, see for example Theorem 8.1.2 in [11].

(5) Notation dWi, dWk, . . . is somewhat abusive, see Remark 4.4.
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Then by Lemma 4.14

Du(t, x)−Du(s, x)
= E[Dg(Xt,x

T )DXt,x
T −Dg(Xs,x

T )DXs,x
T ]

= E
[∫ t

s

Dg(Xr,x
T )dDXr,x

T +
∫ t

s

D2g(Xr,x
T )〈dXr,x

T , DXr,x
T · 〉

]
= E

[∫ t

s

Dg(Xr,x
T )D2Xr,x

T 〈V (x)dZr, · 〉+
∫ t

s

Dg(Xr,x
T )DV (x)DXr,x

T dZr

+
∫ t

s

D2g(Xr,x
T )〈DXr,x

T V (x)dZr, DXr,x
T · 〉

]
+O(|t− s|)

= E[Dg(Xs,x
T )D2Xs,x

T 〈β(x)Ws,t, · 〉] + E[Dg(Xs,x
T )DXs,x

T Dβ(x)]Ws,t

+ E[D2g(Xs,x
T )〈DXs,x

T V (x)Ws,t, DX
s,x
T · 〉] +O(|t− s|2α)

= ∂x[β(x)Du(s, x)]Ws,t +O(|t− s|2α).

So Γu is controlled as claimed and (2.10) is satisfied. Showing that u ∈ C0,4
b

also follows from differentiation under the expectation and the proof that the
integral equation is satisfied now follows by using smooth approximations to
W, as in part (2).

Uniqueness follows from existence of the measure-valued forward equa-
tion. The argument is dual to the one that will be used in the proof of
Theorem 3.5(2), so we omit the proof here.

Finally, the exponential decay of u, if g ∈ C4
exp, follows from Lemma 4.20.

�

3. The forward equation

We now consider the forward equation{
∂tρt = L∗ρt +

∑e
k=1Γ∗kρtẆ k

t (≡ L∗ρt + Γ∗ρtẆt)
ρ0 = p0 .

(3.1)

on the spaceM(Rd) of finite measures on Rd.

Equation (3.1) is dual to the backward equation — considered in the
previous section — in a sense that will be made precise in the following (see
in particular Corollary 3.7 below).

The spaceM(Rd) is endowed with the weak topology; that is µn → µ if
µn(f) → µ(f) for all f ∈ Cb(Rd). It is metrizable with compatible metric
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given by the Kantorovich–Rubinstein metric d, defined as

d(µ, ν) := sup
‖f‖

C1
b

(Rd)61

∣∣∣∣∫
Rd
f(x)ν(dx)−

∫
Rd
f(x)µ(dx)

∣∣∣∣
(see Chapter 8.3 in [2]). A compatible metric on the space of continuous
finite-measure-valued paths is then given by d(µ·, ρ·) := supt6T d(µt, ρt).

Lemma 3.1. — Assume c, b, σi, γj , βk ∈ C2
b , i= 1, . . . , dB, j, k= 1, . . . , e.

Define forW ∈ C1 the measure valued process ρ via its action on f ∈ Cb(Rd)
as

ρt(f) := E0,ν
[
f (Xt) exp

(∫ t

0
c (Xs) ds+

∫ t

0
γ (Xs) Ẇs ds

)]
, (3.2)

where ν ∈ M(Rd) is the law of the initial condition of the diffusion X with
dynamics

dXt = σ (Xt) dB (ω) + b (Xt) dt+ β (Xt) Ẇt dt,
where B is a dB-dimensional Brownian motion.

(1) Then ρ is the unique, continuousM(Rd)-valued path which satisfies,
for all f ∈ C2

b (Rd),

ρt(f) = ν(f) +
∫ t

0
ρs(Lf) ds+

∫ t

0
ρs(Γkf) dW k

s . (3.3)

(2) Assume moreover σi ∈ C4
b (Rd), i = 1, . . . , dB, b, βk ∈ C3

b (Rd), k =
1, . . . , e.

If ν has a density p0 ∈ C2
exp(Rd) then ρt has a density p ∈

C1,2
exp([0, T ] × Rd) which is the unique bounded classical solution

to (3.1).

Remark 3.2. — We choose p0 ∈ C2
exp(Rd) in part (2) since this is what

we shall work with in the rough case. In the smooth case, the assumptions
on the density p0 can be weakened. Assume for example that ν has a density
p0 ∈ C2

b ∩ L1. Then ρt has a C2
b density pt for all t > 0 and p ∈ C1,2

b is the
unique bounded classical solution to (3.1). Moreover,

‖pt‖L1(Rd) = ρt(1) = E0,ν
[
exp

(∫ t

0
c (Xs) ds+

∫ t

0
γ (Xs) Ẇs ds

)]
. (3.4)

Indeed, by the smoothness assumptions on the coefficients, (3.1) has a
unique solution in C1,2

b (this can again be seen by a Feynman–Kac argument,
as in Lemma 2.2).

We have to show that the unique classical solution pt ∈ C2
b of (3.1)

with non-negative initial condition p0 ∈ C2
b ∩ L1 is integrable. First recall

that from the maximum principle, pt > 0 for all t > 0 (see for example
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Theorem 8.1.4 in [20]). Note that (3.1) implies that d
dt
∫
ϕpt dx =

∫
L̃tϕpt dx,

where L̃tφ := Lφ+ ΓkφẆ k
t , hence∫

ϕpt dx =
∫
ϕp0 dx+

∫ t

0

∫
L̃sϕps dxds (3.5)

for any smooth and compactly supported function ϕ. Our aim now is to
extend this equality to the constant function ϕ ≡ 1. To this end consider for
ε > 0 the function

ϕε(x) := ϕ
(
ε‖x‖2) ,

where ϕ(r) = (1 + r)− d+1
2 , r > 0. It is easy to check that both ϕε and

Lϕε(x)

= −ε(d+ 1)
(
1 + ε‖x‖2)− d+3

2

(∑
ij

(σσT )ij(x) +
∑
i

(b̃i)t(x)xi

)
+ cϕε(x)

+ ε2(d+ 1)(d+ 3)
(
1 + ε‖x‖2)− d+5

2

(∑
ij

(σσT )ij(x)xixj

)
are integrable. Since the coefficients σσT and b̃t := b+ ΓkẆ k

t have at most
linear growth and c is bounded, there exists a finite constantM , independent
of ε, such that

L̃sϕε 6Mϕε .

Next fix a smooth compactly supported test function χ on R satisfying
1[−1,1] 6 χ 6 1[−2,2] and let χN (x) := χ

(
‖x‖2

N2

)
. Then χNϕε is compactly

supported and

L̃t (χNϕε)

= χN L̃tϕε − 4εe+ 1
N2 χ′

(
‖x‖2

N2

)(
1 + ε‖x‖2)− d+3

2
∑
ij

(σσT )(x)xixj

+ ((L0)tχN )ϕε

where (L̃0)tu = L̃tu − cu. Again due to the assumptions on the coefficients
of L (resp. L0) we obtain that L0χN is uniformly bounded in N , so that
|L̃t (χNϕε) | is uniformly bounded in N in terms of ϕε and |L̃tϕε|. Since
L̃t (χNϕε) → L̃tϕε pointwise, Lebesgue’s dominated convergence now im-
plies that (3.5) extends to the limit N →∞, hence∫

ϕεpt dx =
∫
ϕεp0 dx+

∫ t

0

∫
L̃sϕεps dxds

6
∫
ϕεp0 dx+M

∫ t

0

∫
ϕεps dxds .

(3.6)
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Gronwall’s lemma now implies that∫
ϕεpt dx 6 eMt

∫
ϕεp0 dx .

Since p0 is integrable, we can now take the limit ε ↓ 0 to conclude with
Fatou’s lemma that ∫

pt dx 6 eMt

∫
p0 dx <∞ .

Hence νt(f) :=
∫
pt(x)f(x)dx defines a finite-measure valued path and it

satisfies (3.3). By uniqueness it hence coincides with ρ. The expression for
the L1-norm of pt then follows from (1).

Proof. — (1): Equation (3.3) is satisfied by an application of Itô’s for-
mula, see for example Theorem 3.24 in [1] for a similar argument. Unique-
ness follows as in Theorem 4.16 in [1]. Let us sketch the argument.(6) First
one shows that every solution to (3.3) also satisfies for ϕ ∈ C1,2

b ([0, T ],Rd)

ρt(ϕ) = ν(ϕ) +
∫ t

0
ρs(∂tϕ+ Lϕ) ds+

∫ t

0
ρs(Γkϕ) dW k

s . (3.7)

(Here and below, omit summation over k = 1, . . . , e). Given now Φ ∈
C∞b (Rd) and t 6 T consider any solution v ∈ C1,2

b ([0, t],Rd) to the backward
equation

−∂tv = Lv + ΓkvẆ k
t

v(t, · ) = Φ,

the existence of which follows from Lemma 2.2.

Given two solutions ρ, ρ̄ to (3.3), we then have, by (3.7),

ρt(Φ) = ρt(vt) = ρ0(v0) = ρ̄0(v0) = ρ̄t(vt) = ρ̄t(Φ) ,

so ρt and ρ̄t coincide on C∞b . By pointwise uniformly bounded convergence
they then also coincide on Cb, and hence ρt = ρ̄t as desired.

(2): In this case we can classically solve the equation{
∂tρt = L∗ρt + Γ∗kρtẆ k

t

ρ0 = p0 .
(3.8)

Indeed, the cofficients, see (1.4), all are in C2
b . Hence using Lemma 2.2 (after

a trivial time inversion) we get a unique bounded classical solution p ∈
C1,2

exp([0, T ]×Rd) to this PDE. It is in particular integrable and hence defines

(6) Our setting here is simpler than in [1], since our coefficients (and their derivatives)
are bounded.
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a measure-valued function µ on [0, T ] which satisfies (3.3). By uniqueness
for this equation it coincides with ρ. �

When replacingW by a rough path W, we are interested in the following
equation {dρt = L∗ρtdt+ Γ∗ρtdWt

ρ0 = ν.
(3.9)

Two ways to make sense of this equation are given in the following defi-
nitions.

Definition 3.3 (Measure-valued forward RPDE solution). — Given an
α-Hölder rough path W = (W,W), α ∈ (1/3, 1/2], and ν ∈ M(Rd), we say
that a continuous finite-measure-valued path ρt is a weak solution to (3.9)
if for all f ∈ C3

b (Rd), ρt (Γkf)k=1,...,e is controlled by W with Gubinelli
derivative ρt(ΓjΓkf)k,j=1,...,e, that is

‖ρ· (Γf) , ρ·(ΓΓf)‖W,2α <∞ , (3.10)

and the integral equation

ρt(f) = ν(f) +
∫ t

0
ρs(Lf) ds+

∫ t

0
ρs(Γf) dWs , (3.11)

holds.

Definition 3.4 (Regular forward RPDE solution). — Given an
α-Hölder rough path W = (W,W), α ∈ (1/3, 1/2], and φ ∈ C2

b (Rd) we
say that p ∈ C0,2

b ([0, T ]× Rd) is a regular solution to{
dpt = L∗pt dt+ Γ∗pt dWt

p0 = φ,
(3.12)

if, for all x ∈ Rd, (Γ∗u( · , x),Γ∗Γ∗u( · , x)) is controlled byW (Definition 4.1)
and

pt(x) = φ+
∫ t

0
L∗ps(x) ds+

∫ t

0
Γ∗ps(x) dWs.

Theorem 3.5. — Throughout, W is a geometric α-Hölder rough path,
α ∈ (1/3, 1/2]. Assume σi, βj ∈ C3

b (Rd), b ∈ C1
b (Rd), c ∈ C1

b (Rd), γk ∈
C2
b (Rd). Let ν be a finite measure.

(1) Stability. Let ρ = ρW be the solution to (3.3) as given by the
Feynman–Kac representation (3.2), whenever W ∈ C1. Pick W ε ∈
C1 convergent in rough path sense to W. Then there exists a contin-
uous finite-measure-valued function ρW, independent of the choice
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of the approximating sequence, so that d(ρW ε

, ρW)→ 0. The result-
ing map W 7→ ρW is continuous. Moreover, the following Feynman–
Kac representation holds for f ∈ Cb(Rd)

ρW
t (f) := E0,ρ0

[
f (Xt) exp

(∫ t

0
c (Xs) ds+

∫ t

0
γ (Xs) dWs

)]
,

where X solves the same rough SDE as in Theorem 2.8.
(2) Measure-valued forward RPDE solution. The measure-valued path

ρW constructed in part (1) is a solution to (3.9) in the sense of
Definition 3.3. Moreover, (3.10) is bounded, uniformly over bounded
sets of f in C3

b (Rd). If the coefficients satisfy the stronger condi-
tions of Theorem 2.8(3) then ρW is the only solution in the class of
measure-valued functions ρ satisfying this uniform bound on (3.10).

(3) Regular forward RPDE solution. Assume σi ∈ C6
b (Rd), βj ∈ C7

b (Rd),
b ∈ C5

b (Rd), γk ∈ C6
b (Rd), c ∈ C4

b (Rd).
If ρ0 has a density p0 ∈ C4

exp(Rd), then ρt has a density pt for
all times, and p ∈ C0,4

exp([0, T ] × Rd) is a solution to (3.12) in the
sense of Definition 3.4.

It is the only solution that in addition satisfies for some δ > 0

‖Γ∗u( · , x),Γ∗Γ∗u( · , x)‖W,2α . e−δ|x|.

Proof. — (1): First of all we note that for fixed f ∈ Cb(Rd) and fixed t
we have that

W 7→ ρWt (f)

is continuous in rough path topology. Indeed, this follows from Lemma 4.19
and is also seen to hold uniformly in t and in bounded sets of f in Cb(Rd).
This also immediately gives the stated Feynman–Kac representation.

(2): Fix f ∈ C3
b (Rd) and for simplicity take b = γ = c = 0. Then note

that

f(Xt) = f(Xs) +
∫ t

s

Lf(Xr) dr +
∫ t

s

〈σi(Xr), Df(Xr)〉dBir

+
∫ t

s

Γif(Xr) dWi
r.

Taking expectation and applying Lemma 3.6 we get

ρt(f) = ρs(f) +
∫ t

s

ρr(Lf) dr +
∫ t

s

ρr(Γif) dWi
r ,

as well as the desired uniform bound on (3.10).
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To show uniqueness in part (2), let φ ∈ C0,3
b ([0, t],Rd) be such that

φ(s, x) = ϕ(x) +
∫ t

s

α(r, x) dr +
∫ t

s

ηi(r, x) dWi
r,

for some (ηi=1,...,e, η
′
i,j=1,...,e) controlled by W , uniformly over x, i.e.

sup
x

[ ‖η(x), η′(x)‖W,2α] <∞,

sup
x

[ ‖Γiφ(x),Γiη(x)‖W,2α] <∞, i = 1, . . . , e .

Moreover assume that η ∈ C0,3
b ([0, T ]× Rd). Then by Lemma 4.15

ρt(φt) = ρ0(φ0) +
∫ t

0
ρr(Lφr) dr +

∫ t

0
ρr(Γkφr) dWk

r

−
∫ t

0
ρr(α(r)) dr −

∫ t

0
ρr(ηk(r)) dWk

r .

So it remains to find, for given ϕ, such a φ with α(r) = Lφ(r), ηi(r) =
Γiφ(r) and η′i,j(r) = ΓjΓiφ(r). But this is exactly what Theorem 2.8(3) gives
us for ϕ ∈ C4

b (Rd). Then

ρt(ϕ) = ρt(φt) = ρ0(φ0) ,

which gives uniqueness of ρ.

(3): The coefficients of the adjoint equation are given in (1.4). In partic-
ular σ̃i ∈ C6

b (Rd), β̃j ∈ C6
b (Rd), b̃ ∈ C4

b (Rd), c̃ ∈ C4
b (Rd), γ̃k ∈ C6

b (Rd). Hence
the adjoint equation fits into the setting of Theorem 2.8(3). In particular
there exists a C0,4

b solution to (3.12) and we can represent it as

pt(x)

= E

[
p0(X̃T−t,x,W

T ) exp
(∫ T

T−t
c̃(XT−t,x,W

r )dr +
∫ T

T−t
γ̃(XT−t,x,W

r )dWr

)]
,

for a rough SDE X̃. The exponential estimates on the control then follow
by a similar argument as in the proof of Theorem 2.8(3), using Lemma 4.21
on the integrands Dg,D2g. Finally, pt is the density of ρt of part (1) due to
the following reason: pt is integrable because of the exponential decay, the
corresponding measure satisfies (3.12), which by uniqueness for that equation
then coincides with ρ. �

The following lemma was needed in the previous proof.
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Lemma 3.6. — Assume σi, βj ∈ C3
b (Rd), b ∈ C1

b (Rd). Let Z be the joint
lift of a Brownian motion B with a (deterministic) geometric α-Hölder rough
path W, α ∈ (1/3, 1/2] (see Lemma 4.18). Let X be the random RDE solu-
tion to

Xt = X0 +
∫ t

0
b(Xr) dr +

∫ t

0
(σ, β) dZ

“=”X0 +
∫ t

0
b(Xr) dr +

∫ t

0
σi(Xr) dBir +

∫ t

0
βi(Xr) dWi

r.

Let f ∈ C3
b (Rd) and define

(Yt)i := E[βzi (Xt)∂kf(Xt)]
(Y ′t )i,j := E[∂k[∂zfβzi ](Xr)βkj (Xr)].

Then (Y, Y ′) ∈ D2α
W and

E[f(Xt)] = E[f(X0)] +
∫ t

0
E[bf(Xr)] dr +

∫ t

0
(Y, Y ′) dWi

r. (3.13)

Moreover for all R > 0,
sup

‖f‖C3
b
6R
‖(Y, Y ′)‖W,2α <∞.

Proof. — For simplicity take b = 0. First
Xs,t = σi(Xs)Bis,t + βi(Xs)W i

s,t +Rs,t,

where ‖R‖2α 6 C (1 + ‖Z‖α)3 (see Lemma 4.7).

Then, with gi := βzi ∂zf

gi(X)s,t = σkj (Xs)∂kgi(Xs)Bjs,t + βkj (Xs)∂kgi(Xs)W j
s,t +Rs,t,

with ‖βkj (Xs)∂kg(Xs)‖α + ‖R‖2α 6 C (1 + ‖Z‖α)3 (see Lemma 4.13).

Taking expectation and using integrability of Z (Lemma 4.18), we get

Ys,t = Y ′sWs,t + R̄s,t,

with ‖Y ′‖α + ‖R̄‖2α 6 C <∞, as desired.

Now for W smooth, equation (3.13) is satisfied by Fubini’s theorem.
Showing it for W a geometric rough path then follows via smooth approxi-
mations. This has for example already been done - in a similar setting - in
the proof of Theorem 2.8, so we omit the details here. �

The following result in the proof of the previous theorem is worth to be
formulated separately.
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Corollary 3.7 (Duality). — Assume the conditions of Theorem 2.8(3).
Let u be the unique solution to the backward equation (2.7) and ρ be the
unique solution to the forward equation (3.11). Then

ρt(ut) = ρ0(u0) ∀t ∈ [0, T ].

4. Appendix

4.1. Rough differential equations

We recall the basic notions from rough path theory, for more details we
refer to [12]. Let V be a finite dimensional vector space. For a function
f : [0, T ]× [0, T ]→ V and α > 0 we define

‖f‖α := ‖f‖α;[0,T ] := sup
06s 6=t6T

|fs,t|
|t− s|α

.

If g : [0, T ]→ V , we can and will consider it as a two parameter function
via gs,t := gt − gs. The space Cα(V ) of α-Hölder continuous functions, on
some fixed interval [0, T ], is then the space of all functions g that satisfy
‖g‖α <∞..

Definition 4.1 (Controlled path). — Let W be an e-dimensional α-
Hölder continuous path, α ∈ (1/3, 1/2]. Let V be a finite dimensional vec-
tor space, A path Y ∈ Cα(V ) is controlled by W with derivative Y ′ ∈
Cα(L(Re, V )) (in short (Y, Y ′) ∈ D2α

W ), if

Ys,t = Y ′sWs,t +RYs,t,

with RY = O(|t− s|2α). Also say that (Y, Y ′) is controlled by W . We use the
following semi-norm on D2α

W :

‖Y, Y ′‖W,2α := ‖Y ′‖α + ‖RY ‖2α.

Definition 4.2 (Rough path). — Let α ∈ (1/3, 1/2]. An α-Hölder rough
path in Re is a tuple W = (W,W), such that W is a Re valued α-Hölder
path and W : [0, T ]× [0, T ]→ Re×e satisfies

‖W‖2α <∞ and Ws,t −Ws,u −Wu,t = Ws,u ⊗Wu,t

for all s, t, u ∈ [0, T ]. Define the α-Hölder rough path “norm”
‖W‖α := ‖W‖α + ‖W‖2α.

When the time-interval is not obvious from context we also write ‖W‖α;[0,T ]
etc. The metric space of all α-Hölder rough paths is denoted C α.
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A rough path is called geometric if it is the limit of smooth functions
under the rough path distance, given by ‖W − W̃‖α + ‖W − W̃‖2α, with
Ws,t =

∫ t
s
Ws,r ⊗ dWr, similar for W̃.

We shall sometimes need the weaker p-variation rough path “norm” (usu-
ally p = 1/α)

‖W‖p−var := ‖W‖p + ‖W‖p/2−var ,

where

‖W‖p :=
(

sup
P

∑
[u,v]∈P

|Wu,v|p
)1/p

,

where the supremum is over all finite partitions of [0, T ] (or the interval
under consideration) and the definition of ‖W‖p/2−var is analogously.

Definition 4.3 (Rough integral). — For α ∈ (1/3, 1/2], W = (W,W)
an α-Hölder rough path (in Re) and (Y, Y ′) a controlled path, with Y and Y ′
taking values in V = L(Re,Rd) and L(Re×e,Rd) respectively, the following
Rd-valued integral is well-defined∫ T

0
Y dW :=

∫ T

0
(Yr, Y ′r ) dWr := lim

|P|→0

∑
[u,v]∈P

YuWu,v + Y ′uWu,v,

where the limit is over finite partitions of [0, T ] with mesh-size going to zero.

Remark 4.4. — (Rough integral, abusive notation) In most of this paper,
d = 1. In coordinates, Y = (Y1, . . . , Ye), and we sometimes find it convenient
to abuse notation and write∫ T

0
Y dW =

∫ T

0
Yi dWi

suggesting an implicit summation over i = 1, . . . , e. Note that this abusive
notation hides the important contribution of Y ′ and W= (Wi,j : 16 i, j6 d).

Definition 4.5. — Let ω be a control function (see [16, Def. 1.6]). For
a > 0 and [s, t] ⊂ [0, T ] we set

τ0 (a) = s

τi+1 (a) = inf {u : ω (τi, u) > a, τi (a) < u 6 t} ∧ t

and define
Na,[s,t] (ω) = sup {n ∈ N∪{0} : τn (a) < t}.

When ω arises from a (homogeneous) p-variation norm of a (p-rough) path,
such as ωW = ‖W‖pp-var;[·,·], we shall also write

Na,[s,t] (W) := Na,[s,t] (ωW).
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Remark 4.6. — The importance of Na;[0,T ](W) stems from the fact that
it has — contrary to ‖W‖pp−var — Gaussian integrability if W = B, the lift
of Brownian motion (see [6, 15]), or if W = Z, the joint lift of Brownian
motion and a deterministic rough path used in the proof of Theorem 2.8 (see
Lemma 4.18(3)).

Lemma 4.7 (Bounded vector fields). — Let W be a geometric α-Hölder
rough path, α ∈ (1/3, 1/2]. Let

dY = V (Y )dW,

where V = (Vi)i=1,...,e is a collection of C3
b (Rd) vector fields.

Then with (Y, Y ′) := (Y, V (Y )) we have

‖Y, Y ′‖W,α 6 C (1 + ‖W‖α)3
. (4.1)

Also

‖Y ‖1/α−var 6 C
(
1 +N1;[0,T ](W)

)
. (4.2)

Proof. — (4.1) follows from [12, Prop. 8.3] and (4.2) follows from [15,
Lem. 4, Cor. 3]. �

Lemma 4.8 (Linear vector fields). — Let W be a geometric α-Hölder
rough path, α ∈ (1/3, 1/2]. Let

dY = V (Y )dW,

where V = (Vi)i=1,...,e is a collection of linear vector fields of the form
Vi (z) = Aiz + bi, where Ai are d × d matrices and bi ∈ Rd. Then for
0 6 s 6 t 6 T :

(1) ‖Y ‖p−var;[s,t] 6 C (1 + |y0|) ‖W‖p−var;[s,t] exp(CN1;[0,T ](W)).

with p := 1/α, which implies

‖Y ‖α;[0,T ] 6 C (1 + |y0|) ‖W‖α;[0,T ] exp(CN1;[0,T ](W)).

(2) |Ys,t − V (Ys)Ws,t −DV (Ys)V (Ys)Ws,|

6 C exp(CN1;[0,T ](W))‖W‖3
p−var;[s,t] ,

which means that with (Y, Y ′) := (Y, V (Y )) we have

‖Y, Y ′‖W,α 6 C exp(CN1)
(
‖W‖2

α;[0,T ] ∨ ‖W‖3
α;[0,T ]

)
.
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Proof. — (1): In what follows C is a constant that can change from line
to line.

From [16, Thm. 10.53] we have for any s 6 u 6 v 6 t:

‖Yu,v‖ 6 C (1 + |Yu|) ‖W‖p−var;[u,v] exp
(
c‖W‖pp−var;[u,v]

)
.

Then, using ‖Yu,v‖ = d(Yu, Yv) > d(Ys, Yv)−d(Ys, Yu) = ‖Ys,v‖−‖Ys,u‖, we
have

‖Ys,v‖ 6 C (1+ |Yu|) ‖W‖p−var;[u,v] exp(C‖W‖pp−var;[u,v])+‖Ys,u‖
6 C (1+ |Ys|+‖Ys,u‖) ‖W‖p−var;[u,v] exp(C‖W‖pp−var;[u,v])+‖Ys,u‖.

(4.3)

On the one hand, this gives

‖Ys,v‖ 6 C (1 + |Ys|+ ‖Ys,u‖) exp
(
C‖W‖pp−var;[u,v]

)
.

Now letting s = τ0 < · · · < τM < τM+1 = v 6 t, by induction,

‖Ys,v‖ 6 CM+1 ((M + 1)(1 + |Ys|)) exp
(
C

M∑
i=0
‖W‖pp−var;[τi,τi+1]

)

6 CM+1 (1 + |Ys|) exp
(
C

M∑
i=0
‖W‖pp−var;[τi,τi+1]

)
.

Hence

sup
u∈[s,t]

‖Ys,u‖ 6 C (1 + |Ys|) exp(CN1;[s,t]) .

Then, using again (4.3),

‖Ys,v‖
6 C (1 + |Ys|+ ‖Ys,u‖) ‖W‖p−var;[u,v] exp(C‖W‖pp−var;[u,v]) + ‖Ys,u‖

6 C
(
1 + |Ys|+ C (1 + |Ys|) exp(CN1;[s,t])

)
× ‖W‖p−var;[u,v] exp(C‖W‖pp−var;[u,v]) + ‖Ys,u‖

6 C22 (1 + |Ys|) ‖W‖p−var;[u,v] exp(C‖W‖pp−var;[u,v]) exp(CN1;[s,t])
+ ‖Ys,u‖.
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Then letting s = τ0 < · · · < τM < τM+1 = v 6 t, by induction,

‖Ys,v‖

6
M∑
i=0

C22 (1 + |Ys|) ‖W‖p−var;[τi,τi+1]

× exp
(
C‖W‖pp−var;[τi,τi+1]

)
exp
(
CN1;[s,t]

)
6

M∑
i=0

C22 (1 + |Ys|) ‖W‖p−var;[s,v] exp
(
C‖W‖pp−var;[τi,τi+1]

)
exp
(
CN1;[s,t]

)
6 (M + 1)C (1 + |Ys|) ‖W‖p−var;[s,v]

× exp
(
C max

i
‖W‖pp−var;[τi,τi+1]

)
exp
(
CN1;[s,t]

)
.

Then

‖Ys,t‖ 6 (N1;[s,t] + 1)C (1 + |Ys|) exp
(
CN1;[s,t]

)
‖W‖p−var;[s,t]

6 C (1 + |Y0|) exp
(
CN1;[0,T ]

)
‖W‖p−var;[s,t] ,

as desired.

(2): It is straightforward to construct C3
b vector fields Ṽi, that coincide

with Vi on an open neighborhood of Y and they can be chosen in such a way
that

‖Ṽ ‖C3
b
6 max

i
(|Ai|+ |bi|) (|Y |∞ + 2) 6 C exp(CN1) .

The first statement then follows from [16, Cor. 10.15], which also yields the
desired bound on ‖RY ‖2α. The bound on ‖Y ′‖α follows from Step 1. �

Lemma 4.9. — Let ϕ ∈ C2
b (Rd,R), W a geometric β-Hölder rough path

in Re, β ∈ (1/3, 1/2], V1, . . . , Ve ∈ C3
b (Rd), and Ψ the flow to the RDE

dY = V (Y ) dW.

Then∣∣∣ϕ(Ψ−1
t,T ) det(DΨ−1

t,T )− ϕ(Ψ−1
s,T ) det(DΨ−1

s,T )
∣∣∣

6 C‖ϕ‖C2
b

(M(y)) exp(CN1;[0,T ](W)) (‖W‖β + 1)17+3d |t− s|β ,∣∣∣ϕ(Ψ−1
t,T )det(DΨ−1

t,T )−ϕ(Ψ−1
s,T )det(DΨ−1

s,T )−div(ϕV )(Ψ−1
t,T )det(DΨ−1

t,T )Ws,t

∣∣∣
6 C‖ϕ‖C2

b
(M(y)) exp(CN1;[0,T ](W)) (‖W‖β + 1)17+3d |t− s|2β ,

(4.4)
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with C = C(β, V, ϕ). Here the inverse flow and its Jacobian are evaluated at
y ∈ Rd. Moreover we used

M(y) :=
{
x : inf

r∈[0,T ]
|Ψ−1
T−r,T (y)| − 1 6 |x| 6 sup

r∈[0,T ]
|Ψ−1
T−r,T (y)|+ 1

}
.

Proof. — We shall need the fact that the inverse flow and its Jacobian
satisfy the following RDEs (see for example [16, §11]):

dΨ−1
T−·,T (y) =V (Ψ−1

T−·,T (y)) dWT−·, Ψ−1
T,T (y) = y, (4.5)

dDΨ−1
T−·,T (y) =DVi(Ψ−1

T−·,T (y))DΨ−1
T−·,T (y) dW i

T−·, DΨ−1
T,T (y) = I. (4.6)

We proceed to show the second inequality of the statement, as the first
one follows analogously. In what follows C will denote a constant changing
from line to line, only depending on β, V , ϕ (but not on W or y).

Let Ar := ϕ(Ψ−1
T−r,T (y)), Br := det(DΨ−1

T−r,T (y)). Using (4.5) we have
that (A,A′) ∈ D2β

←−
W

, with

A′r = 〈Dϕ(Ψ−1
T−r,T (y)), V (Ψ−1

T−r,T (y)) 〉

and←−W r :=WT−r. More specifically, by Lemma 4.7 together with Lemma 4.13

‖A‖←−
W,β
6 C‖ϕ‖C2

b
(M(y)) (‖W‖α + 1)8

where

M(y) :=
{
x : inf

r∈[0,T ]
|Ψ−1
T−r,T (y)| − 1 6 |x| 6 sup

r∈[0,T ]
|Ψ−1
T−r,T (y)|+ 1

}
.

Moreover using (4.6) and the derivative of the determinant,

D det |A ·M = det(A) Tr[A−1M ] , (4.7)

we get that (B,B′) ∈ D2β
←−
W

, with

B′r = (divV )(Ψ−1
T−r,T (y)) det(DΨ−1

T−r,T (y)) .

More specifically, by Lemma 4.8.2 together with Lemma 4.13

‖B‖←−
W,β
6 C‖ det ‖C2

b
(N(y)) exp(CN1;[0,T ]) (‖W‖α + 1)8

6 C

(
1 + sup

r∈[0,T ]
|DΨ−1

T−r,T (y)|
)d

exp(CN1;[0,T ]) (‖W‖α + 1)8

where N(y) := {A : |A| 6 supr∈[0,T ] |DΨ−1
T−r,T (y)|+ 1}.
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Applying Lemma 4.11, we get for 0 6 u < v 6 T :∣∣∣AvBv −AuBu − (A′uBu −AuB′u)←−Wu,v

∣∣∣
6 C (1 + ‖W‖α)

(
|ϕ(y)|+ ‖ϕ‖C2

b
(M(y)) (‖W‖α + 1)8

)
×

1 +
(

1 + sup
r∈[0,T ]

|DΨ−1
T−r,T (y)|

)d
exp(CN1;[0,T ]) (‖W‖α + 1)8

,
Finally noting

A′rBr +ArB
′
r = − div(ϕV )(Ψ−1

T−r,T (y)) det(Dϕ(Ψ−1
T−r,T (y)) ,

and using t = T − u, s = T − t, the desired result follows from Lem-
ma 4.12. �

The following result from the previous proof is worth noting separately.

Lemma 4.10 (Liouville’s formula for RDEs). — Let Z be a matrix-valued,
geometric α-Hölder rough path, α ∈ (1/3, 1/2], and consider the matrix-
valued linear equation

dMt =
e∑
i=1

dZit ·Mt ,

M0 = I ∈ Rd×d.

Denote Dt := det(Mt), then

dDt =
e∑
i=1

Dt tr[dZit] ,

D0 = 1,
which is explicitly solved as

Dt = exp
(

e∑
i=1

tr[Zit ]− tr[Zi0]
)
.

Lemma 4.11. — Let W ∈ C α, and (A,A′), (B,B′) ∈ D2α
W . Then

(Y, Y ′) := (AB,A′B +AB′) ∈ D2α
W and

‖Y ′‖α + ‖RY ‖2α 6 C (1 + ‖W‖α) (|A0|+ ‖A,A′‖W,α) (|B0|+ ‖B,B′‖W,α) .

Proof. — Straightforward calculation. �

Lemma 4.12. — Let Ỹt := YT−t, Ỹ
′
t := Y ′T−t, W̃t := WT−t. If (Ỹ , Ỹ ′) ∈

D2α
W̃

, then (Y, Y ′) ∈ D2α
W and

‖Y ′‖α + ‖RY ‖2α 6 ‖Ỹ ′‖α + ‖RỸ ‖2α + ‖Ỹ ′‖α‖W‖α .
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Proof. — This follows from
Yt − Ys − Y ′sWs,t = Yt − Ys − Y ′tWs,t + Y ′s,tWs,t

= Ỹu − Ỹv − Ỹ ′uWv,u + Y ′s,tWs,t

= −
(
Ỹv − Ỹu − Ỹ ′uWu,v

)
+ Y ′s,tWs,t ,

where v := T − s, u := T − t. �

Lemma 4.13. — LetW be an α-Hölder path, α ∈ (1/3, 1/2]. Let (Y, Y ′)∈
D2α
W , φ ∈ C2

b . Then (φ(Y ), Dφ(Y )Y ′) ∈ D2α
W with

‖φ(Y ), Dφ(Y )Y ′‖W,α
6 C(α, T )‖φ‖C2

b
(1 + ‖W‖α)2 (1 + |Y ′0 |+ ‖Y, Y ′‖W,α)2

.

Proof. — See [12, Lem. 7.3]. �

Lemma 4.14 (Adjoint equation). — Let W be a geometric α-Hölder
rough path, α ∈ (1/3, 1/2]. Let V = (Vi)i=1,...,e be a collection of C3

b (Rd)
vector fields. Let

dY t,xs = V (Y t,xs )dWs

Y t,xt = x.

Then
dY t,xT = −DY t,xT V (x) dWt

dDY t,xT = −D2Y t,xT 〈V (x) dWt, · 〉 −DY t,xT DV (x) dWt .

Proof. — Take the time derivative of

Y
t,Y −1,t,x

T

T = x,

for the first identity and consider the enlarged equation
dZ = G(Z) dW,

with G(x1, x2) = (V (x1), DV (x1)x2) for the second identity. �

Lemma 4.15. — Let α ∈ (1/3, 1/2] and W a geometric α-Hölder rough
path. Let ρ be a solution to the forward equation (3.9) in the sense of Defini-
tion 3.3; in particular (ρt(f), ρt(Γf)) is controlled for every f ∈ C3

b . Assume
moreover that for every R > 0

sup
‖f‖

C3
b

(Rd)<R

{‖ρ·(f), ρ·(Γf)‖W,α} <∞ .

Let φ ∈ C0,3
b ([0, T ]× Rd) be given, satisfiying for s 6 t

φ(t, x) = φ(s, x) +
∫ t

s

αr(x) dr +
∫ t

s

(ηr(x), η′r(x)) dWr ,
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where (ηt(x), η′t(x)) ∈ D2α
W . Assume moreover

sup
x

[‖η(x), η′(x)‖W,α] <∞ ,

sup
x

[‖Γiφ(x),Γiη(x)‖W,α] <∞ , i = 1, . . . , e ,

and η ∈ C0,3
b ([0, T ]× Rd).

Then (M,M ′), (N,N ′) ∈ D2α
W where

(Mt)i=1,...,e := ρt(Γiφt),
(M ′t)i,j=1,...,e := ρt(ΓjΓiφt) + ρt(Γi(ηt)j),

(Nt)i=1,...,e := ρt((ηt)i),
(N ′t)i,j=1,...,e := ρt((η′t)ij) + ρt(Γj(ηt)i),

and

ρt(φt) = ρs(φs) +
∫ t

s

(M,M ′)r dWr +
∫ t

s

(N,N ′)r dWr

+
∫ t

s

ρr(αr + Lφr) dr.

Remark 4.16. — Note that with (η, η′) ≡ 0, α ≡ 0, φ(0, x) = f(x), this
reduces to (3.11).

Proof. — First

(Mt)i − (Ms)i = ρt(Γiφt)− ρs(Γiφs)
= ρs(Γiφs,t)− ρs,t(Γiφs) + ρs,t(Γiφs,t)

= ρs(Γi(ηs)j)W j
s,t − ρs(ΓjΓiφs)W

j
s,t +O(|t− s|2α).

Here we used that by assumption Γiφs,t(x) = Γiηj(x)W j
s,t+O(|t−s|2α), uni-

formly in x and that ρs,t(Γif) = ρs(ΓjΓif)W j
s,t+O(|t−s|2α) uniformly over

bounded sets of f in C3
b . It follows that (M,M ′) ∈ D2α

W . And analogously
for (N,N ′):

(Nt)i − (Ns)i = ρt((ηt)i)− ρs((ηs)i)
= ρs((ηs,t)i)− ρs,t((ηs)i) + ρs,t((ηs,t)i)

= ρs((η′s)i,jW
j
s,t + ρs(Γj(ηs)i)W j

s,t +O(|t− s|2α),

since ηt ∈ C3
b (Rd) uniformly in t.
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Now for the integral equality, for simplicity take L = 0, α = 0. Then

ρt(φt)− ρs(φs)
= ρs(φs,t) + ρs,t(φs) + ρs,t(φs,t)

= ρs((ηs)i)W i
s,t + ρt((η′s)ij)W

ij
s,t + ρs(Γiφs)W i

s,t + ρs(ΓjΓiφs)Wij
s,t

+ ρs(Γi(ηs)j)W i
s,tW

j
s,t +O(|t− s|3α)

= ρs((ηs)i)W i
s,t + [ρt((η′s)ij) + ρs(Γj(ηs)i)]Wij

s,t + ρs(Γiφs)W i
s,t

+ [ρs(ΓjΓiφs) + ρs(Γi(ηs)j)]Wij
s,t +O(|t− s|3α).

Now for every partition P of [s, t] we have the trivial identity

ρt(φt)− ρs(φs) =
∑

[u,v]∈P

[ρv(φv)− ρu(φu)] .

The claimed equality then follows from taking the limit along partitions with
mesh-size going to zero. �

Lemma 4.17. — Let W be a geometric α-Hölder rough path, α ∈
(1/3, 1/2]. Let u be a weak solution to the backward RPDE (2.5) in the
sense of Definition 2.3; in particular (〈u·,Γ∗φ〉, 〈u·,Γ∗Γ∗φ〉) is controlled for
every φ ∈ C3

exp(Rd). Assume moreover that for every R > 0

sup
‖f‖

C3
exp(Rd)<R

{‖(〈u·, f〉, 〈u·,Γf〉)‖W,α} <∞ . (4.8)

Let φ ∈ C0,4
exp([0, T ]× Rd) be given that satisfies for s 6 t

φ(t, x) = φ(s, x) +
∫ t

s

αr(x) dr +
∫ t

s

(ηr(x), η′r(x)) dWr ,

where (ηt(x), η′t(x)) ∈ D2α
W . Assume moreover for some δ > 0

‖η(x), η′(x)‖W,α . e−δ|x|,

‖Γ∗iφ(x),Γ∗i η(x)‖W,α . e−δ|x|, i = 1, . . . , e.

In addition assume that η ∈ C0,3
exp([0, T ]× Rd).

Then (M,M ′), (N,N ′) ∈ D2α
W where

(Mt)i=1,...,e := 〈ut,Γ∗iφt〉,
(M ′t)i,j=1,...,e := 〈ut,Γ∗jΓ∗iφt〉+ 〈ut,Γ∗i (ηt)j〉,

(Nt)i=1,...,e := 〈ut, (ηt)i〉,
(N ′t)i,j=1,...,e := 〈ut, (η′t)ij〉+ 〈ut,Γ∗j (ηt)i〉,
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and

〈ut, φt〉 = 〈us, φs〉 −
∫ t

s

(M,M ′)r dWr +
∫ t

s

(N,N ′)r dWr

+
∫ t

s

〈ur, αr − L∗φr〉dr.

Proof. — By assumption

|Γ∗iφt(x)− Γ∗iφs(x)− Γ∗i ηs(x)Ws,t| . e−δ|x||t− s|2α.
Hence

|〈us,Γ∗iφs,t〉 − 〈us,Γ∗i ηj〉W
j
s,t|

6 ‖u‖∞‖β‖C2
b

(Rd)‖Dφt −Dφs −DηsWs,t‖L1(Rd) . |t− s|2α.

Moreover
|〈us,t,Γ∗iφs〉 − 〈us,Γ∗jΓ∗iφs〉W

j
s,t| . |t− s|2α,

since φ ∈ C0,4
exp([0, T ]×Rd) (and hence Γ∗jut ∈ C3

exp(Rd) uniformly in t) and
since u satisfies the uniform bound (4.8). Then also 〈us,t,Γ∗iφs,t〉 . |t− s|2α
and hence

(Mt)i − (Ms)i = 〈ut,Γ∗jΓ∗iφt〉W
j
s,t + 〈ut,Γ∗i (ηt)j〉W

j
s,t +O(|t− s|2α),

hence (M,M ′) is controlled. The argument for (N,N ′) is similar and the
proof now finishes as the preceding one. �

4.2. Rough SDEs

Lemma 4.18. — For W a geometric α-Hölder rough path, α ∈ (1/3, 1/2],
and a Brownian motion B, define Z = (Z,Z) as

Zt =
(
Bt
Wt

)
, Zs,t =

(
BItos,t

∫
W ⊗ dB∫ t

s
Bs,t ⊗ dW W

)
.

Then

(1) Z is well-defined and, almost surely, an α-Hölder rough path
(2) |‖Z(W)− Z(W̃)‖α |Lq . ‖W− W̃‖α
(3) N1;[0,T ](‖Z‖pp) has Gaussian tails, uniformly over W bounded, for

p = 1
α .

Proof. — This is proven in [10], the only difference being that there, Z
is only shown to be an α′-Hölder rough path, for α′ < α. This stems from
the fact, that there, a Kolmogorov-type argument is applied to the whole
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rough path Z, which in particular contains the deterministic path W , which
explains the decay in perceived regularity.

Being more careful, and applying a Kolmogorov-type argument (e.g. [12,
Thm. 3.1]) only to the second level, one sees that it is actually β-Hölder
continuous, for β < α+ 1/2. The first level is trivially α-Hölder continuous.
The claimed continuity in W is then improved similarly. �

Lemma 4.19 (Rough SDE). — Let W be a geometric α-Hölder rough
path, α ∈ (1/3, 1/2], and let Z = (Z,Z) be the joint lift of W and a Brownian
motion B given in the previous Lemma 4.18. Assume σi, βj ∈ C3

b (Rd), i =
1, . . . , dB , j = 1, . . . , e, b ∈ C1

b (Rd). Let X = X(ω) be the solution to the
rough differential equation

dX = b(X) dt+ V (X) dZ,

where V = (σ, β). Then X formally solves the rough SDE

dX = b(X) dt+ σ(X) dB + β(X) dW.

We have the following properties:

• For all p > 1, the mapping

C α → Sp

W 7→ X,

is locally uniformly continuous. Here ‖X‖pSp := E[supt6T |Xt|p].
Moreover for every R > 0 there is δ > 0 such that

sup
‖W‖α<R

E[exp(δ|XW|2∞)] <∞.

If in addition, for n > 0, σi, βj ∈ C3+n
b , b ∈ C1+n

b , then the same
holds true for DnX.

• For W the canonical lift of a smooth path W , X coincides with the
classical SDE solution to

dXt = b(Xt) dt+ σ(Xt) dB + β(Xt)Ẇt dt. (4.9)

• Let c, g ∈ C1
b (Rd) and γ ∈ C2

b (Rd), then
∫
γ(Xs)dWs is a well-

defined rough integral, and moreover, for all p > 1,

[0, T ]× Rd × C α → Lp

(t, x,W) 7→ g(Xt,x
T ) exp

(∫ T

t

c(Xt,x
r ) dr +

∫ T

t

γ(Xt,x
r ) dWr

)
,

is continuous, uniformly in t, x and locally uniformly in W.
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Proof. — If b ∈ C1+ε
b (Rd) for some ε > 0, this is shown in [10, Thm. 10].

Now, for b ∈ C1
b (Rd) the same proof works, one just needs to use the im-

proved result on RDEs with drift in [13, Prop. 3]. �

Lemma 4.20. — Let W be a geometric α-Hölder rough path, α ∈
(1/3, 1/2]. Let Xt,x be the solution to the rough SDE (Lemma 4.19)

dXt,x
t = b(Xt,x

t ) dt+ σ(Xt,x
t ) dB + β(Xt,x

t ) dW, Xt,x
t = x.

Let n> 0 and assume c ∈ Cnb (Rd), γk ∈ C2+n
b (Rd), σi, βj ∈ C3+[(n−1)∨0]

b (Rd),
b ∈ C1+[(n−1)∨0]

b . Then for every φ ∈ Cnexp(Rd) the function

ψ(x) := E
[
φ(Xt,x

T ) exp
(∫ T

t

c
(
Xt,x
r

)
dr +

∫ T

t

γ
(
Xt,x
r

)
dWr

)]
,

is again in Cnexp(Rd), with ‖ψ‖Cnexp(Rd) bounded uniformly for t 6 T and
‖W‖α bounded.

Proof. — For n = 0, let C1 > 0 such that |ψ(x)| 6 C1 exp(− 1
C1
|x|). Then

|ψ(x)| = E
[
φ(Xt,x

T ) exp
(∫ T

t

c
(
Xt,x
r

)
dr +

∫ T

t

γ
(
Xt,x
r

)
dWr

)]
6 C1E

[
exp

(
− 1
C1
|Xt,x

T |
)

exp(. . . )
]

6 C1 exp
(
− 1
C1
x
)
E
[

exp
( 1
C1
|Xt,x

T − x|
)

exp(. . . )
]

6 C1 exp
(
− 1
C1
x
)
E[exp(C2

(
1 +N1,[t,T ](Z)

)
+ T‖c‖∞)]

6 C1 exp
(
− 1
C1
x
)
E[exp(C3N1,[0,T ](Z))],

where we used (4.2) for the 4th line. This concludes the argument, since the
expectation is finite by Lemma 4.18, uniformly for ‖W‖α bounded. The case
n > 1 follows similarly, by differentiating under the expectation. �

Lemma 4.21. — Let W be a geometric α-Hölder rough path, α ∈
(1/3, 1/2]. Assume σi, βj ∈ C3

b (Rd), i = 1, . . . , dB, j = 1, . . . , e, b ∈ C1
b .

Let Xt,x be the solution to the rough SDE (Lemma 4.19)
dX = σ(X)dB + β(X)W.

Let n > 0. For every ϕ ∈ Cnexp(Rd), any q > 1, the function
ψ(x) := E[ ‖ϕ‖qCn

b
(M(x))]

is in C0
exp. Here

M(y) :=
{
x : inf

r∈[t,T ]
|Xt,y

r | − 1 6 |x| 6 sup
r∈[t,T ]

|Xt,y
r |+ 1

}
.
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Proof. — This follows from
‖ϕ‖L∞(M(x)) 6 C exp(−δ inf

r∈[t,T ]
|Xt,x

r |)

6 C exp(−δ inf
r∈[t,T ]

|Xt,x
r |)

6 C exp(−δ|x|) exp
(
δ sup
r∈[t,T ]

|Xt,x
r − x|

)
. �
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