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On the first order asymptotics of partial Bergman
kernels (∗)

Dan Coman (1) and George Marinescu (2)

ABSTRACT. — We show that under very general assumptions the
partial Bergman kernel function of sections vanishing along an analytic
hypersurface has exponential decay in a neighborhood of the vanishing
locus. Considering an ample line bundle, we obtain a uniform estimate
of the Bergman kernel function associated to a singular metric along the
hypersurface. Finally, we study the asymptotics of the partial Bergman
kernel function on a given compact set and near the vanishing locus.

RÉSUMÉ. — Nous montrons, sous des hypothèses très générales, que
le noyau de Bergman partiel des sections s’annulant sur une hypersurfaces
analytique décroît exponentiellement dans un voisinage du lieu d’annula-
tion. Pour un fibré ample, nous montrons une estimée uniforme du noyau
de Bergman associé à une métrique singulière le long d’une hypersurface.
Finalement nous étudions les asymptotiques du noyau de Bergman sur
un compact près du lieu d’annulation.

1. Introduction

Partial Bergman kernels were recently studied in different contexts, es-
pecially Kähler geometry [11, 12, 13] or random polynomials [2, 15].
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Let us consider the following general setting.

(A) (X,ω) is a compact Hermitian manifold of dimension n, Σ is a
smooth analytic hypersurface of X, and t > 0 is a fixed real number.

(B) (L, h) is a singular Hermitian holomorphic line bundle on X with
singular metric h which has locally bounded weights.

We define the space
H0

0 (X,Lp) := H0(X,Lp ⊗O(− btpcΣ)) (1.1)
of holomorphic sections of the p-th tensor power Lp vanishing to order at
least btpc along Σ, where bxc denotes the integral part of x ∈ R. Set dp =
dimH0(X,Lp) and d0,p = dimH0

0 (X,Lp). We introduce on H0(X,Lp) the
L2 inner product ( · , · )p induced by the metric hp = h⊗p and the volume
form ωn/n! , see (2.1). This inner product is inherited by H0

0 (X,Lp). The
(full) Bergman kernel function is defined by taking an orthonormal basis
{Spj : 1 6 j 6 dp} of (H0(X,Lp), ( · , · )p) and setting

Pp(x) =
dp∑
j=1
|Spj (x)|2hp

, |Spj (x)|2hp
:= 〈Spj (x), Spj (x)〉hp

, x ∈ X. (1.2)

By considering an orthonormal basis {Spj : 16 j6 d0,p} of (H0
0 (X,Lp),(· , ·)p),

we define the partial Bergman kernel function P0,p by

P0,p(x) =
d0,p∑
j=1
|Spj (x)|2hp

, x ∈ X. (1.3)

Note that this definition is independent of the choice of basis, cf. (2.2).

The asymptotics of the Bergman kernel function for a positive line bundle
(L, h) [4, 16], see also [10] for a comprehensive study, is very important
in understanding the Yau–Tian–Donaldson conjecture. On the other hand,
partial Bergman kernels are useful in connection to the slope semi-stability
with respect to a submanifold [14]. On a toric variety X (and for a toric
Σ) this study was carried out in [11]. In this context it is shown that the
partial Bergman kernel has an asymptotic expansion, having rapid decay of
order p−∞ (see §2.1 for this notation) in a neighborhood U(Σ) of Σ, and
giving the full Bergman kernel function to order p−∞ outside the closure of
U(Σ). Moreover [11] gives a complete distributional asymptotic expansion on
X, whose leading term has an additional Dirac delta measure plus a dipole
measure over ∂U(Σ). These results were generalized in [13] and [17] to the
case when the data in question are invariant under an S1-action.

In general, if no symmetry is assumed, it was shown in [2, Theorem 4.3]
that if the bundle L⊗O(−Σ) is ample, there exists a neighborhood U(Σ) of Σ,
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such that P0,p(x) has exponential decay on U(Σ) and p−nP0,p(x) converges
to c1(L, h)n/ωn in L1 outside the closure of U(Σ).

Our first result is that under the very general hypotheses (A) and (B)
above (in particular, without any positivity condition), the partial Bergman
kernel function decays exponentially in a neighborhood of the divisor Σ.

Theorem 1.1. — Assume that conditions (A)–(B) are fulfilled. Then
there exist a neighborhood Ut of Σ and a constant a ∈ (0, 1) such that P0,p 6
ap on Ut for p > 2t−1. In particular P0,p = O(p−∞) as p→∞ on Ut.

For more precise statements see Theorem 3.1 and Corollary 3.3. Theo-
rem 1.1 can be formulated for non-compact manifolds X (see Theorem 3.4),
in which case the exponential decay of the partial Bergman kernel holds in
a neighborhood of the intersection of Σ with any given compact subset of
X. This includes for instance the case of classical Bergman spaces of L2-
holomorphic functions on domains in Cn.

An object which is closely related to the partial Bergman kernel is the
Bergman kernel for a singular metric. The full asymptotic expansion on
compact subsets of the regular part of the metric was established in [8,
Theorem 1.8]. We are here concerned with asymptotics at arbitrary points
with dependence on the distance to the singular set. More precisely, we will
consider the following situation.

Let SΣ ∈ H0(X,O(Σ)) be a canonical holomorphic section of the line
bundle O(Σ), vanishing to first order on Σ. We fix a smooth Hermitian
metric hΣ on O(Σ) such that

% := log
∣∣SΣ
∣∣
hΣ

< 0 on X. (1.4)

We consider a function ξ : X → R ∪ {−∞}, smooth on X \ Σ, such that
ξ = tρ in a neighborhood U of Σ. Let dist( · , · ) be the distance on X induced
by ω. Our main result is the following:

Theorem 1.2. — Let (X,ω), (L, h),Σ be as in (A)–(B), and assume ω
is Kähler and h is smooth. Consider the singular Hermitian metric h̃ = he−2ξ

on L and assume that c1(L, h̃) > εω for some constant ε > 0. Let P̃p be the
Bergman kernel function of H0

(2)(X,Lp, h̃p, ωn/n!), where h̃p := h̃⊗p. Then
there exists a constant C > 1 such that for every x ∈ X \Σ and every p ∈ N
with pdist(x,Σ)8/3 > C we have∣∣∣∣∣ P̃p(x)

pn
ωnx

c1(L, h̃)nx
− 1

∣∣∣∣∣ 6 Cp−1/8 . (1.5)

Theorem 1.2 can be interpreted in two ways. First, if x runs in a compact
set K ⊂ X \ Σ, we have a concrete bound p0 = C dist(K,Σ)−8/3 such that
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for p > p0 the estimate (1.5) holds. By [8, Theorem 1.8] we have P̃p(x) =∑∞
r=0 br(x)pn−r + O(p−∞) as p → ∞ locally uniformly on X \ Σ. Hence,

there exists p0(K) ∈ N and CK such that for p > p0(K) we have∣∣∣∣∣ P̃p(x)
pn

ωnx

c1(L, h̃)nx
− 1

∣∣∣∣∣ 6 CKp−1 on K.

However, p0(K) is not easy to determine.

We can also recast Theorem 1.2 as a uniform estimate in p for the singular
Bergman kernel on compact sets of X \ Σ whose distance to Σ decreases as
p−3/8. Indeed, set Kp = {x ∈ X : dist(x,Σ) > (C/p)3/8}. Then (1.5) holds
on Kp for every p.

We consider now the global behavior of the partial Bergman kernel. Given
a compact set K ⊂ X \ Σ we set

t0(K) := sup
{
t > 0 : ∃ η ∈ C∞(X, [0, 1]), supp η ⊂ X \K, η = 1 near Σ,

and c1(L, h) + t ddc(η%) is a Kähler current on X
}
. (1.6)

A consequence of Theorems 1.1 and 1.2 is the following result about the
asymptotics of the partial Bergman kernel:

Theorem 1.3. — Let (X,ω), (L, h),Σ be as in (A)–(B), and assume
ω is Kähler, h is smooth, and c1(L, h) > εω for some constant ε > 0. Let
K ⊂ X \Σ be a compact set and let t ∈ (0, t0(K)). Then there exist constants
C > 1, M > 1 and a neighborhood Ut of Σ, all depending on t, such that for
x ∈ Ut we have

Met%(x) < 1 and P0,p(x) 6 (Met%(x))p for p > 2/t, (1.7)

P0,p(x) > pn

C
exp(2tp%(x)) for p dist(x,Σ)8/3 > C, (1.8)

where the function % is defined in (1.4). Moreover, we have uniformly on K,

P0,p(x) = Pp(x) +O(p−∞) , p→∞, (1.9)

and in particular,

P0,p(x) = b0(x)pn + b1(x)pn−1 +O(pn−2) , p→∞, (1.10)

where

b0 = c1(L, h)n

ωn
, b1 = b0

8π (rX − 2∆ log b0), (1.11)

and rX , ∆ , are the scalar curvature, respectively the Laplacian, of the Rie-
mannian metric associated to c1(L, h).
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Hence, (1.7) and (1.8) show that on Ut the exponential decay estimate
for the partial Bergman kernel function is sharp. Moreover, on K the partial
Bergman kernel function has the same asymptotics as the full Bergman ker-
nel function up to order O(p−∞). This was established in [13, Theorem 1.1]
under the additional assumption that there is an S1-action in a neighborhood
of Σ. Our method is to estimate the partial Bergman kernel P0,p by above
and below with the full Bergman kernel Pp and the singular Bergman kernel
P̃p. On the set where the singular metric h̃ equals h, the kernels P̃p and Pp
differ by O(p−∞). This is shown in Theorem 5.1, which gives a general local-
ization result for singular Bergman kernels. Theorem 5.1 is a straightforward
consequence of [8].

However, in Theorem 1.3 we do not necessarily obtain a partition of the
manifold X in two sets, one with exponential decay (1.7) and one with “full
asymptotics” (1.9), since in general Ut∪K 6= X. In [2, 13, 11, 17] a partition
with two different regimes was exhibited under further hypotheses. The ap-
proach introduced by Berman [2, Section 4.1] was to consider the equilibrium
metric (or extremal envelope) ht of h with poles along Σ (see also [13]). The
metric ht exists for t sufficiently small thanks to the positivity of (L, h). The
local plurisubharmonic (psh) potentials of ht have Lelong number t along Σ.
It is shown in [13, Proposition 2.13] that the partial Bergman kernel func-
tion P0,p has exponential decay in the forbidden region {ht > h} which is a
neighborhood of Σ. Moreover, under additional symmetry assumptions, it is
shown in [13, Theorem 1.1] that P0,p is essentially equal to the full Bergman
kernel outside the forbidden region.

In Theorem 1.1 we show that exponential decay holds near Σ with no
assumption on the positivity of (L, h). Without positivity assumptions the
equilibrium metric might not exist, but we give here a proof in the general
case based only on the sub-average inequality for holomorphic functions.

Our approach in Theorem 1.3 differs from the envelope approach above
in that we first fix a compact K disjoint from Σ and then construct an
interval of small t > 0 for which the corresponding partial Bergman kernel
P0,p decays exponentially near Σ and is essentially equal to the full Bergman
kernel on K.
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2. Preliminaries

2.1. Bergman kernel function

Let (L, h) be a singular Hermitian holomorphic line bundle over a com-
pact Hermitian manifold (X,ω). We denote by H0(X,Lp) the space of holo-
morphic sections of Lp := L⊗p.

Let H0
(2)(X,Lp) = H0

(2)(X,Lp, hp, ωn/n!) be the Bergman space of L2-
holomorphic sections of Lp relative to the metric hp := h⊗p induced by h
and the volume form ωn/n! on X, endowed with the inner product

(S, S′)p :=
∫
X

〈S, S′〉hp

ωn

n! , S, S′ ∈ H0
(2)(X,Lp) . (2.1)

Set ‖S‖2p = (S, S)p, dp = dimH0
(2)(X,Lp). If h has locally bounded weights

(e. g. h is smooth) we have of course H0
(2)(X,Lp) = H0(X,Lp). We have the

following variational characterization of the partial Bergman kernel

P0,p(x) = max
{
|S(x)|2hp

: S ∈ H0
0 (X,Lp), ‖S‖p = 1

}
, (2.2)

and similar characterizations hold for the full and singular Bergman kernel
functions Pp and P̃p.

Throughout the paper we also use the following terminology. For a se-
quence of continuous functions fp on a manifold M we write fp = O(p−∞)
if for every compact subset K ⊂ M and any ` ∈ N there exists CK,` > 0
such that for all p ∈ N we have ‖fp‖K 6 CK,` p−`.

2.2. Geometric set-up

We prepare here the geometric set-up needed for the proofs of our results,
by constructing a special neighborhood W of Σ.

Let (X,ω) be a compact Hermitian manifold of dimension n. Let (U, z),
z = (z1, . . . , zn), be local coordinates centered at a point x ∈ X. For r > 0
and y ∈ U we denote by

∆n(y, r) = {z ∈ U : |zj − yj | 6 r, j = 1, . . . , n}
the (closed) polydisk of polyradius (r, . . . , r) centered at y. If ω is a Kähler
form, the coordinates (U, z) are called Kähler at y ∈ U if

ωz = i

2

n∑
j=1

dzj ∧ dzj +O(|z − y|2) on U.
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Since Σ is compact, we can find an open cover W = {Wj}16j6N of Σ,
whereWj are Stein contractible coordinate neighborhoods centered at points
yj ∈ Σ, such that

∆n(yj , 2) ⊂Wj , Σ ⊂W :=
N⋃
j=1

∆n(yj , 1) ,

Σ ∩Wj =
{
z ∈Wj : z1 = 0

}
, for j = 1 . . . , N ,

(2.3)

where z = (z1, . . . , zn) are the coordinates on Wj . Moreover, if ω is a Kähler
form, we may also ensure that

∀ x ∈ ∆n(yj , 1), ∃ z = z(x) coordinates on ∆n(yj , 2)
centered at x and Kähler at x . (2.4)

As in [5, §2.5, Lemma 2.7] one can easily prove the following:

Lemma 2.1. — Let (X,ω), (L, h),Σ, h̃ be as in Theorem 1.2, and letW =
{Wj}16j6N be an open cover of Σ verifying (2.3) and (2.4). There exist
constants C1 > 1, C2 > 0 and r1 > 0 with the following property: if j ∈
{1, . . . , N}, x ∈ ∆n(yj , 1) and z = z(x) are the coordinates on ∆n(yj , 2)
given by (2.4), then:

(1) ∆n
z (x, r1) b ∆n(yj , 2) and for r 6 r1 we have

n! dm 6 (1 + C1r
2)ωn , ωn 6 (1 + C1r

2)n! dm on ∆n
z (x, r) , (2.5)

where dm = dm(z) is the Euclidean volume and ∆n
z (x, · ) is the open

polydisk relative to the coordinates z.
(2) (L, h̃) has a weight ϕx on Wj with

ϕx = t log |f |+ ψx , ψx ∈ C∞(Wj) ,

ψx(z) = ReFx(z) + ψ′x(z) + ψ̃x(z) on ∆n(yj , 2) ,
(2.6)

where f is a defining function for Σ ∩Wj, Fx(z) is a holomorphic
polynomial of degree 6 2 in z, ψ′x(z) =

∑n
`=1 λ`|z`|2, λ` = λ`(x),

and
|ψ̃x(z)| 6 C2|z|3 , z ∈ ∆n

z (x, r1) . (2.7)

3. Exponential decay

We prove here Theorem 1.1. Let W = {Wj}16j6N be the cover of Σ and
W ⊃ Σ be the neighborhood of Σ constructed in Section 2.2 (see (2.3)). For
a function ϕ ∈ L∞loc(Wj) set

‖ϕ‖∞,Wj
= sup

{
|ϕ(w)| : w ∈ ∆n(yj , 2)

}
.
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Let (L, h) be a singular Hermitian holomorphic line bundle on X, where
the metric h has locally bounded weights. Since L|Wj is trivial, we fix a
holomorphic frame ej of L|Wj , and denote by ϕj the corresponding weight
of h on Wj , i.e. |ej |h = e−ϕj . Set

‖h‖∞ = ‖h‖∞,W := max
{

1, ‖ϕj‖∞,Wj
: 1 6 j 6 N

}
, (3.1)

and let % be the function defined in (1.4).

Theorem 3.1. — In the setting of Theorem 1.1, there exists a constant
A > 1 depending only on ρ and W such that for any S ∈ H0

0 (X,Lp), x ∈W ,
and p > 1, we have

|S(x)|2hp
6 (Aeρ(x))2btpce4p‖h‖∞‖S‖2p .

Therefore, for every x ∈W and p > 1,

P0,p(x) 6 (Aeρ(x))2btpce4p‖h‖∞ .

For the proof we need the following elementary lemma.

Lemma 3.2. — If k > 0 and f ∈ O(∆(0, 2)), where ∆(0, 2) ⊂ C is the
closed disk centered at 0 and of radius 2, then∫

∆(0,2)
|f(ζ)|2 dm(ζ) 6 k + 1

22k

∫
∆(0,2)

|ζ|2k|f(ζ)|2 dm(ζ) .

Proof. — Consider the power expansion f(ζ) =
∑∞
j=0 ajζ

j of f in ∆(0, 2).
Integrating in polar coordinates we obtain∫

∆(0,2)
|f(ζ)|2 dm(ζ) = 2π

∞∑
j=0
|aj |2

∫ 2

0
r2j+1 dr = 2π

∞∑
j=0

22j+2

2j + 2 |aj |
2 .

On the other hand, ζkf(ζ) =
∑∞
j=k aj−kζ

j , so∫
∆(0,2)

|ζ|2k|f(ζ)|2 dm(ζ)

= 2π
∞∑
j=k

22j+2

2j + 2 |aj−k|
2 = 2π

∞∑
j=0

22j+2+2k

2j + 2 + 2k |aj |
2

>
22k

k + 1 2π
∞∑
j=0

22j+2

2j + 2 |aj |
2 = 22k

k + 1

∫
∆(0,2)

|f(ζ)|2 dm(ζ) . �

Proof of Theorem 3.1. — Let x ∈ W . Fix j ∈ {1, . . . , N} such that x ∈
∆n(yj , 1) and let ej be the local frame of L|Wj

and ϕj be the corresponding
weight of h as considered in (3.1). Let S ∈ H0

0 (X,Lp). On Wj we write
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S = se⊗pj , with s ∈ O(Wj). Then we have s(z) = z
btpc
1 s̃(z), with s̃ ∈ O(Wj).

Using the sub-averaging inequality we get

|S(x)|2hp
= |x1|2btpc|s̃(x)|2e−2pϕj(x)

6 |x1|2btpce−2pϕj(x) 1
πn

∫
∆n(x,1)

|s̃(z)|2 dm(z)

6 |x1|2btpce−2pϕj(x)
∫

∆n(0,2)
|s̃(z)|2 dm(z) .

(3.2)

Applying Fubini’s theorem for the splitting z = (z1, z
′) and Lemma 3.2 for

the variable z1, we obtain∫
∆n(0,2)

|s̃(z)|2 dm(z) =
∫

∆n−1(0,2)

∫
∆(0,2)

|s̃(z1, z
′)|2 dm(z1) dm(z′)

6
btpc+ 1
22btpc

∫
∆n(0,2)

|z1|2btpc|s̃(z)|2 dm(z)

6 C exp
(

2p sup
∆n(0,2)

ϕj

)∫
∆n(0,2)

|s(z)|2e−2pϕj(z) ω
n

n! ,

(3.3)

where C = C(W) > 1 is chosen such that dm(z) 6 Cωn/n! on each ∆n(yj , 2)
in the local coordinates of Wj , for j = 1, . . . , N . Combining (3.2) and (3.3)
we get

|S(x)|2hp
6 C |x1|2btpc exp

(
2p sup

∆n(0,2)
ϕj − 2pϕj(x)

)
‖S‖2p . (3.4)

Note that there exists a constant A′ = A′(ρ,W ) > 1 such that

|x1| 6 A′eρ(x) , x ∈W . (3.5)

Set A = A′C. The estimates (3.4) and (3.5) yield

|S(x)|2hp
6 (C|x1|)2btpce4p‖h‖∞‖S‖2p 6 (Aeρ(x))2btpce4p‖h‖∞‖S‖2p .

Taking into account (2.2) we immediately obtain the conclusion. �

Corollary 3.3. — In the setting of Theorem 3.1 we let

Ut :=
{
x ∈W : (Aeρ(x))t e4‖h‖∞ < 1

}
. (3.6)

Then for any x ∈ Ut and p > 2t−1 we have

P0,p(x) 6
[
(Aeρ(x))t e4‖h‖∞

]p
. (3.7)

In particular P0,p = O(p−∞) as p→∞ on Ut.
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Proof. — This follows immediately from Theorem 3.1, since Aeρ(x) < 1
for x ∈ Ut, and 2btpc > 2tp− 2 > tp for p > 2/t. �

We conclude this section by giving a version of Theorem 3.1 in the case
when X is not compact. Let (X,ω) be a Hermitian manifold of dimension
n, Σ be a smooth analytic hypersurface of X, t > 0 a fixed real number,
and (L, h) a singular Hermitian holomorphic line bundle on X with singular
metric h which has locally bounded weights.

As in the case of a compact manifold X, we introduce the Bergman
space H0

(2)(X,Lp) = H0
(2)(X,Lp, hp, ωn/n!) of L2-holomorphic sections of

Lp relative to the metric hp induced by h and the volume form ωn/n! on X,
endowed with the inner product (2.1). Let H0

(2),0(X,Lp) ⊂ H0
(2)(X,Lp) be

the Bergman space of L2-holomorphic sections of Lp vanishing to order at
least btpc along Σ,

H0
(2),0(X,Lp) := H0

(2)
(
X,Lp ⊗O

(
− btpcΣ

))
.

The spaces H0
(2)(X,Lp) and H0

(2),0(X,Lp) are not necessarily finite dimen-
sional but their Bergman kernel functions Pp and P0,p can be defined as
in (1.2), (1.3), by means of at most countable orthonormal bases, see [6,
Lemma 3.1].

We fix a compact set E ⊂ X and consider an open coverW = {Wj}16j6N
and a neighborhood W of the compact set Σ ∩ E constructed as in (2.3).
Finally define ‖h‖∞ = ‖h‖∞,W as in (3.1), and the function % as in (1.4),
such that % < 0 in a neighborhood of E. The following theorem is proved
exactly as Theorem 3.1:

Theorem 3.4. — Let (X,ω) be a Hermitian manifold of dimension n, Σ
be a smooth analytic hypersurface of X, t > 0 a fixed real number, and (L, h)
a singular Hermitian holomorphic line bundle on X with singular metric h
which has locally bounded weights. Then for any compact set E ⊂ X there
exists a neighborhood W of the compact set Σ∩E and a constant A > 1 such
that for every x ∈W and p > 1,

P0,p(x) 6 (Aeρ(x))2btpce4p‖h‖∞ .

The constant A depends only on ρ and W above.

4. Singular Bergman kernel

In this section we prove Theorem 1.2 by using ideas of Berndtsson, who
gave in [3, Section 2] a simple proof for the first order asymptotics of the
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Bergman kernel function in the case of powers of an ample line bundle (see
also [5, Theorem 1.3]).

We start by recalling the following version of Demailly’s estimates for
the ∂ operator [7, Théorème 5.1] (see also [5, Theorem 2.5]) which will be
needed in our proofs.

Theorem 4.1. — Let (X,ω) be a compact Kähler manifold of dimen-
sion n, and let B > 0 be a constant such that Ricω > −2πBω on X.
Let (L, h) be a singular Hermitian holomorphic line bundle on X such that
c1(L, h) > εω, and fix p0 such that p0ε > 2B. Then for all p > p0 and
all g ∈ L2

0,1(X,Lp, loc) with ∂g = 0 and
∫
X
|g|2hp

ωn < ∞ there exists
u ∈ L2

0,0(X,Lp, loc) such that ∂u = g and
∫
X
|u|2hp

ωn 6 2
pε

∫
X
|g|2hp

ωn.

Proof of Theorem 1.2. — Let W = {Wj}16j6N be an open cover of Σ
verifying (2.3) and (2.4). If j ∈ {1, . . . , N} and x ∈ ∆n(yj , 1), let z = z(x)
be the coordinates on ∆n(yj , 2) given by (2.4), and let ej,x be a holomorphic
frame of L on Wj such that |ej,x |̃h = e−ϕx , where ϕx is given by (2.6).

Assume now that x ∈ ∆n(yj , 1) \ Σ and define

rx := sup
{
r ∈ (0, r1] : ∆n

z (x, r) ⊂ ∆n(yj , 2) \ Σ
}
.

We have

ωx = i

2

n∑
`=1

dz` ∧ dz̄` ,

c1(L, h̃)x = ddcϕx(0) = ddcψx(0) = ddcψ′x(0) = i

π

n∑
`=1

λ` dz` ∧ dz̄` .
(4.1)

Since c1(L, h̃)x > εωx it follows that λ` > ε, ` = 1, . . . , n. Moreover, there
exists Hx ∈ O(∆n

z (x, rx)) such that ReHx = ReFx + t log |f |. We define a
new frame for L over ∆n

z (x, rx) by ex = eHxej,x. Hence

|ex |̃h = exp(ReHx) exp(−ϕx) = exp(−ψ′x − ψ̃x) .

We fix now j ∈ {1, . . . , N} and x ∈ ∆n(yj , 1) \ Σ and we will estimate
P̃p(x). Let rp ∈ (0, rx/2) be an arbitrary number which will be specified later.
We start by estimating the norm of a section S ∈ H0

(2)(X,Lp, h̃p, ωn/n!) at x.
Writing S = se⊗px , where s ∈ O(∆n

z (x, rx)), we obtain by the sub-averaging
inequality for psh functions on ∆n

z (x, rp) = ∆n(0, rp),

|S(x)|2
h̃p

= |s(0)|2 6

∫
∆n(0,rp) |s|

2e−2pψ′x dm∫
∆n(0,rp) e

−2pψ′x dm
·
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We have further by (2.5), (2.7),∫
∆n(0,rp)

|s|2e−2pψ′x dm

6 (1 + C1r
2
p) exp

(
2p sup

∆n(0,rp)
ψ̃x
) ∫

∆n(0,rp)
|s|2e−2p(ψ′x+ψ̃x)ω

n

n!

6 (1 + C1r
2
p) exp

(
2C2p r

3
p

)
‖S‖2p .

Set

E(r) :=
∫
|ξ|6r

e−2|ξ|2 dm(ξ) = π

2

(
1− e−2r2

)
.

Since λ` > ε we obtain

E(rp
√
pε )n

pnλ1 . . . λn
6
∫

∆n(0,rp)
e−2pψ′x dm 6

∫
Cn

e−2pψ′x dm = (π/2)n

pnλ1 . . . λn
·

Combining these estimates it follows that

|S(x)|2
h̃p
6

(1 + C1r
2
p) exp

(
2C2p r

3
p

)
E(rp

√
pε)n pnλ1 . . . λn ‖S‖2p . (4.2)

The singular Bergman kernel also satisfies a variational formula,

P̃p(x) = max
{
|S(x)|2

h̃p
: S ∈ H0

(2)(X,Lp, h̃p, ωn/n!), ‖S‖p = 1
}
.

Hence (4.2) implies the following upper estimate for the singular Bergman
kernel,

P̃p(x)
pnλ1 . . . λn

6
(1 + C1r

2
p) exp

(
2C2p r

3
p

)
E(rp

√
pε)n , ∀ rp ∈ (0, rx/2). (4.3)

For the lower estimate of P̃p, let 0 6 χ 6 1 be a smooth cut-off function
on Cn with support in ∆n(0, 2) such that χ ≡ 1 on ∆n(0, 1), and set χp(z) =
χ(z/rp). Then F = χpe

⊗p
x is a section of Lp and |F (x)|̃

hp
= |e⊗px (x)|̃

hp
= 1.

We have

‖F‖2p 6
∫

∆n(0,2rp)
e−2p(ψ′x+ψ̃x) ω

n

n!

6 (1 + 4C1r
2
p) exp

(
16C2p r

3
p

) ∫
∆n(0,2rp)

e−2pψ′x dm

6
(π

2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)
pnλ1 . . . λn

·

(4.4)
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Set α = ∂F . Since ‖∂χp‖2 = ‖∂χ‖2/r2
p, where ‖∂χ‖ denotes the maximum

of |∂χ|, we obtain as above

‖α‖2p =
∫

∆n(0,2rp)
|∂χp|2e−2p(ψ′x+ψ̃x) ω

n

n!

6
‖∂χ‖2

r2
p

(π
2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)
pnλ1 . . . λn

·

There exists p0 ∈ N such that for p > p0 we can solve the ∂–equation by
Theorem 4.1. We get a smooth section G of Lp with ∂G = α = ∂F and

‖G‖2p 6
2
pε
‖α‖2p 6

2‖∂χ‖2

pεr2
p

(π
2

)n (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)
pnλ1 . . . λn

· (4.5)

Note that G is holomorphic on ∆n(0, rp) since ∂G = ∂F = 0 there. So the
estimate (4.2) applies to G on ∆n(0, rp) and gives

|G(x)|2
h̃p
6

(1 + C1r
2
p) exp

(
2C2p r

3
p

)
E(rp

√
pε)n pnλ1 . . . λn‖G‖2p

6
2‖∂χ‖2

pεr2
pE(rp

√
pε)n

(π
2

)n
(1 + 4C1r

2
p)2 exp

(
18C2p r

3
p

)
.

Let S = F −G ∈ H0
(2)(X,Lp, h̃p, ωn/n!). Then

|S(x)|2
h̃p
>
(
|F (x)|̃

hp
− |G(x)|̃

hp

)2
=
(

1− |G(x)|̃
hp

)2

>

[
1−

(π
2

)n/2 √2 ‖∂χ‖(1 + 4C1r
2
p)

rp
√
pεE(rp

√
pε)n/2

exp
(
9C2p r

3
p

)]2

=: K1(rp) .

Moreover, by (4.4) and (4.5)

‖S‖2p 6 (‖F‖p + ‖G‖p)2 6
(π

2

)n K2(rp)
pnλ1 . . . λn

,

where

K2(rp) = (1 + 4C1r
2
p) exp

(
16C2p r

3
p

)(
1 +
√

2 ‖∂χ‖
rp
√
pε

)2

.

Therefore

P̃p(x) >
|S(x)|2

h̃p

‖S‖2p
>

(
2
π

)n
pnλ1 . . . λn

K1(rp)
K2(rp)

· (4.6)
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Using now (4.1), (4.3) and (4.6) we deduce that for every x ∈
N⋃
j=1

∆n(yj , 1)\Σ,

rp < rx/2 and p > p0,

K1(rp)
K2(rp)

6 P̃p(x) ωnx

pnc1(L, h̃)nx
6 K3(rp) , (4.7)

where

K3(rp) =
(

π/2
E(rp

√
pε)

)n
(1 + C1r

2
p) exp

(
2C2p r

3
p

)
.

We take now rp = p−3/8, so p r3
p = p−1/8 → 0 and p r2

p = p1/4 → ∞ as
p→∞. Note that there exists a constant C3 > 0 such that

K1(p−3/8) > 1− C3p
−1/8 ,

K2(p−3/8) 6 1 + C3p
−1/8 , K3(p−3/8) 6 1 + C3p

−1/8 .

It follows by (4.7) that there exists a constant C4 > 0 such that

1− C4 p
−1/8 6 P̃p(x) ωnx

pnc1(L, h̃)nx
6 1 + C4 p

−1/8 (4.8)

holds for every x ∈
⋃N
j=1 ∆n(yj , 1) \ Σ , p−3/8 < rx/2 and p > p0. Now

rx > c dist(x,Σ), for some constant c > 0, so there exists a constant C5 > 0
such that (4.8) holds for p > C5 dist(x,Σ)−8/3. This concludes the proof
of (1.5) for x ∈

⋃N
j=1 ∆n(yj , 1) \ Σ.

By [8, Theorem 1.8] there exist C6 > 0 and p′0 ∈ N such that∣∣∣∣∣P̃p(x) ωnx

pnc1(L, h̃)nx
− 1

∣∣∣∣∣ 6 C6

p
,

for x ∈ X \
⋃N
j=1 ∆n(yj , 1) and p > p′0. The proof of Theorem 1.2 is

complete. �

5. Estimates for the partial Bergman kernel

In this section we prove Theorem 1.3. Let t < t0(K). By the defini-
tion (1.6) of t0(K), there exist η ∈ C∞(X, [0, 1]) and δ > 0 such that
supp η ⊂ X \K, η = 1 near Σ, and c1(L, h) + tddc(η%) > δω in the sense of
currents on X. Define

h̃t = h exp(−2tη%) , h̃t,p = h̃⊗pt .
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Note that h̃t = h in a neighborhood of K and h̃t > h on X. Since Σ is
smooth, it follows by (1.4) that H0

0 (X,Lp) = H0
(2)(X,Lp, h̃t,p, ωn/n!). We

denote the norm on H0
(2)(X,Lp, h̃t,p, ωn/n!) by

‖S‖2t,p =
∫
X

|S|2
h̃t,p

ωn

n! =
∫
X

|S|2hp
exp(−2tpη%) ω

n

n! ·

Let P̃t,p be the Bergman kernel function of H0
(2)(X,Lp, h̃t,p, ωn/n!). Recall

that ‖S‖p is the norm given by the scalar product (2.1) on H0
0 (X,Lp). Since

% < 0 we have ‖S‖2t,p > ‖S‖2p for any S ∈ H0
0 (X,Lp). Let S ∈ H0

0 (X,Lp)
with ‖S‖2t,p 6 1. Then ‖S‖2p 6 1, too, hence

|S|2
h̃t,p

= |S|2hp
exp(−2tpη%) 6 P0,p exp(−2tpη%) ,

and thus
P̃t,p 6 P0,p exp(−2tpη%) .

Denote now by Pp the Bergman kernel function of H0(X,Lp) endowed
with the scalar product (2.1). Since H0

0 (X,Lp) is isometrically embedded
in H0(X,Lp) we have P0,p 6 Pp. Consequently we have shown:

P̃t,p exp(2tpη%) 6 P0,p 6 Pp on X,

P̃t,p 6 P0,p 6 Pp near K.
(5.1)

Let now W be the neighborhood of Σ defined in (2.3) and let Ut be defined
as in (3.6), so that the exponential estimate (3.7) holds on Ut for p > 2t−1.
By shrinking Ut we can assume that η = 1 on Ut. Setting M := e4‖h‖∞At

we obtain (1.7). By Theorem 1.2 we have

P̃t,p(x) > (1− Cp−1/8)pn c1(L, h̃t)nx
ωnx

for every p ∈ N with p dist(x,Σ)8/3 > C. Note that c1(L, h̃t) > δω in
the sense of currents on X. Since c1(L, h̃t) is smooth on X \ Σ we have
c1(L, h̃t)n

ωn
> δn on X \ Σ. By increasing C if necessary, it follows that

P̃t,p(x) > pn

C
for p > C dist(x,Σ)−8/3.

Hence

P0,p(x) > pn

C
exp(2tp%(x)) for x ∈ Ut and p > C dist(x,Σ)−8/3.

This proves (1.8). In order to prove (1.9) we need the following localization
theorem for the Bergman kernel for singular Hermitian metrics. We refer
to [1, Theorem 2.2] for a localization principle in the case of smooth metrics.
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Theorem 5.1. — Let (X,ω) be a compact Hermitian manifold and L→
X be a holomorphic line bundle. Consider two singular Hermitian metrics
h1 and h2 on L, which are smooth outside a proper analytic set Σ ⊂ X and
such that c1(L, h1), c1(L, h2) are Kähler currents. Let P (j)

p be the Bergman
projection on H0(X,Lp, hpj , ωn/n!), j = 1, 2. We assume that there exists an
open set U b X \ Σ such that h1 = h2 on U . Then the Bergman kernels
satisfy P (1)

p (z, w) − P (2)
p (z, w) = O(p−∞) on U in any C `-topology, ` ∈ N,

as p→∞.

Proof. — The proof follows essentially from the analysis in [8] (see
also [9]). Let h0 be any singular Hermitian metric on L, smooth on X \ Σ
and satisfying c1(L, h0) > εω in the sense of currents on X, for some ε > 0.
Let P (0)

p be the Bergman projection on H0(X,Lp, hp0, ωn/n!).

Consider an open set D ⊂ U such that L|D is trivial. Let s : D → L be
a holomorphic frame and let ϕ ∈ C∞(D) be the weight of h0 corresponding
to s, that is, |s|h0 = e−ϕ. Let us denote by E ′(D) the space of distributions
with compact support in D and by L2(D) the space of square-integrable
functions with respect to the volume form ωn/n!. The localized Bergman
projection with respect to s is the operator P (0)

p,s : L2(D) ∩ E ′(D)→ L2(D),
defined by P (0)

p (uepϕs⊗p) = P
(0)
p,s (u)epϕs⊗p. It is easy to see that

P (0)
p (z, w) = P (0)

p,s (z, w)ep(ϕ(z)−ϕ(w))s⊗p(z)⊗ (s⊗p)∗(w) ∈ Lpz ⊗ (Lpw)∗ ,
z, w ∈ D. (5.2)

By [8, Theorem 9.2] the kernel of P (0)
p,s satisfies

P (0)
p,s (z, w) = Sp(z, w) +O(p−∞) on D, (5.3)

where Sp is the localized approximate Szegő kernel defined in [8, (3.43)].
Note that by [8, Theorem 3.12] we have

Sp(z, w) = eipΨ(z,w)b(z, w, p) +O(p−∞) on D, (5.4)

where Ψ : D × D → C is a phase function depending on the eigenvalues
of c1(L, h0) with respect to ω and described precisely in [8, Theorem 3.8].
Moreover, b(·, ·, p) : D×D → C is a semi-classical symbol of order n = dimX,
depending only on the restriction of h and ω to D.

We apply now these results for h0 = h1 and h0 = h2. Since h1|D = h2|D
we deduce that the weight ϕ, the phase Ψ and the symbol b(·, ·, p) above
are the same for h1 and h2. We infer from (5.3) and (5.4) that P (1)

p,s (z, w)−
P

(2)
p,s (z, w) = O(p−∞) on D. Finally, (5.2) yields P (1)

p (z, w) − P (2)
p (z, w) =

O(p−∞) on D. The proof of Theorem 5.1 is complete. �
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We apply now Theorem 5.1 to the metrics h̃t and h, which are equal on
a neighborhood V of K and infer that

P̃t,p − Pp = O(p−∞) locally uniformly on V . (5.5)
This fact combined with (5.1), (5.5) yields (1.9). Finally, (1.10) and (1.11)
follow from the expansion of the Bergman kernel Pp (see [10, Theorems 4.1.1–
3]) or of the singular Bergman kernel (see [8, Theorem 1.8]).
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