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Dimension free bounds for the Hardy–Littlewood
maximal operator associated to convex sets (∗)

Luc Deleaval (1), Olivier Guédon (2) and Bernard Maurey (3)

ABSTRACT. — This survey is based on a series of lectures given by
the authors at the working seminar “Convexité et Probabilités” at UPMC
Jussieu, Paris, during the spring 2013. It is devoted to maximal functions
associated to symmetric convex sets in high dimensional linear spaces, a
topic mainly developed between 1982 and 1990 but recently renewed by
further advances.

The series focused on proving these maximal function inequalities in
Lp(Rn), with bounds independent of the dimension n and for all p ∈
(1,+∞] in the best cases. This program was initiated in 1982 by Elias
Stein, who obtained the first theorem of this kind for the family of Eu-
clidean balls in arbitrary dimension. We present several results along this
line, proved by Bourgain, Carbery and Müller during the period 1986–
1990, and a new one due to Bourgain (2014) for the family of cubes in
arbitrary dimension. We complete the cube case with a negative answer
to the possible dimensionless behavior of the weak type (1, 1) constant,
due to Aldaz, Aubrun and Iakovlev–Strömberg between 2009 and 2013.

RÉSUMÉ. — Ces Notes reprennent et complètent une série d’exposés
donnés par les auteurs au groupe de travail « Convexité et Probabilités » à
l’UPMC Jussieu, Paris, au cours du printemps 2013. Elles sont consacrées
à l’étude des fonctions maximales de type Hardy–Littlewood associées aux
corps convexes symétriques dans Rn. On s’intéresse tout particulièrement
au comportement des constantes intervenant dans les estimations lorsque

(*) Reçu le 8 février 2016, accepté le 19 juillet 2016.
(1) Laboratoire d’Analyse et de Mathématiques Appliquées, Université

Paris-Est–Marne la Vallée, 77454 Marne la Vallée CEDEX 2, France —
luc.deleaval@u-pem.fr

(2) same address — olivier.guedon@u-pem.fr
(3) Institut de Mathématiques de Jussieu–PRG, UPMC, 75005 Paris, France —

bernard.maurey@imj-prg.fr
Nous tenons à remercier ceux qui nous ont encouragés dans notre projet de rédaction

de ces Notes, et tout particulièrement Franck Barthe qui a su nous mettre en
mouvement. Nous sommes reconnaissants à P. Auscher et E. Stein, qui nous ont
témoigné leur intérêt et indiqué des références importantes qui nous avaient échappé.
Nous remercions les rapporteurs pour leurs suggestions constructives.

Article proposé par Xavier Tolsa.

– 1 –

mailto:luc.deleaval@u-pem.fr
mailto:olivier.guedon@u-pem.fr
mailto:bernard.maurey@imj-prg.fr


L. Deleaval, O. Guédon and B. Maurey

la dimension n tend vers l’infini. Ce sujet a été développé principalement
entre 1982 et 1990, mais a été relancé par des avancées récentes.

Le but de la série d’exposés était de prouver des inégalités maximales
dans Lp(Rn) avec des bornes indépendantes de la dimension n, pour cer-
taines familles de corps convexes. Dans les meilleurs cas, on a pu obtenir
de tels résultats pour toutes les valeurs de p dans (1,+∞]. Ce thème de re-
cherche a été initié en 1982 par Elias Stein [75], qui a démontré le premier
théorème de ce genre pour la famille des boules euclidiennes en dimen-
sion arbitraire, obtenant pour tout p ∈ (1,+∞] une borne dans Lp(Rn)
indépendante de n. Nous présentons ce théorème de Stein ainsi que plu-
sieurs autres résultats dans cette direction, démontrés par Bourgain, par
Carbery et par Müller dans la période 1986–1990. En 1986, Bourgain [9]
obtient une borne indépendante de n valable dans L2(Rn) pour tout corps
convexe symétrique dans Rn, puis Bourgain [10] et Carbery [21] étendent
le résultat Lp(Rn) de Stein aux corps convexes symétriques quelconques,
mais sous la condition que p > 3/2. Müller [59] obtient un résultat va-
lable pour tout p > 1 quand un certain paramètre géométrique, lié aux
volumes des projections du corps convexe sur les hyperplans, reste borné.
Ce paramètre ne reste pas borné pour tous les convexes, en particulier, il
tend vers l’infini pour les cubes de grande dimension. Nous donnons un
théorème récent (2014) dû à Bourgain [13] qui obtient pour tout p > 1
une borne dans Lp(Rn) indépendante de n pour la famille des fonctions
maximales associées aux cubes en dimension arbitraire. Nous complétons
l’étude du cas du cube par des résultats pour la constante de type faible
(1, 1), dus à Aldaz [1], à Aubrun [3] et à Iakovlev–Strömberg [46] entre
2009 et 2013. À l’inverse du cas Lp(Rn), 1 < p 6 +∞, cette constante de
type faible ne reste pas bornée quand la dimension tend vers l’infini.

Introduction

First defined by Hardy and Littlewood [44] in the one-dimensional set-
ting, the Hardy–Littlewood maximal operator was generalized in arbitrary
dimension by Wiener [83]. It turned out to be a powerful tool, for instance
in harmonic or Fourier analysis, in differentiation theory or in singular in-
tegrals theory. It was extended to various situations, including not only ho-
mogeneous settings, as in the book of Coifman and Weiss [23], but also
non-homogeneous, like noncompact symmetric spaces in works by Clerc and
Stein [22] or Strömberg [78]. Also studied in vector-valued settings with the
Fefferman–Stein type inequalities [33], it gave rise to several kinds of maxi-
mal operators which are now important in real analysis.

We shall denote by M the classical centered Hardy–Littlewood maximal
operator, defined on the class of locally integrable functions f on Rn by

(Mf)(x) = sup
r>0

1
|Br|

∫
Br

|f(x− y)|dy , x ∈ Rn , (0.1)
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Dimension free bounds

where Br is the Euclidean ball of radius r and center 0 in Rn, and |S|
denotes here the n-dimensional Lebesgue volume of a Borel subset S of Rn.
It is well known that this nonlinear operator M is of strong type (p, p) when
1 < p 6 +∞ and of weak type (1, 1), as stated in the following famous
theorem. We write Lp(Rn) for the Lp-space corresponding to the Lebesgue
measure on Rn.

Theorem 0.1 (Hardy–Littlewood maximal theorem). — Let n be an
integer > 1.

(1) For every function f ∈ L1(Rn) and λ > 0, the weak type inequality∣∣{x ∈ Rn : (Mf)(x) > λ
}∣∣ 6 C(n)

λ
‖f‖L1(Rn) (WT)

holds true, with a constant C(n) depending only on the dimension n.
(2) Let 1 < p 6 +∞. There exists a constant C(n, p) such that for every

function f in Lp(Rn), one has
‖Mf‖Lp(Rn) 6 C(n, p)‖f‖Lp(Rn) . (ST)

The weak type inequality is optimal in the sense that Mf is never in
L1(Rn), unless f = 0 almost everywhere. Zygmund introduced the so-called
“L logL class” to give a sufficient condition for the local integrability of the
Hardy–Littlewood maximal function, a condition that is actually necessary,
as proved by Stein [72]. The proof of Theorem 0.1 by Hardy and Littlewood
was combinatorial and used decreasing rearrangements. The authors said:
“The problem is most easily grasped when stated in the language of cricket,
or any other game in which a player compiles a series of scores of which an
average is recorded”. Passing through the Vitali covering lemma, which is
recalled below, has become later a standard approach.

A natural question that can be raised is the following. Could we com-
pute the best constant in both inequalities (WT) and (ST)? This question
seems to be out of reach in full generality. There is a very remarkable ex-
ception to this statement, the one-dimensional case where Melas has shown
in [57] by a mixture of combinatorial, geometric and analytic arguments,
that the best constant in (WT) is (11 +

√
61)/12. The case p > 1 is still

open, even in the one-dimensional case, despite of substantial progress by
Grafakos, Montgomery-Smith and Motrunich [41], who obtained by varia-
tional methods the best constant in (ST) for the class of positive functions
on the line that are convex except at one point. The uncentered maximal
operator f 7→ f∗ is better understood [40], the uncentered maximal function
f∗ being defined for every x ∈ Rn by

f∗(x) = sup
B∈B(x)

1
|B|

∫
B

|f(u)|du, (0.2)
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where B(x) denotes the family of Euclidean balls B containing x, with ar-
bitrary center y and radius > d(y, x). It is clear that f∗ > Mf , and the
maximal theorem also holds for f∗ since any “uncentered” ball B ∈ B(x)
of radius r is contained in B(x, 2r), yielding the far from sharp pointwise
inequality f∗ 6 2nMf .

Lacking for exact values, one may address the question of the asymp-
totic behavior of the constants when the dimension n tends to infinity. This
program was initiated at the beginning of the 80s by Stein. In the usual
proof of the Hardy–Littlewood maximal theorem based on the Vitali cov-
ering lemma, the dependence on the dimension n in the weak type result
is exponential, of the form C(n) = Cn for some C > 1. Then, by inter-
polation of Marcinkiewicz-type between the weak-L1 case and the trivial
L∞ case, one can get for the strong type in Lp(Rn) a constant of the form
C(n, p) = pCn/p/(p− 1), when 1 < p 6 +∞ (see [39, Exercises, 1.3.3 (a)]).
In [75], Stein has improved this asymptotic behavior in a spectacular fash-
ion. Indeed, by using a spherical maximal operator together with a lifting
method, he showed that for every p > 1, one can replace the bound C(n, p)
in (ST) by a bound C(p) independent of n. The detailed proof appeared in
the paper [77] by Stein and Strömberg.

The use of an appropriate spherical maximal operator is now a decisive
approach for bounding the Lp norm of Hardy–Littlewood-type maximal op-
erators independently of the dimension n, when p > 1. This is the case, for
instance, for the Heisenberg group [84] or for hyperbolic spaces [54]. More-
over, Stein and Strömberg proved that the weak type (1, 1) constant grows
at most like O(n), and it is still unknown whether or not this constant may
be bounded independently of the dimension. The proof in [77] draws on
the Hopf–Dunford–Schwartz ergodic theorem, about which Stein says in [73]
that it is “one of the most powerful results in abstract analysis”. The strat-
egy, which exploits the relationship between averages on balls and either the
heat semi-group or the Poisson semi-group, is well explained in [24], and has
been applied in several different settings [27, 52, 53, 55].

In a large part of these Notes, we shall replace Euclidean balls in the
definition (0.1) of the maximal operator by other centrally symmetric convex
bodies in Rn (in what follows, we shall omit “centrally” and abbreviate it
as symmetric convex body). For example, replacing averages over Euclidean
balls Br of radius r by averages over n-dimensional cubes Qr with side 2r
gives an operator MQ which satisfies both the weak type and strong type
maximal inequalities. Indeed, since Br ⊂ Qr ⊂

√
nBr, it is obvious that

MQ is bounded in Lp(Rn) with C(n, p) replaced by nn/2C(n, p), but this
painless route badly spoils the constants. Several results specific to the cube
case have been obtained, as we shall indicate below.
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More generally, as in Stein and Strömberg [77], one can give a symmetric
convex body C in Rn and introduce the maximal operator MC associated to
the convex set C as follows: for every f ∈ L1

loc(Rn) one defines the function
MCf on Rn by

(MCf)(x) = sup
t>0

1
|tC|

∫
x+tC

|f(y)|dy

= sup
t>0

1
|C|

∫
C

|f(x+ tv)|dv , x ∈ Rn ,
(0.3.M)

where x + tC := {x + tc : c ∈ C}. One may also consider MC when C
is not symmetric but has its centroid at 0, see Fradelizi [34, Section 1.5].
The maximal operator MC satisfies, again, a maximal theorem of Hardy–
Littlewood type.

Let C be a symmetric convex body in Rn. The weak type (1, 1) property
for MC can be deduced from the Vitali covering lemma: given a finite family
of translated-dilated sets xi + riC, i ∈ I, xi ∈ Rn, ri > 0, one can extract
a disjoint subfamily (xj + rjC)j∈J , J ⊂ I, such that each set xi + riC,
i ∈ I, of the original family is contained in the dilate xj + 3rjC of some
member xj + rjC, j ∈ J , of the extracted disjoint family. One may explain
the constant 3 by the use of the triangle inequality for the norm on Rn
whose unit ball is C. Passing to the Lebesgue measure in Rn, this statement
naturally introduces a factor 3n corresponding to the dilation factor 3. If
f∗C denotes the corresponding uncentered maximal function of f associated
to C, then for every λ > 0, one has that∣∣{x ∈ Rn : f∗C(x) > λ

}∣∣ 6 3n

λ

∫
{f∗
C
>λ}
|f(x)|dx. (0.4)

We briefly sketch a proof, very similar to that of Doob’s maximal inequality
presented in Section 1.1. It is convenient here to consider that C is an open
subset of Rn. Given an arbitrary compact subset K of the open set Uλ =
{f∗C > λ}, one applies the Vitali lemma to a finite covering of K by open
sets Si = xi + riC such that

∫
Si
|f | > λ|Si|. A simple feature of f∗C is that

each such Si is actually contained in Uλ. If J ⊂ I corresponds to the disjoint
family given by Vitali, then

|K| 6
∑
j∈J
|xj + 3rjC| = 3n

∑
j∈J
|xj + rjC| 6

3n

λ

∫
Uλ

|f(x)|dx,

implying (0.4). Next, a direct argument involving only Fubini and Hölder
can give an Lp bound, exactly as in the proof of Doob’s Theorem 1.1 below,
but giving a factor 3n instead of 3n/p obtained by interpolation. This Vitali
method does not depend upon the symmetric body C, does not distinguish
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the centered and uncentered operators, and introduces a quite unsatisfactory
exponential constant.

Stein and Strömberg have greatly improved this exponential dependence
in [77]. By a clever covering argument with less overlap than in Vitali’s
lemma, they proved that the weak type constant admits a bound of the form
O(n logn), and by using the Calderón–Zygmund method of rotations, they
obtained for the strong type property a constant which behaves as np/(p−1).
Concerning the weak type constant, Naor and Tao [60] have established the
same n logn behavior for the large class of n-strong micro-doubling metric
measure spaces (see also [25]). Several powerful results about the strong type
constant for maximal functions associated to convex sets, beyond the one of
Stein–Strömberg, have been established between 1986 and 1990. First of
all, Bourgain proved a dimensionless theorem for general symmetric convex
bodies in the L2 case [9], applying geometrical arguments and methods from
Fourier analysis. This result has been generalized to Lp(Rn), for all p > 3/2,
by Bourgain [10] and Carbery [21] in two independent papers. They both
bring into play an auxiliary dyadic maximal operator, but Bourgain uses
it together with square function techniques while Carbery uses multipliers
associated to fractional derivatives. Detlef Müller extended in [59] the Lp
bound to every p > 1, but under an additional geometrical condition on the
family of convex sets C under study. Müller also proved that for every fixed
q ∈ [1,+∞), his condition is fulfilled by the family Fq of `qn balls, n ∈ N∗.

After Müller’s article, activity in this area slowed down. Nevertheless,
Bourgain recently proved in [13] that for all p > 1, the strong type constant
can be bounded independently of the dimension when we average over cubes.
In order to attack this problem, Bourgain applies an arsenal of techniques,
including a holomorphic semi-group theorem due to Pisier [62] and ideas
inspired by martingale theory. The cube case is rather well understood since
Aldaz [1] has proved that the weak type (1, 1) constant κQ,n for cubes must
tend to infinity with the dimension n. The best lower bound known at the
time of our writing is due to Iakovlev–Strömberg [46] who obtained κQ,n >
κn1/4, improving a previous estimate κQ,n > κε(logn)1−ε for every ε > 0,
which was obtained by Aubrun [3] following the Aldaz result.

In the present survey, except for Section 9 on the Aldaz “negative” result,
we shall restrict ourselves to p > 1 and examine the strong type (p, p) behav-
ior of maximal functions associated to symmetric convex bodies in Rn. We
shall present the dimensionless result of Stein for Euclidean balls, the works
of Bourgain, Carbery and Müller during the 80s and the recent dimension-
less theorem of Bourgain for cubes. As we shall see, the proofs require a lot
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of methods and tools, including multipliers, square functions, Littlewood–
Paley theory, complex interpolation, holomorphic semi-groups and geomet-
rical arguments involving convexity. The study of weak type inequalities
for Hardy–Littlewood-type operators needs powerful methods as well: not
only the aforementioned Hopf–Dunford–Schwartz ergodic theorem, but also
sharp estimates for heat or Poisson semi-group, Iwasawa decomposition, K-
bi-invariant convolution-type operators, expander-type estimates. . .

The first two sections contain general dimension free inequalities obtained
respectively by probabilistic methods or by Fourier transform methods. The
Poisson semi-group plays an important rôle in Stein’s book [73], and ap-
pears also in Bourgain’s articles [9, 10] and in Carbery [21]. We give a pre-
sentation of this semi-group, both on the probabilistic and Fourier analytic
viewpoints. The third section is about some analytic tools that are employed
later on, namely, estimates for the Gamma function in the complex plane,
and the complex interpolation scheme for linear operators, as developed in
Stein [70]. The Stein result for Euclidean balls in arbitrary dimension is our
Theorem 4.1. Section 5 is about Bourgain’s L2-theorem in arbitrary dimen-
sion n, stating that there exists a constant κ2 independent of n such that
for any symmetric convex body C in Rn, one has

‖MCf‖L2(Rn) 6 κ2 ‖f‖L2(Rn)

for every f ∈ L2(Rn). The next section presents Carbery’s proof of the
generalization to Lp of the latter bound, obtained by Bourgain [10] and
Carbery [21]. In both papers, the Lp result for general symmetric convex
bodies is proved for p > 3/2 only. A theorem due to Detlef Müller [59] is
given in Section 7; for families of symmetric convex sets C for which a certain
parameter q(C) remains bounded, it extends the dimensionless Lp bound to
every p > 1. This parameter is related to the (n − 1)-dimensional measure
of hyperplane projections of a specific volume one linear image of C, the
so-called isotropic position. Section 8 presents the result of Bourgain about
cubes in arbitrary dimension. In this special case, an Lp bound independent
of the dimension is valid for all p > 1, although the Müller condition is not
satisfied. Bourgain’s proof is highly dependent on the product structure of
the cube. In Section 9, we prove the Aldaz result that the weak type (1, 1)
constant for cubes is not bounded when the dimension n tends to infinity.
We mention the quantitative improvement by Aubrun [3], and give a proof
for the lower bound κn1/4 due to Iakovlev–Strömberg [46].

We have put a notable emphasis on the notion of log-concavity. We shall
see that with not much more effort, most maximal theorems for convex
sets generalize to symmetric log-concave probability densities. This kind of
extension from convex sets to log-concave functions has attracted a lot of
attention in convex geometry in recent years, see [5, 42, 49, 50] among many
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others. In fact, Bourgain’s estimate (5.17.B), which is crucial to all results in
Section 5 and after, is only based on properties of log-concave distributions.

We have chosen a very elementary expository style. We shall give fully
detailed proofs, except in the first two introductory sections. Most readers
will know the contents of these sections and may start by reading Section 4.
Some may be happy though to see a gentle introduction to a few points they
are less familiar with. Our choice of topics in these two first sections owes
a lot to Stein’s monograph Topics in harmonic analysis [73]. In the next
sections, we have chosen to recall and usually follow the methods from the
original papers. This leads sometimes to unnecessary complications, but we
shall try to give hints to other possibilities.

We believe that most of our notation is standard. We write bxc, dxe for
the floor and ceiling of a real number x, integers satisfying x − 1 < bxc 6
x 6 dxe < x+ 1. We pay a special attention to constants independent of the
dimension, for instance those appearing in results about martingale inequal-
ities, Riesz transforms, and try to keep specific letters for these constants
throughout the paper, such as cp, ρp, . . . We use the letter κ to denote a
“universal” constant that does not deserve to be remembered. Most often in
our Notes, “we” is a two-letter abbreviation for “the author”, namely, Stein,
Bourgain, Carbery, Müller and several others. . . We include an index and a
notation index.

1. General dimension free inequalities, first part

This first section is devoted to general facts obtained by probabilistic
methods, or merely employing the probabilistic language. We begin by re-
viewing the basic definitions. The functions here are real or complex valued,
or they take values in a finite dimensional real or complex linear space F
equipped with a norm denoted by |x|, for every vector x ∈ F . If Ω is a set, a
σ-field G of subsets of Ω is a family of subsets that is closed under countable
unions

⋃
n∈NAn, closed under taking complement A 7→ Ac, and such that

∅ ∈ G. If Ω is a set and G a σ-field of subsets of Ω, one says that a function
g on Ω is G-measurable when for every Borel subset B of the range space,
the inverse image g−1(B), also denoted by

{g ∈ B} := {ω ∈ Ω : g(ω) ∈ B},
belongs to the collection G.

A probability space (Ω,F , P ) consists of a set Ω, a σ-field F of subsets
of Ω and a probability measure P on (Ω,F), i.e., a nonnegative σ-additive
measure on (Ω,F) such that P (Ω) = 1. If a function f is F-measurable (we

– 8 –



Dimension free bounds

say then that f is a random variable) and if f is P -integrable, the expectation
of f is the integral of f with respect to P , denoted by

E f :=
∫

Ω
f(ω) dP (ω) .

Random variables (fi)i∈I on (Ω,F , P ) are independent if for any finite subset
J ⊂ I, one has E

(∏
j∈J hj ◦ fj

)
=
∏
j∈J E(hj ◦ fj) for all nonnegative Borel

functions (hj)j∈J on the range space. The distribution of the random variable
f with values in Y = R, C or F is the image probability measure µ = f#P ,
defined on the Borel σ-field BY of Y by letting µ(B) = P

(
{f ∈ B}

)
for every

B ∈ BY . If µ is a distribution on the Euclidean space F , the marginals of µ
on the linear subspaces F0 of F are the distributions µF0 obtained from µ
as images by orthogonal projection, i.e., one sets µF0 = (π0)#µ where π0 is
the orthogonal projection from F onto F0. If f is F -valued and if µ is the
distribution of f , then µF0 is that of π0 ◦ f .

If G is a sub-σ-field of F , the conditional expectation on G of an inte-
grable function f is the unique element E(f |G) of L1(Ω,F , P ) possessing a
G-measurable representative g such that

E(1Af) = E(1Ag) = E
(
1A E(f |G)

)
for every set A ∈ G, where 1A denotes the indicator function of A, equal to
1 on A and 0 outside. It follows that

E(hf) = E
(
hE(f |G)

)
, and actually E(hf |G) = hE(f |G)

for every bounded G-measurable scalar function h on Ω. When f is scalar
and belongs to L2(Ω,F , P ), the conditional expectation of f on G is the
orthogonal projection of f onto the closed linear subspace L2(Ω,G, P ) of
L2(Ω,F , P ) formed by G-measurable and square integrable functions. When
A is an atom of G, i.e., a minimal non-empty element of G, and if P (A) > 0,
the value of E(f |G) on the atom A is the average of f on A, hence

E(f |G)(ω) = 1
P (A)

∫
A

f(ω′) dP (ω′) , ω ∈ A .

The conditional expectation operator E(·|G) is linear and positive, i.e.,
it sends nonnegative functions to nonnegative functions. It follows that we
have the inequality ϕ(E(f |G)) 6 E(ϕ(f)|G) when the real-valued function
ϕ is convex on the range space of f . In particular, one has that

∣∣E(f |G)
∣∣ 6

E
(
|f |
∣∣G), and∥∥E(f |G)

∥∥
Lp(Ω,F,P ) 6

∥∥f∥∥
Lp(Ω,F,P ) , 1 6 p < +∞ .

The inequality is true also when p = +∞, it is easy and treated separately.
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1.1. Doob’s maximal inequality

A (discrete time) martingale on a probability space (Ω,F , P ) consists of
a filtration, i.e., an increasing sequence (Fk)k∈I of sub-σ-fields of F indexed
by a subset I of Z, and of a sequence (Mk)k∈I of integrable functions on Ω
such that for all k, ` ∈ I with k 6 `, one has

Mk = E
(
M`

∣∣Fk) .
Notice that eachMk, k ∈ I, is Fk-measurable. If I has a maximal element N ,
the martingale is completely determined by its last element MN , since we
have then that Mk = E

(
MN

∣∣Fk) for every k ∈ I. In the case of a finite field
Fk, the martingale condition means that the value ofMk on each atom of Fk
is the average of the values of M` on that atom, for every ` ∈ I with ` > k.
Clearly, any subsequence (Mk)k∈J , J ⊂ I, is a martingale with respect to
the filtration (Fk)k∈J .

Let us consider a finite martingale (Mk)Nk=0 on (Ω,F , P ), with respect
to a filtration (Fk)Nk=0. This martingale can be real or complex valued, or
may take values in a finite dimensional normed space F . We introduce the
maximal process (M∗k )Nk=0, which is defined by M∗k = max06j6k |Mj | for
k = 0, . . . , N . In the vector-valued case, |Mj | is the function assigning to
each ω ∈ Ω the norm of the vector Mj(ω) ∈ F . We also employ the lighter
notation ‖M‖p for the norm ‖M‖Lp of a function M in Lp(Ω,F , P ), when
1 6 p 6 +∞.

Theorem 1.1 (Doob’s inequality). — Let (Mk)Nk=0 be a martingale (real,
complex or vector-valued). For every real number c > 0, one has that

cP
(
{M∗N > c}

)
6
∫
{M∗

N
>c}
|MN |dP .

Furthermore, for every p ∈ (1,+∞], one has when MN ∈ Lp(Ω,F , P ) that

‖M∗N‖p 6
p

p− 1 ‖MN‖p . (1.1)

Proof. — We cut the set {M∗N > c} into disjoint events A0, . . . , AN ,
corresponding to the first time k when |Mk| > c. Let A0 = {|M0| > c} and
for each integer k between 1 and N , let Ak denote the set of ω ∈ Ω such
that |Mk(ω)| > c and M∗k−1(ω) 6 c. On the set Ak, we have |Mk| > c, and
Ak belongs to the σ-field Fk since |Mk| and M∗k−1 are Fk-measurable, hence

cP (Ak) 6
∫
Ak

|Mk|dP =
∫
Ak

∣∣E(MN

∣∣Fk)∣∣dP
6
∫
Ak

E
(
|MN |

∣∣Fk) dP =
∫
Ak

|MN |dP .
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On the other hand, we see that {M∗N > c} =
⋃N
k=0Ak, union of pairwise

disjoint sets, therefore

cP
(
{M∗N > c}

)
=

N∑
k=0

cP (Ak)

6
N∑
k=0

∫
Ak

|MN |dP =
∫
{M∗

N
>c}
|MN |dP . (1.2)

The result for Lp when 1 < p < +∞ follows. For each value t > 0, we
apply (1.2) with c = t, we use Fubini’s theorem and Hölder’s inequality,
obtaining thus

E
(
(M∗N )p

)
= E

(∫ M∗N

0
ptp−1 dt

)
=
∫ +∞

0
ptp−1P

(
{M∗N > t}

)
dt

6
∫ +∞

0
ptp−2 E

(
1{M∗

N
>t} |MN |

)
dt = E

(
p

p− 1(M∗N )p−1 |MN |
)

6
p

p− 1
(
E
(
(M∗N )p

))1−1/p(E(|MN |p
))1/p

,

hence ‖M∗N‖p 6 p(p−1)−1‖MN‖p. The case p = +∞ is straightforward. �
Remark 1.2. — In some contexts, it is useful to observe that the notion

of conditional expectation on a sub-σ-field F0 of F remains well defined if
we have a possibly infinite measure µ on (Ω,F), but which is σ-finite on F0,
in other words, if Ω can be split in countably many sets Ai in F0 such that
µ(Ai) < +∞ for each i. If this condition is fulfilled by µ and by the smallest
sub-σ-field F0 of a filtration (Fk)Nk=0, we can also speak about martingales
with respect to the infinite measure µ, and Theorem 1.1 remains true with
the same proof, simply replacing the words “probability of an event” by
“measure of a set”.

We can always consider the orthogonal projection π0 from L2(Ω,F , µ)
onto L2(Ω,F0, µ), but L2(Ω,F0, µ) = {0} when F0 does not contain any set
with finite positive measure. On the other hand, when A ∈ F0 has finite
measure, the formula π0(1Af) = 1Aπ0(f) allows one to work on A as in the
case of a probability measure.

1.2. The Hopf maximal inequality

We are given a measure space (X,Σ, µ) and a linear operator T from
L1(X,Σ, µ) to itself. We shall only consider σ-finite measures throughout
these Notes, and we work in this section with the space L1(X,Σ, µ) of real-
valued functions. We assume that T is positive and nonexpansive, which

– 11 –



L. Deleaval, O. Guédon and B. Maurey

means that for every nonnegative function g ∈ L1(X,Σ, µ), Tg is nonnega-
tive, and that the norm of T is 6 1. We can sum up these two properties by
saying that when g > 0, then Tg > 0 and

∫
X
Tg dµ 6

∫
X
g dµ.

Let us consider a function f in L1(X,Σ, µ), and for every integer k > 0
let

Sk(f) = f + Tf + T 2f + · · ·+ T kf .

If N is a nonnegative integer, we set S∗N (f) = max{Sj(f) : 0 6 j 6 N}.

Lemma 1.3 (Hopf). — With the preceding notation, we have for every
function f ∈ L1(X,Σ, µ) and N > 0 that∫

{S∗
N

(f)>0}
f dµ > 0 .

Proof, after Garsia [38]. — Let us simply write Sk for Sk(f) and S∗ for
S∗N (f). By definition, we have Sk 6 S∗ for each integer k 6 N ; since T is
positive and linear, we see that

T Sk 6 T S
∗, and Sk+1 = f + T Sk 6 f + T S∗.

In order to get for S0 = f an inequality similar to Sk+1 6 f + T S∗, we
replace S∗ by its nonnegative part S∗+ = max(S∗, 0) > S∗. Using positivity,
we can write

S0 = f 6 f + T (S∗+), Sk+1 6 f + T S∗ 6 f + T (S∗+) .

Taking the supremum of Sk s for 0 6 k 6 N , we obtain the crucial inequality

S∗ 6 f + T (S∗+), or f > S∗ − T (S∗+) . (1.3)

Since T is positive and nonexpansive on L1(X,Σ, µ), we have∫
{S∗>0}

S∗ dµ =
∫
X

S∗+ dµ >
∫
X

T (S∗+) dµ >
∫
{S∗>0}

T (S∗+) dµ ,

and the result follows by (1.3), because∫
{S∗>0}

f dµ >
∫
{S∗>0}

(
S∗ − T (S∗+)

)
dµ > 0 . �

We go on with the same linear operator T . For each integer k > 0, let us
define the kth average operator ak = ak,T associated to T by writing

ak(f) = f + Tf + · · ·+ T kf

k + 1 = Sk(f)
k + 1

, f ∈ L1(X,Σ, µ) .

For each integer N > 0, let a∗N (f) = max{aj(f) : 0 6 j 6 N}. It is clear
that the set {a∗N (f) > 0} coincides with the set {S∗N (f) > 0} which appears
in Lemma 1.3.
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We continue in a simplified setting where we also assume that µ is finite
and that T 1 = 1. It follows that ak(1) = 1 for each k > 0 and ak(f − c) =
ak(f)− c for every c ∈ R, thus a∗N (f − c) = a∗N (f)− c. Lemma 1.3 yields∫

{a∗
N

(f−c)>0}
(f − c) dµ =

∫
{S∗
N

(f−c)>0}
(f − c) dµ > 0 .

Equivalently, for every f ∈ L1(X,Σ, µ), we have

cµ
(
{a∗N (f) > c}

)
6
∫
{a∗
N

(f)>c}
f dµ, N > 0, c ∈ R . (1.4)

This inequality makes sense also when µ is infinite. Note that if c < 0 and
if µ is infinite, then µ

(
{f 6 c}

)
6 µ
(
{|f | > |c|}

)
< +∞, the measure of

{a∗N (f) > c} is thus infinite and (1.4) is trivial. We can extend (1.4) to
an infinite µ if there exists an increasing sequence (C`)`>0 of subsets of X
with finite measure such that

T j1C` 6 1 for all j, ` > 0 ,

T j1C` −→
`→+∞

1 pointwise for each j > 0 . (1.5)

Let c, ε > 0 and abbreviate {a∗N (f) > t} as D(t), for t > 0. Choose c′ > c

such that
∫
D(c)\D(c′)

(
1 + |f |

)
dµ < ε. Let E(c′, `) =

{
min06j6N T

j1C` 6
c/c′
}
, choose a large ` such that µ(D(c′) \C`) < ε and

∫
E(c′,`) |f | dµ < ε,

then observe that

D(c′) ⊂
{
a∗N
(
f − c′1C`

)
> 0
}
⊂ D(c) ∪ E(c′, `)

and apply Lemma 1.3 to f − c′1C` . The assumption (1.5) is fulfilled when
T is an operator of convolution with a probability measure on Rn, acting
on L1(Rn).

For each function f ∈ L1(X,Σ, µ), let us define

a∗(f) = sup
k>0

ak(f) = sup
k>0

f + Tf + · · ·+ T kf

k + 1 = lim
N→+∞

a∗N (f) .

The set {a∗(f) > c} is the increasing union of the sets {a∗N (f) > c}, N > 0,
so, passing to the limit by dominated convergence, we deduce from (1.4) that

cµ
(
{a∗(f) > c}

)
6
∫
{a∗(f)>c}

f dµ , c ∈ R . (1.6)

Following [29, Lemma VIII.6.7], we now get a variant of (1.6). Assume c > 0
in what follows. We define fc by fc(x) = f(x) when f(x) > c and fc(x) = 0
otherwise, for x ∈ X. Note that f 6 fc + c. If a∗(fc)(x) 6 c, then fc(x) =
a0(fc)(x) 6 c thus fc(x) = 0 by construction. Hence fc vanishes outside

– 13 –



L. Deleaval, O. Guédon and B. Maurey

{a∗(fc) > c} and∫
{f>c}

f dµ =
∫
X

fc dµ =
∫
{a∗(fc)>c}

fc dµ .

Using the positivity of T and of ak for each k > 0, we infer from fc > f − c
that a∗(fc) > a∗(f − c) = a∗(f) − c. Then, by (1.6) for fc and since c > 0,
we get ∫

{f>c}
f dµ > cµ

(
{a∗(fc) > c}

)
> cµ

(
{a∗(f)− c > c}

)
.

Finally, we have obtained

cµ
(
{a∗(f) > 2c}

)
6
∫
{f>c}

f dµ, c > 0 . (1.7)

Let us define A∗(f) = supk>0 |ak(f)| = max(a∗(f), a∗(−f)). Still as-
suming c > 0, we decompose the set {A∗(f) > c} = {a∗(f) > c} ∪
{a∗(−f) > c} into three disjoint pieces, E0 = {a∗(f) > c , a∗(−f) 6 c},
E1 = {a∗(f) > c , a∗(−f) > c}, and E2 = {a∗(f) 6 c , a∗(−f) > c}. Ac-
cording to (1.6) we have

cµ
(
{A∗(f) > c}

)
6 cµ

(
{a∗(f) > c}

)
+ cµ

(
{a∗(−f) > c}

)
6
∫
{a∗(f)>c}

f dµ+
∫
{a∗(−f)>c}

(−f) dµ

=
∫
E0

f dµ+
∫
E2

(−f) dµ 6
∫
{A∗(f)>c}

|f |dµ , (1.8)

noting that the integrals of f and −f on E1 cancel each other. In the
same way, we can get from (1.7) the variant form cµ

(
{A∗f > 2c}

)
6∫

{|f |>c} |f |dµ. Notice that the latter “variant form” will be inherited by
any linear operator S satisfying that |Skf | 6 T k|f | for every k > 0, and see
Remark 1.5.

When 1 < p < +∞, we deduce from (1.8) the Lp inequality∥∥∥∥ sup
k>0

|f + Tf + · · ·+ T kf |
k + 1

∥∥∥∥
p

6
p

p− 1 ‖f‖p (1.9)

as we have seen with Doob’s inequality (1.1), while the variant form leads
to a constant 2

(
p/(p− 1)

)1/p which is larger than p/(p− 1) for every p > 1.

Let now (Tt)t>0 be a semi-group of linear operators on L1(X,Σ, µ), i.e.,
operators satisfying Ts+t = Ts ◦ Tt for all s, t > 0. We assume in addition
that each Tt is positive and nonexpansive on L1. We also assume that Tt is
actually defined on L1(X,Σ, µ) + L∞(X,Σ, µ) and that Tt1 = 1 for every
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t > 0. This implies that Tt is continuous from L∞ to L∞, with norm 1. By
interpolation, we get that the norm ‖Tt‖p→p on Lp, for p ∈ [1,+∞], is 6 1.
Suppose that the semi-group is strongly continuous on L1, which means that
‖f − Ttf‖1 → 0 as t→ 0, for each f ∈ L1. Combined with our assumptions,
this fact implies that t 7→ Ttf is continuous from [0,+∞) to Lp for every
function f ∈ Lp and 1 6 p < +∞. For f ∈ Lp(X,Σ, µ) let

a∗f = sup
t>0

1
t

∫ t

0
Tsf ds , A∗f = sup

t>0

∣∣∣∣1t
∫ t

0
Tsf ds

∣∣∣∣ ,
where the supremum can be defined as an essential supremum, see the dis-
cussion in Section 3.3. Yet, for the main examples of semi-groups of interest
in these Notes, namely, the Gaussian semi-group or the Poisson semi-group
on Rn, the function t 7→ (Ttf)(x) is continuous on (0,+∞) for each fixed
x ∈ Rn and f ∈ L1(Rn), so a∗f and A∗f have then a well defined pointwise
value, possibly +∞.

Suppose now that the measure µ is finite (or that a continuous analog
of (1.5) is satisfied). When 1 < p < +∞, we obtain from (1.9) the Lp
inequality ∥∥A∗f∥∥

p
6

p

p− 1 ‖f‖p . (1.10)

If Tt is positive and Tt1 = 1, the case p = +∞ in (1.10) is clear.

Since t 7→ a(t, f) := t−1 ∫ t
0 Tsf ds is continuous from (0,+∞) to Lp, we

can reach any a(t, f), t > 0, as an almost everywhere limit of a sequence
(a(tj , f))j>0, where each tj is rational and > 0. It follows that A∗f can
be defined as the supremum of |a(t, f)| for t > 0 rational. For all integers
k > 0 and n > 1, observe that

a

(
k + 1
n

, f

)
= n

k + 1

k∑
i=0

∫ (i+1)/n

i/n

Tsf ds

=
(∑k

i=0 Ti/n

k + 1

)(
n

∫ 1/n

0
Tsf ds

)
.

Letting fn = n
∫ 1/n

0 Tsf ds = a(1/n, f) and T = T1/n we see that

a

(
k + 1
n

, f

)
= fn + Tfn + · · ·+ T kfn

k + 1 = ak,T (fn) .

Let Qn be the set of positive multiples of 1/n. By (1.9) applied to T1/n
and fn, and because a(1/n, ·) is an average of operators with norm 6 1 on
Lp, we get∥∥∥∥ sup
t∈Qn

∣∣a(t, f)
∣∣∥∥∥∥
p

=
∥∥∥∥ sup
j>1

∣∣a(j/n, f)
∣∣∥∥∥∥
p

6
p

p− 1
∥∥a(1/n, f)

∥∥
p
6

p

p− 1 ‖f‖p .

– 15 –



L. Deleaval, O. Guédon and B. Maurey

We see that Qm ⊂ Qmn for all m,n > 1. The sets Qn corresponding to
n = `! for ` > 1 are increasing with `, and they cover the set of positive
rationals. We can conclude by noticing that A∗f is the increasing limit of
supt∈Q`! |a(t, f)|.

Applying (1.6) we can obtain a version of Hopf’s maximal inequality as

cµ
(
{a∗f > c}

)
6
∫
{a∗f>c}

f dµ, c ∈ R, f ∈ L1(X,Σ, µ) ,

and from (1.8), we have cµ
(
{A∗f > c}

)
6
∫
{A∗f>c} |f |dµ when c > 0.

By the preceding remark about the sets Q`! it is enough to prove the in-
equality with a∗n := supt∈Qn a(t, f) = supk>0 ak,T1/n(fn) replacing a∗f ,
with n > 1 arbitrary and with a vanishing error term. By (1.6) we have
cµ
(
{a∗n > c}

)
6
∫
{a∗n>c}

fn. Since the semi-group (Tt)t>0 is strongly
continuous, we know that ‖fn − f‖1 → 0 and we can conclude because∫
{a∗nf>c}

fn dµ−
∫
{a∗nf>c}

f dµ tends to zero.

We have made here assumptions more restrictive than those of the Hopf–
Dunford–Schwartz statement [29, Chap. VIII] praised by Stein [73], which
does not assume Tt positive, nor µ finite and Tt1 = 1. Theorem 1.4 below
contains Lemma VIII.7.6 and Theorem VIII.7.7 from [29] in a slightly sim-
plified form (the set U there has only one element here). The semi-group
(Tt)t>0 on L1(X,Σ, µ) is said to be strongly measurable if, for each f in
L1(X,Σ, µ), the mapping t 7→ Ttf ∈ L1(X,Σ, µ) is measurable with respect
to the Lebesgue measure on [0,+∞).

Theorem 1.4 ([29]). — Let (Tt)t>0 be a strongly measurable semi-group
on the space L1(X,Σ, µ), with ‖Tt‖1→1 6 1 and ‖Tt‖∞→∞ 6 1 for all t > 0.
For every function f ∈ L1(X,Σ, µ) and every c > 0 one has

cµ
(
{A∗f > 2c}

)
6
∫
{|f |>c}

|f |dµ .

If 1 < p < +∞ and f ∈ Lp(X,Σ, µ), the function A∗f is in Lp(X,Σ, µ) and

‖A∗f‖p 6 2
(

p

p− 1

)1/p
‖f‖p .

Remark 1.5. — In [29, Section VIII.6], the authors consider first a linear
operator T acting from L1 to L1 with norm 6 1 and also acting from L∞ to
L∞ with norm 6 1; in this discrete parameter case, they study

A∗T f = sup
n>1

1
n

∣∣∣∣ n−1∑
k=0

T kf

∣∣∣∣ ,
before going to the continuous setting of a semi-group (Tt)t>0. One of the
steps in their proof consists in introducing a positive operator P which acts
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from L1 to L1 and from L∞ to L∞, with norm 6 1 in both cases, and such
that

∀ n > 0 , |Tnf | 6 Pn(|f |) , f ∈ L∞ ∩ L1 .

This step is easy when the measure is the uniform measure on a finite set.
The assumptions imply that T is given by a matrix (ti,j) such that the sum
of absolute values in each row and in each column is 6 1. It is then enough
to take P to be the matrix with entries pi,j equal to the absolute values |ti,j |
of the entries of T .

1.3. From martingales to semi-groups, via an argument of Rota

The arguments in this section, due to Rota [67], are presented in a more
sophisticated manner in Stein’s book [73, Chap. 4, §4]. We consider a Markov
chain X0, . . . , XN with transition matrix P , assumed to be symmetric. We
suppose for simplicity that the state space E is finite, with cardinality Z. For
every e0 ∈ E , we have ∑

e∈E
P (e0, e) = 1 .

For each integer k such that 0 6 k < N and for all e0, e1 ∈ E , the probability
that Xk+1 = e1 knowing that Xk = e0 is given by the entry P (e0, e1) of the
matrix P . This statement introduces implicitly the Markov property, which
loosely speaking, prescribes that what happens after time k depends only
on what we know at the instant k, regardless of the past positions at times
j < k. For each integer j > 2, the power P j of the matrix P controls the
moves in j successive steps, the entry P j(e0, e) giving the probability of
moving from e0 to e in exactly j steps. If Q is a transition matrix and f a
scalar function on E , we introduce the notation

(Qf)(x) =
∑
y∈E

Q(x, y)f(y) , x ∈ E .

When applied to a power P j , the notation P jf corresponds to the semi-
group notation Ptf , with j ∈ N replacing t > 0. If the transition matrix Q
is symmetric, hence bistochastic, and if 1 6 p 6 +∞, convexity implies that
‖Qf‖p 6 ‖f‖p with respect to the uniform measure on E . Let f be a function
on E and let j, k be two nonnegative integers with j+k 6 N . If we fix x0 ∈ E ,
the mean of the values f(y), when the chain makes j steps from the position
x0 at time k to the position y at time k + j, is equal to (P jf)(x0).

A simple but important symmetric example is that of the Bernoulli
random walk on Z, where for all x, y ∈ Z we have P (x, y) = 1/2 when
|x − y| = 1, and P (x, y) = 0 otherwise. This is not a finite example, but it
can be “approximated” by considering on the finite set EN = {−N, . . . , N},
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for N large, the modified matrix PN which still has PN (x, y) = 1/2 when
|x− y| = 1, for x, y ∈ EN , but where PN (N,N) = PN (−N,−N) = 1/2. One
can also consider the Bernoulli random walk on Zn, for which P (x, y) = 2−n
when |xi − yi| = 1 for all coordinates xi, yi, i = 1, . . . , n, of the points
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Zn.

Assume that the distribution of the initial position X0 is uniform, that
is to say, that P (X0 = e0) = 1/Z for every e0 ∈ E . Then for each e1 ∈ E , we
have

P (X1 = e1) =
∑
e∈E

P (X0 = e , X1 = e1)

=
∑
e∈E

1
Z
P (e, e1) = 1

Z

∑
e∈E

P (e1, e) = 1
Z
,

since the matrix P is symmetric. The distribution of the position X1 of
the chain at time i = 1 remains the uniform distribution, as well as that
of X2, . . . , XN . The uniform distribution is invariant under the action of
P . Recalling the meaning of the transition matrix in terms of conditional
probability, using Markov’s property and letting AN−1 = {X0 = e0 , X1 =
e1 , . . . , XN−1 = eN−1}, we have that

E := P (X0 = e0 , X1 = e1 , . . . , XN = eN )
= P (AN−1 , XN = eN ) = P (AN−1)P (XN = eN |AN−1)
= P (AN−1)P (XN = eN |XN−1 = eN−1) = P (AN−1)P (eN−1, eN ) .

We may go on, and by the symmetry property of the matrix we get

E = · · · = 1
Z
P (e0, e1)P (e1, e2) . . . P (eN−2, eN−1)P (eN−1, eN )

= 1
Z
P (eN , eN−1)P (eN−1, eN−2) . . . P (e2, e1)P (e1, e0)

= P (XN = e0 , XN−1 = e1 , . . . , X1 = eN−1 , X0 = eN ) .

We see that the “reversed” chain has the same behavior as that of the orig-
inal chain. Since the matrix is symmetric, we certainly have, whatever the
distribution of X0 can be, that the probability to arrive at a fixed y0 at
time N , starting from an arbitrary point x at time k = N − j, is given
by P j(x, y0) = P j(y0, x), the probability of moving from y0 at time 0 to x
at time j. But under the invariant distribution, we can say more: if g is a
function on E , the mean of the values g(x) on all trajectories starting from
x at time k and arriving at y0 at time N is equal to (P jg)(y0). Clearly,
this statement is not true in general, since this mean value depends on the
distribution of Xk, hence on that of X0. Under the uniform distribution, we
see by reversing the chain that the preceding mean is equal to the mean of
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g(x), when starting from y0 at time 0 and arriving at x at time j, namely,
this mean is equal to (P jg)(y0).

Let us describe the situation more formally. Let Ω = EN+1 denote the
space of all possible trajectories (e0, e1, . . . , eN ) ∈ EN+1 for the chain. On
this model space Ω and for k = 0, . . . , N , we set

Xk(ω) = ωk ∈ E , ω = (ω0, . . . , ωN ) ∈ EN+1.

It is easy to determine the probability measure P on Ω that corresponds to
the behavior of our Markov chain under the invariant distribution. For each
singleton {ω} = {(ω0, . . . , ωN )} in P(Ω), we must have that

P
(
{(ω0, . . . , ωN )}

)
= 1
Z
P (ω0, ω1)P (ω1, ω2) . . . P (ωN−1, ωN ) .

For k = 0, . . . , N , let Fk denote the finite field of subsets of Ω whose atoms
A are of the following form: to any e0, . . . , ek fixed in E we associate Ae ∈ Fk
defined by

A = Ae = {ω = (ω0, . . . , ωN ) : ωj = ej , 0 6 j 6 k} ∈ Fk, e = (e0, . . . , ek) .

This Fk is the “field of past events” at time k, it increases with k. Let Gk
denote the field of events occurring precisely at time k, whose atoms B are
of the form

B = {ω = (ω0, . . . , ωN ) : ωk = ek} ∈ Gk .

Clearly, we have Gk ⊂ Fk. A function on Ω which is Gk-measurable depends
only on the coordinate ωk, and is thus of the form g(Xk) with g a function
on E . If f is a function on E , the Markov property yields

E(f(XN )|Fk) = E(f(XN )|Gk) = g(Xk)

where g(x) = (PN−kf)(x) for every x ∈ E . The preliminary discussion shows
that

(PN−kf)(Xk) = E(f(XN )|Fk) , (PN−kg)(XN ) = E(g(Xk)|GN ) . (1.11)

We introduce the “canonical” martingale associated to a function f on E , by
letting

Mi = (PN−if)(Xi) = E(f(XN )|Fi) , 0 6 i 6 N . (1.12)
We see that in (1.11), one occurrence of PN−k relates to the expectation at
time k < N of future positions f(XN ), while the other is about expectation
at time N of past positions g(Xk). Combining the two equalities in (1.11)
in a “back and forth” move, by taking g = P jf and j = N − k, we conclude
that

(P 2jf)(XN ) = E
(
MN−j

∣∣GN) . (1.13)
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Since the conditional expectation operator on GN is positive, we see that for
every j = N − k = 0, . . . , N , we have the inequality

max
06j6N

|(P 2jf)(XN )| = max
06j6N

∣∣E(MN−j
∣∣GN)∣∣ 6 E

(
max

06i6N
|Mi|

∣∣GN) .
It implies when 1 < p 6 +∞, according to Doob’s inequality (1.1) and to the
non-expansivity on Lp of conditional expectations, the chain of inequalities∥∥∥∥ max

06j6N
|(P 2jf)(XN )|

∥∥∥∥
p

6

∥∥∥∥E
(

max
06i6N

|Mi|
∣∣GN)∥∥∥∥

p

6

∥∥∥∥ max
06i6N

|Mi|
∥∥∥∥
p

6
p

p− 1 ‖MN‖p = p

p− 1 ‖f(XN )‖p . (1.14)

We could recover the odd indices 2j + 1 by applying the latter inequality to
Pf instead of f and using ‖Pf‖p 6 ‖f‖p, to the cost of an extra factor 2.

Estimating the maximal function of semi-groups is a central theme in [73].
The discrete case of (1.14) was obtained by Stein in the short article [71],
independently of Rota [67], by methods preluding those of [73]. Theorem 1
in [71] applies to self-adjoint operators P on L2(X,Σ, µ) satisfying also
‖P‖1→1 6 1 and ‖P‖∞→∞ 6 1.

One can play the same game with convex functions other than the supre-
mum function on RN+1. For example, let us begin with the convexity in-
equality ( ∑

06i6N
|E(fi |G)|2

)1/2
6 E

(( ∑
06i6N

|fi|2
)1/2 ∣∣G) ,

and make use of the Burkholder–Gundy inequalities of Theorem 1.6, in order
to obtain, when 0 6 j0 < j1 < . . . < jr 6 N , 1 < p < +∞, and with respect
to the invariant measure µ, the inequality∥∥∥∥( r∑

k=1
|(P 2jkf − P 2jk−1f)|2

)1/2∥∥∥∥
Lp(µ)

6 cp‖f‖Lp(µ) . (1.15)

Indeed, we have seen in (1.13) that (P 2jkf)(XN ) is the projection on GN of
the memberMN−jk = E(f(XN )|FN−jk) of the martingale (Mj)Nj=0 in (1.12).
Then Li = MN−jr−i , i = 0, . . . , r is another martingale, and

(P 2jk−1f)(XN )− (P 2jkf)(XN ) = E(MN−jk−1 −MN−jk |GN )

appears as projection on GN of the martingale difference dr−k+1 = Lr−k+1−
Lr−k (see Section 1.4.2) when 1 6 k 6 r. This principle can be applied for
bounding diverse convex functions of a semi-group, by considering them as
projections of corresponding functions of a martingale, for which we may
have an “Lp inequality”.
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Let us come back to (1.14). Since the distribution of XN is uniform, we
can restate (1.14) when 1 < p 6 +∞ as(

1
Z

∑
x∈E

max
06j6N

|(P 2jf)(x)|p
)1/p

6
p

p− 1

(
1
Z

∑
x∈E
|f(x)|p

)1/p
,

or else, changing the normalization and letting N tend to infinity, we obtain(∑
x∈E

sup
j>0
|(P 2jf)(x)|p

)1/p
6

p

p− 1

(∑
x∈E
|f(x)|p

)1/p
. (1.16)

We can also write(∑
x∈E

sup
j>0
|(P jf)(x)|p

)1/p
6

2p
p− 1

(∑
x∈E
|f(x)|p

)1/p
.

If we want to deal with a countably infinite state space E such as E = Zn,
we may accept (as Stein [73] does) to work with an infinite invariant measure,
uniform on E , that gives measure 1 to each singleton {e}, e ∈ E . We then
obtain the same maximal inequality (1.16), applying Remark 1.2. If we do
not accept an “infinite probability”, we may, for example with the Bernoulli
random walk, work with “boxes” finite but large enough: if f is finitely
supported in Zn and if N is fixed, we can find a finite box B in E , so big
that P jf vanishes outside B for every j 6 2N . Changing the Bernoulli
transition matrix P (x, y) at the boundary of B, in order to force the Markov
chain to remain inside, we are back to the finite case.

1.4. Brownian motion, and more on martingales

1.4.1. Gaussian distributions and Brownian motion

Let |x| denote here the Euclidean norm of a vector x in Rn. For every
probability measure µ on Rn having a finite first order moment

∫
Rn |x|dµ(x),

one defines the barycenter of µ as

barµ =
∫
Rn
xdµ(x) ∈ Rn .

To a probability measure µ on Rn with finite second order moment∫
Rn |x|

2 dµ(x), one associates the quadratic form

Qµ : ξ 7→
∫
Rn

(
(x− barµ) · ξ

)2 dµ(x), ξ ∈ Rn .

The matrix Q of Qµ with respect to the canonical basis of Rn is the co-
variance matrix of µ. The quadratic form Qµ is positive definite when µ is

– 21 –



L. Deleaval, O. Guédon and B. Maurey

not supported on any affine hyperplane, for example when µ is the uniform
probability measure on a bounded convex set C with non empty interior,
i.e., a convex body C. We say that µ is centered when barµ = 0, and in this
case the expression of Qµ simplifies to Qµ(ξ) =

∫
Rn(x · ξ)2 dµ(x) for every

ξ ∈ Rn.

When f is a probability density on R with finite second order moment,
the variance σ2 of f(x) dx is defined by

σ2 =
∫
R

(
x−

∫
R
yf(y) dy

)2
f(x) dx.

When f is centered, one has that σ2 =
∫
R x

2f(x) dx.

A Gaussian random variable with distributionN(0, In) takes values in Rn,
its distribution γn is symmetric, thus centered, defined on Rn by

dγn(x) = (2π)−n/2 e−|x|
2/2 dx (1.17)

and γn admits the identity matrix In as covariance matrix. If F is an n-
dimensional Euclidean space, we denote by γF the image of γn under an
(any) isometry from Rn onto F . If X is a N(0, In) Gaussian random vari-
able and σ > 0, then the multiple σX admits the distribution dγn,σ(x) =
(2π)−n/2 e−|x/σ|2/2 d(x/σ), called the N(0, σ2 In) distribution, with σ2 In as
covariance matrix. One can consider that the Dirac probability measure δ0
at the origin of Rn corresponds to N(0, 0n).

The (absolute) moments of the one-dimensional distribution γ1 can be
computed in terms of values of the Gamma function. For every p > −1, one
has that∫

R
|x|p dγ1(x) = (2π)−1/2

∫
R
|x|p e−x

2/2 dx = 2p/2π−1/2Γ
(
(p+ 1)/2

)
.

As p tends to +∞, it follows from Stirling’s formula that

gp :=
(∫

R
|x|p dγ1(x)

)1/p
'
√
p/ e . (1.18)

An n-dimensional Brownian motion (Bt)t>0 starting at x0 ∈ Rn is an Rn-
valued random process defined on some probability space (Ω,F , P ), such that
B0 = x0, such that Bt−Bs is a Gaussian random variable with distribution
N(0, (t − s)In) whenever 0 6 s 6 t, and with independent increments: for
every integer k > 1, when 0 6 t0 < . . . < tk are given, then

Bt0 , Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent. The coordinates (Bt,i)t>0, i = 1, . . . , n, are independent
one-dimensional Brownian motions. It is possible to choose everywhere de-
fined measurable functions (Bt)t>0 satisfying the above properties in such a

– 22 –



Dimension free bounds

way that the trajectories 0 6 t 7→ Bt(ω), or random paths, are continuous
for (almost) every ω ∈ Ω. The Brownian motion is a martingale with con-
tinuous time parameter t > 0, with respect to a continuous time filtration
(Ft)t>0 where Ft is generated by the variables Bs, 0 6 s 6 t. See for example
Durrett [31] for a detailed account.

It is well known that the Brownian motion on Rn is the limit of Markov
chains with symmetric transition matrix, namely, a limit of suitably scaled
Bernoulli random walks. Indeed, if δ > 0 is given and if we consider a
Bernoulli walk on the real line moving at each time kδ, k ∈ N∗, by a step
±
√
δ, so that

X
(δ)
t =

√
δ

bt/δc∑
k=1

εk , t > 0 , εk = ±1 ,

then the distribution of (X(δ)
t )t>0 tends when δ → 0 to that of a one-

dimensional Brownian motion. Here, (εk)∞k=1 is a sequence of independent
Bernoulli random variables, taking values ±1 with probability 1/2. If (Bt)t>0
is the Brownian motion in Rn, starting at 0, and if we consider the associated
Gaussian semi-group (Gs)s>0 defined for f ∈ L1(Rn) and s > 0 by

(Gsf)(x) = E f(x+Bs)

= (2πs)−n/2
∫
Rn
f(x+ y) e−|y|

2/(2s) dy , x ∈ Rn ,
(1.19)

we can show an inequality analogous to (1.16). For every p in (1,+∞] and for
every function f ∈ Lp(Rn), we have a maximal inequality for the Gaussian
semi-group with a bound independent of the dimension n, stating that(∫

Rn
sup
s>0

∣∣(Gsf)(x)
∣∣p dx

)1/p
6

p

p− 1

(∫
Rn
|f(x)|p dx

)1/p
. (1.20.G∗)

If we just need a maximal inequality possibly dimension dependent, there
is an easy proof relating the Gaussian maximal function to the classical
maximal function Mf , because the Gaussian kernel is radial and radially de-
creasing, see (4.6). Once Stein’s Theorem 4.1 giving dimensionless estimates
for Mf is established, this easy bound of Gsf by Mf implies a dimension-
less estimate for the Gaussian semi-group, or for the Poisson semi-group as
well. With Bourgain, Carbery and Müller, we shall follow the opposite route,
from the semi-group estimates to Mf or MCf . We sketch an argument for
obtaining (1.20.G∗) from the Bernoulli case.

Let us give some more details in dimension n = 1. Let (εk)∞k=1 be a se-
quence of independent Bernoulli random variables, taking values ±1 with
probability 1/2. The associated semi-group (Pj), indexed by j ∈ N, is
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defined by

(Pj g)(i) = E g
(
i+

∑
16k6j

εk

)
, j > 0, i ∈ Z ,

and it satisfies (1.16). As a consequence of the de Moivre–Laplace theorem
and by classical tail estimates, we know that

(1 + x2)P
({

N−1/2
∑

16k6N

εk < x
})

tends to (1+x2)γ1
(
(−∞, x)

)
when N →∞, uniformly in x real. It follows

that E f
(
N−1/2∑

16k6N εk
)
tends to

∫
R f(y) dγ1(y), uniformly on Lips-

chitz functions having a Lipschitz constant bounded by some fixed C. If f
is Lipschitz on R, then

E f
(
x+N−1/2

∑
16k<sN

εk

)
−→
N

(2πs)−1/2
∫
R
f(x+ y) e−y

2/(2s) dy ,

uniformly in x ∈ R and s ∈ [t0, t1], with 0 < t0 6 t1 fixed. This implies
that for any given ε > 0 and N large enough, letting gN (i) = f(i/

√
N) for

i ∈ Z and assuming sN − 1 6 jN < sN , we have that∣∣∣PjN gN (i)− (Gsf)(i/
√
N)
∣∣∣ < ε , i ∈ Z ,

for every s ∈ [t0, t1]. Applying (1.16) to gN , we obtain when s0, s1, . . . , sk
and a > 0 are given that∫ a

−a
max

06j6k

∣∣(Gsjf)(x)
∣∣p dx 6 ηp(ε) +

(
p

p− 1

)p 1√
N

∑
i∈Z

∣∣∣∣f( i√
N

)∣∣∣∣p ,
where η(ε) tends to 0 with ε, implying (1.20.G∗) when ε→ 0, N → +∞,
a → +∞ and if the sequence {sj}j>0 is dense in (0,+∞). The same
argument works in Rn, thanks to the product structure of the Bernoulli
and Gaussian measures and to the fact that the linear space generated by
products f(x1, . . . , xn) =

∏n

j=1 fj(xj) is uniformly dense in the space of
compactly supported Lipschitz functions on Rn.

These considerations generalize to semi-groups of convolution with sym-
metric probability measures (µt)t>0 on Rn, that is to say, when µs ∗ µt =
µs+t, s, t > 0, and µt(A) = µt(−A) for every Borel subset A ⊂ Rn. Given
k > 1, one can find a finitely supported symmetric probability measure ν1/k
on Rn which is an approximation of µ1/k, in the sense that the integrals of a
given finite family of functions f on Rn are nearly the same for µj/k and for
ν∗j1/k whenever j 6 k2. We may assume that ν1/k is supported in εZ, ε > 0.
The symmetric Markov chain (Xj)j6k2 on E = εZ with transition governed
by ν1/k permits us to approximate the maximal function supt |µt ∗ f | of the
semi-group, replacing it with maxj6k2 |ν∗j1/k ∗ f |.
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It follows that some convex functions of the convolution semi-group can
be estimated in Lp by projecting functions of a martingale. For example, the
sum of squares of differences, already mentioned in the Gaussian case, can
be studied also in the Poisson case by relating it to the square function of
a martingale and applying the Burkholder–Gundy inequalities presented in
the next section.

1.4.2. The Burkholder–Gundy inequalities

When (Mk)Nk=0 is a martingale with respect to a filtration (Fk)Nk=0, one
introduces the difference sequence (dk)Nk=0, which is defined by d0 = M0
and dk = Mk − Mk−1 if 0 < k 6 N . Observe that dk is Fk-measurable
for 0 6 k 6 N and that E(dk |Fk−1) = 0 for k > 0. Conversely, given
a sequence (dk)Nk=0 with these two properties, we obtain a martingale by
setting Mk =

∑k
j=0 dj , for 0 6 k 6 N . For a scalar martingale (Mk)Nk=0, we

define the square function process (Sk)Nk=0 of the martingale by

Sk =
( k∑
j=0
|dj |2

)1/2
, k = 0, . . . , N .

For a real or complex martingale in L2, the differences dk and d` are orthog-
onal when k 6= `. If k < ` for example, then dk and its complex conjugate dk
are F`−1-measurable, thus E(dkd`) = E

(
dk E(d` |F`−1)

)
= 0. It follows that

E |MN |2 =
N∑
k=0

E |dk|2 = E |SN |2 . (1.21)

This equality ‖MN‖2 = ‖SN‖2 appears as an evident case of the following
result.

Theorem 1.6 (Burkholder–Gundy [17]). — For every p in (1,+∞),
there exists a constant cp > 1 such that for every integer N > 1, for ev-
ery real or complex martingale (Mk)Nk=0, one has

c−1
p ‖MN‖p 6 ‖SN‖p 6 cp‖MN‖p .

The Khinchin inequalities (see for example Zygmund [85, vol. I, V.8,
Th. 8.4]) are a very particular instance of the preceding theorem. Let (εk)Nk=1
be a sequence of independent Bernoulli random variables defined on a prob-
ability space (Ω,F , P ), taking the values ±1 with probability 1/2. For every
p in (0,+∞), there exist constants Ap, Bp > 0 such that for every N > 1
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and all scalars (ak)Nk=0, one has

Ap

( N∑
k=1
|ak|2

)1/2
6

(
E
∣∣∣∣ N∑
k=1

akεk

∣∣∣∣p)1/p
6

( N∑
k=1
|ak|2

)1/2
, 0 < p 6 2 ,

(1.22.K)( N∑
k=1
|ak|2

)1/2
6

(
E
∣∣∣∣ N∑
k=1

akεk

∣∣∣∣p)1/p
6Bp

( N∑
k=1
|ak|2

)1/2
, 2 6 p .

The exact values of the constants Ap, Bp are known ([79, 43]). In order to
relate these inequalities to Theorem 1.6 when 1 < p < +∞, we consider a
special filtration on (Ω,F , P ), generated by the sequence (εk)Nk=1. Let F0 be
the trivial field consisting of Ω and ∅, and for k > 0, let Fk be the finite field
generated by ε1, . . . , εk. This field Fk has 2k atoms of the form
A = Au = {ω ∈ Ω : εj(ω) = uj , j = 1, . . . , k} , u = (u1, . . . , uk) , (1.23)

where uj = ±1. We shall call this particular sequence (Fk)Nk=0 of finite fields
a dyadic filtration. In this framework, for 1 6 k 6 N , any scalar multiple
akεk of εk is a martingale difference dk. For the associated martingale with
MN =

∑N
k=1 akεk, the square function SN is the constant function equal

to (
∑N
k=1 |ak|2)1/2 and the Khinchin inequalities appear indeed as a simple

example of application of Theorem 1.6. Of course, the latter sentence is
historically totally inaccurate.

We shall prove only special cases of Theorem 1.6. We say that a sequence
of random variables (mk)Nk=0 is predictable when
m0 is F0-measurable, and mk is Fk−1-measurable for 0 < k 6 N . (1.24)

If (mk)Nk=0 is scalar valued and predictable, and if (dk)Nk=0 is a martingale dif-
ference sequence, then (mkdk)Nk=0 is again a martingale difference sequence
since one has that E(mkdk

∣∣Fk−1) = mk E(dk
∣∣Fk−1) = 0. The new martin-

gale (Lk)Nk=0 defined by Lk =
∑k
j=0mjdj is said to be obtained asmartingale

transform, see [15, 16].

Consider a dyadic filtration (Fk)Nk=0 as defined above. Notice that each
atom A of Fk as in (1.23) has probability 2−k, and is split into two atoms
A± of Fk+1, A± := A ∩ {εk+1 = ±1}, according to the value of εk+1. Let
dk+1 be a martingale difference with respect to these dyadic fields. The
function dk+1 should have mean 0 on the atom A of Fk, and be constant
on each of the two atoms A± of Fk+1 contained in A, which have equal
measure P (A)/2. It follows that dk+1 must take on A two opposite values
±v. Consequently, the modulus (or the norm) of dk+1 is constant on A,
thus |dk+1| is Fk-measurable, so that (|dk|)Nk=0 is predictable, as defined
in (1.24). We shall call Bernoulli martingale any martingale (Mk)Nk=0 with
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respect to this dyadic filtration (Fk)Nk=0. A Bernoulli martingale with values
in a vector space can be pictured as a tree (vε1,...,εk) of vectors, 0 6 k 6 N
and εj = ±1, such that each vector vε1,...,εk in the tree is the midpoint of his
two successors vε1,...,εk,1 and vε1,...,εk,−1. The vectors vε1,...,εk are the values
of the kth random variable Mk of the martingale, which can be defined by
Mk(ε1, . . . , εk) = vε1,...,εk .

The next Lemma contains an easier case of a result due to Burgess
Davis [26], namely, the left-hand inequality when p = 1. The rest of the
statement presents a mixture of Doob’s and Burkholder–Gundy’s inequali-
ties.

Lemma 1.7. — For every p with 1 6 p 6 2 and for every real or complex
Bernoulli martingale (Mk)Nk=0, one has that

6−1‖M∗N‖p 6 ‖SN‖p 6 6‖M∗N‖p .

Partial proof, after [56]. — We consider the case p = 1. The general
strategy is to bring the problem to L2, where ‖SN‖2 = ‖MN‖2 by (1.21),
and this is essentially done by dividing f = MN ∈ L1 by a “parent” of

√
|f |,

in order to get an element in L2 “similar” to
√
|f |. One then applies known

facts in L2, and finally come back to L1 by multiplication with a suitable L2

function. We begin with the proof of the left-hand inequality in Lemma 1.7.

Let (Mk)Nk=0 be a Bernoulli martingale. We know that (|dk|)Nk=0 is
predictable, as well as (Sk)Nk=0. Consider the martingale transform Lk =∑k
j=0 S

−1/2
j dj . In L2 we know that E |LN |2 =

∑N
j=0 E(S−1

j |dj |2). We see
that S−1

0 |d0|2 = S0, and S−1
j |dj |2 6 2(Sj − Sj−1) for j > 1 because, letting

t = S2
j−1 and h = |dj |2, we have

2(
√
t+ h−

√
t) =

∫ t+h

t

u−1/2 du > h(t+ h)−1/2 .

It follows that
E |LN |2 6 2 ESN . (1.25)

Notice that
∣∣∣∣∑s

j=0 S
−1/2
j dj

∣∣∣∣ = |Ls| 6 L∗N and
∣∣∣∣∑s

j=r+1 S
−1/2
j dj

∣∣∣∣ = |Ls −

Lr| 6 2L∗N when 0 6 r < s 6 N . Multiplying termwise the sequence
(S−1/2
k dk)Nk=0 by the non-decreasing sequence (S1/2

k )Nk=0, we obtain for every
s 6 N by Abel’s summation method that

|Ms| =
∣∣∣∣ s∑
j=0

dj

∣∣∣∣ 6 S1/2
s sup

06r6s

∣∣∣∣ s∑
j=r

S
−1/2
j dj

∣∣∣∣ 6 2S1/2
N L∗N ,
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thus M∗N 6 2S1/2
N L∗N . By Cauchy–Schwarz, Doob’s inequality (1.1) with

p = 2, and by (1.25), we get the conclusion

EM∗N 6 2(ESN )1/2‖L∗N‖2 6 22(ESN )1/2‖LN‖2 6 25/2 ESN 6 6 ESN .

We leave the rewriting of this proof when 1 < p < 2 as an easy exercise
for the reader, and we pass to the right-hand side inequality using the same
method, with the help of the non-decreasing predictable sequence (Ak)Nk=0
defined by

A0 = |d0| = |M0|, Ak = max
(
Ak−1,M

∗
k−1 + |dk|

)
> |Mk|, k = 1, . . . , N ,

and of the martingale transform Lk =
∑k
j=0A

−1/2
j dj , k = 0, . . . , N . Observe

that |dk| 6 |Mk| + |Mk−1| 6 2M∗N , thus AN 6 3M∗N . By Abel, writing
dk = Mk −Mk−1 for k > 1, we see that

|LN | =
∣∣∣∣A−1/2

N MN +
N−1∑
k=0

Mk

(
A
−1/2
k −A−1/2

k+1

)∣∣∣∣
6 A1/2

N +
N−1∑
k=0

Ak(A−1/2
k −A−1/2

k+1 )

6 A1/2
N +

N−1∑
k=0

(√
Ak+1 −

√
Ak

)
6 2A1/2

N ,

where we make use of u2(u−1 − v−1) 6 v − u when 0 < u 6 v. In L2 we
know that E

(∑N
k=0A

−1
k |dk|2

)
= E |LN |2 6 4 EAN , and we go back to L1

with Cauchy–Schwarz and the obvious inequality
N∑
k=0
|dk|2 6 AN

N∑
k=0

A−1
k |dk|

2 .

We obtain

ESN = E
( N∑
k=0
|dk|2

)1/2
6 (EAN )1/2 ‖LN‖2 6 2 EAN 6 6 ‖M∗N‖1 . �

Remark. — The Brownian martingales can be approximated by
Bernoulli martingales, and we can obtain the analogous result for them.
Actually, the preceding proof is even simpler to write in this case. Brownian
martingales are defined by means of (Itō’s) stochastic integrals

Mt(ω) =
∫ t

0
ms(ω) dBs(ω) , t > 0 ,

where (ms)s>0 is an adapted process, meaning essentially that each ms,
s > 0, is Fs-measurable. The square function is then defined by S2

t (ω) =
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∫ t
0 |ms(ω)|2 ds for every t > 0, and one can replace in the proof of Lemma 1.7
the Abel summation method by the more pleasant integration by parts.

Remark 1.8. — Together with Doob’s inequality, Lemma 1.7 implies
Theorem 1.6 for Bernoulli martingales when 1 < p 6 2. The Burkholder–
Gundy inequalities are equivalent to saying that martingale difference se-
quences are unconditional in Lp when 1 < p < +∞, that is to say, that
there exists a constant κu,p such that for each integer N > 0, all scalars
(ak)Nk=0 with |ak| 6 1 and all martingale differences (dk)Nk=0, we have

∥∥ N∑
k=0

akdk
∥∥
p
6 κu,p

∥∥ N∑
k=0

dk
∥∥
p
. (1.26)

Going from Theorem 1.6 to unconditionality is simple, since the square func-
tion of the martingale at the left-hand side of (1.26) is less than that on
the right-hand side, and we can take κu,p = c2p. The other direction fol-
lows from Khinchin, by averaging over signs ak = ±1. Indeed, one obtains
from (1.22.K) for (fk)Nk=1 in Lp(X,Σ, µ), 1 6 p < +∞, that

App

∥∥∥∥( N∑
k=1
|fk|2

)1/2∥∥∥∥p
Lp(µ)

6 E
∫
X

∣∣ N∑
k=1

εkfk
∣∣p dµ

6 Bpp

∥∥∥∥( N∑
k=1
|fk|2

)1/2∥∥∥∥p
Lp(µ)

.

(1.27)

It is possible (see Pisier [64, Section 5.8]) to obtain the general case of un-
conditionality of martingale differences by approximating general martingale
difference sequences by blocks of Bernoulli martingale differences. Also, one
can see that (1.26) is self-dual and obtain by duality the Burkholder–Gundy
inequalities for 2 6 p < +∞.

The proof of Lemma 1.7 is valid with almost no change when the martin-
gale takes values in a Hilbert space H, because L2(Ω,F , P,H) is a Hilbert
space where the H-valued martingale differences are orthogonal. For values
in a Banach space, two difficulties arise. First, the relevant “square func-
tion” has to be defined, and second, the Banach space-valued martingale
differences are not unconditional in general. The Banach spaces where mar-
tingale differences are unconditional form a nice class of spaces, see Pisier [64,
Chap. 5, The UMD property for Banach spaces].

Remark 1.9. — Let f =
∑N
k=0 dk be the sum of a Bernoulli martin-

gale and let g =
∑N
k=0 akdk be obtained from f by a martingale transform
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operation, with |ak| 6 1 for k = 0, . . . , N . By Lemma 1.7 and Doob’s in-
equality (1.1), we have

‖g‖p 6 ‖g∗‖p 6 6‖S(g)‖p 6 6‖S(f)‖p 6 36‖f∗‖p 6
36 p
p−1 ‖f‖p , 1<p6 2 ,

which shows that the constant κu,p in (1.26) is of order 1/(p − 1) in this
case. Actually, Burkholder has found the exact value of the unconditional
constant for general martingale transforms and for every p ∈ (1,+∞). It is
given by

κu,p = p∗ − 1 , where p∗ := max(p, p/(p− 1)) .
One can consult [16] and the references given there to several other articles
by Burkholder. One can also find in [16, Section 5.4] a bound cp 6 p∗ − 1
for the constant cp in Theorem 1.6.

1.4.3. A consequence of the “reflection principle”

Consider a Brownian motion (Bs)s>0 on R, defined on a probability space
(Ω,F , P ) and with respect to a filtration (Fs)s>0. We assume that B0 = 0,
we fix a real number v > 0, and we let Sv(ω) denote the first time when
the trajectory s 7→ Bs(ω), s > 0, which is continuous for almost every
ω ∈ Ω, reaches the point v. It is clear that if s0 > 0 is given, one has
{Bs0 > v} ⊂ {Sv 6 s0}, thus

P
(
{Sv 6 s0}

)
> P

(
{Bs0 > v}

)
= P

(
{B1 > v/

√
s0}
)

=
∫ +∞

v/
√
s0

e−y
2/2 dy√

2π
.

From now on, we write P (Sv 6 s0) for P
(
{Sv 6 s0}

)
. We will show that

actually

P (Sv 6 s0) = 2P (Bs0 > v) = 2
∫ +∞

v/
√
s0

e−y
2/2 dy√

2π
,

which proves in passing that Sv is finite almost surely, since we have then

P (Sv < +∞) = 2
∫ +∞

0
e−y

2/2 dy√
2π

= 1 .

The reasoning makes use of the reflection of the Brownian motion after a
stopping time τ . A stopping time is a random variable τ with values in
[0,+∞], such that for every t > 0, the event {τ 6 t} belongs to the σ-field
Ft of the past of time t. Intuitively, a stopping time corresponds to a decision
to quit at time τ(ω) that an observer, embarked on a path t 7→ Xt(ω) of
the random process (Xt)t>0 since the time t = 0, can take from his only
knowledge of what happened on his way between 0 and the present time.
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The random time Sv is an excellent example of stopping time, with a quite
simple rule: I stop when I reach the point v > 0.

The Brownian reflected after the random time τ changes its direction, its
trajectory becomes the symmetric of the original trajectory with respect to
the point (Bτ )(ω) := Bτ(ω)(ω) that was reached at time τ(ω). Let us denote
by (Bτs )s>0 the reflected Brownian, given by

Bτs (ω) = Bs(ω) if 0 6 s 6 τ(ω) ,
Bτs (ω) +Bs(ω)

2 = Bτ(ω)(ω) if s > τ(ω) .

The reflected Brownian Bτ is still a Brownian motion. Consider first the
simplest stopping time and reflection. Choosing a set A1 in the σ-field Fs1
at time s1 > 0, we define a stopping time τ1 equal to s1 on A1 and to +∞
outside. The corresponding reflection (Bτ1s )s>0 is given by

Bτ1s (ω) = Bs(ω) if 0 6 s 6 s1 or ω /∈ A1 ,

Bτ1s (ω) +Bs(ω)
2 = Bs1(ω) if s > s1 and ω ∈ A1 .

One shows easily that (Bτ1s )s>0 is a Brownian motion. Iterating this opera-
tion, one can reach discrete stopping times, and pass to the limit for dealing
with general stopping times. Indeed, a stopping time τ can be approximated
by the first time τk > τ such that 2kτk is an integer, i.e., τk = 2−k(b2kτc+1),
for every k ∈ N.

Another important property that can be checked following the same route
is the following: if τ is an almost surely finite stopping time, the process
“starting afresh at time τ”, defined by Xs = Bτ+s − Bτ , i.e., Xs(ω) =
Bτ(ω)+s(ω)−Bτ(ω)(ω), is also a Brownian motion.

Consider the Brownian reflected after the stopping time Sv, with v > 0.
Since the Brownian paths are continuous and B0 = 0, we have BSv(ω)(ω) = v
and for every s0 > 0, the event {Bs0 > v} is contained in {Sv < s0}. Clearly,
the event {BSvs0 > v} is also contained in {Sv < s0} and disjoint from
{Bs0 > v}. Actually, since on the set {Sv < s0} one has BSvs0 + Bs0 = 2v,
one sees that

{Sv < s0} \ {Bs0 > v} = {BSvs0 > v} .

The event {BSvs0 > v} has the same probability as {Bs0 > v}, since (BSvs )s>0
is another Brownian, and P (Sv = s0) 6 P (Bs0 = v) = 0. We have therefore
that

P (Sv 6 s0) = P (Sv < s0) = 2P (Bs0 > v) = 2
∫ +∞

v

e−u
2/(2s0) du√

2πs0
.
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Consequently, for every s > 0, we obtain

P (Sv 6 s) = P
(

sup
06u6s

Bu > v
)

= 2
∫ +∞

v/
√
s

e−y
2/2 dy√

2π
.

This allows us to find the density hv of the distribution of Sv, which is given
by

hv(s) = 1s>0
vs−3/2
√

2π
e−v

2/(2s) , s ∈ R . (1.28)

Remark. — A variant of the preceding reasoning applies to the exit
time S from an open convex subset D of Rn containing the starting point x0
of an n-dimensional Brownian motion. Suppose that this Brownian motion
touches the boundary of D, for the first time, at the point x = x(ω) and at
time S(ω). Let Ex be an affine half-space tangent to D at x, and exterior
to D (this Ex is not unique in general). Starting again from x at time S(ω),
there is a probability 1/2 to end in Ex at time s0 > S(ω), so there is at least
one chance out of two to end up outside D at time s0. The set {Bs0 /∈ D}
is a subset of {S < s0} that occupies thus at least one half of it. We have
therefore

P (S < s0) 6 2P (Bs0 /∈ D) .

This inequality says that the probability to be outside D at a time between 0
and s0 is bounded by twice the probability to be outside D at time s0. This
can be readily interpreted in terms of maximal function. If ‖ · ‖C denotes
the norm on Rn associated to a symmetric convex body C in Rn, we deduce
maximal inequalities in Lp(Rn) for the ‖·‖C norm of the martingale (Bs)s>0
that are better than Doob’s inequality. Namely, for every p > 0 we have

E max
06s6s0

‖Bs‖pC = p

∫ +∞

0
tp−1P

(
max

06s6s0
‖Bs‖C > t

)
dt

6 2p
∫ +∞

0
tp−1P

(
‖Bs0‖C > t

)
dt = 2 E ‖Bs0‖

p
C .

For p 6 1, there is no Doob’s inequality in Lp, and when p > 1, one has
always that 21/p < p/(p − 1), because (1 − x)2x < (1 − x) ex 6 1 for
0 < x < 1.

One could get a similar estimate when the set D is no longer convex,
but has the property that for every boundary point x of D, there is a cone
Ex based at x, disjoint from D and with a solid angle bounded below by
δ > 0 independent of x. If we measure the angle as the proportion of the
unit sphere Sn−1 of Rn intersected by the cone Ex − x based at 0, then the
constant 2 above has to be replaced by δ−1.
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1.5. The Poisson semi-group

Let us recall that the Schwartz class S(Rn) consists of all C∞ functions
ϕ such that (1 + |x|k)ϕ(`)(x) is bounded on Rn for all integers k, ` > 0. We
shall denote by (Pt)t>0 the Poisson semi-group on Rn, which can be defined,
for f in the Schwartz class S(Rn), by

(Ptf)(x) = u(x, t), x ∈ Rn, t > 0 , (1.29)
where u(x, t) is the (bounded) harmonic extension of f to the upper half-
space H+ of Rn+1 formed by all (x, t) with x ∈ Rn and t > 0. For x ∈ Rn
one has u(x, 0) = f(x), ∆u(x, t) = 0 when t > 0, and u is continuous on H+.
The semi-group property Pt+s = PtPs amounts to saying that the harmonic
extension of the function fs defined on Rn by fs(x) = u(x, s) is given by
v(x, t) = u(x, t+ s).

The Poisson semi-group is intimately related to the Brownian motion
(Bs)s>0 in Rn+1. If the Brownian (Bs)s>0 starts at time s = 0 from the
point (x0, t0), where x0 ∈ Rn and t0 > 0, we know that almost every path
s 7→ Bs(ω) will hit the hyperplane H0 = {t = 0} at some time τt0(ω) < +∞.
If we decompose Bs into (x0 + Xs, t0 + Ts), then Ts is a one-dimensional
Brownian motion, starting from 0 at time 0, and Xs is a n-dimensional
Brownian motion, starting from the point 0 in Rn and independent of Ts. The
stopping time τt0 is the first time s > 0 when Ts = −t0. If f is reasonable,
for example continuous and bounded on Rn, one sees that the (bounded)
harmonic extension u of f to the upper half-space is given by

u(x0, t0) = EF (Bτt0 ) = E f(x0 +Xτt0
) =

∫
Ω
f
(
x0 +Xτt0 (ω)(ω)

)
dP (ω) ,

where F is defined on the hyperplane H0 of Rn+1 by F (x, 0) = f(x) for every
x ∈ Rn. The Poisson probability measure Pt0(x) dx on Rn is the distribution
of Xτt0

, distribution of the Brownian motion (Xs) starting from 0 ∈ Rn and
stopped at time τt0 , when Bs reaches H0. We shall employ the same notation
Pt for the semi-group, for the Poisson distribution on Rn, and for its density
Pt(x). The operator Pt is the convolution with the corresponding probability
measure, it acts thus on Lp(Rn) for 1 6 p 6 +∞. We shall say that t is the
parameter of Pt.

The distribution of the stopping time τt0 is clearly the same as the dis-
tribution of the first time St0 when the one-dimensional Brownian motion
starting from 0 reaches t0 > 0, and we know by (1.28) the density ht of the
distribution of St. The Poisson distribution Pt on Rn is obtained by mixing
Gaussian distributions on Rn, distributions of Xs at various times s, the
mixing being done according to the distribution of St. In the portion of the
space Ω where s0 6 τt 6 s0 + δs, the coordinate x of the Brownian point
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Bs = (Xs, t+ Ts) at time τt is approximately Xs0 , with probability of order
ht(s0) δs, and (Xs)s>0 is independent of τt. The point (x, 0) = (Xs0 , 0) is
the point where the Brownian Bs touches the hyperplane H0, knowing that
τt = s0. This is the reason behind the subordination principle of the Pois-
son semi-group to the Gaussian semi-group, which implies in particular that
the maximal function of the Poisson semi-group is bounded by that of the
Gaussian semi-group (Gs)s>0 on Rn. Indeed, we have by (1.28) that Pt is
“in the (closed) convex hull” of the Gaussian semi-group, since

Pt =
∫ +∞

0
Gs

ts−3/2
√

2π
e−t

2/(2s) ds . (1.30)

It follows that

|Pt ∗ f | 6
∫ +∞

0
|Gs ∗ f |

ts−3/2
√

2π
e−t

2/(2s) ds 6 sup
u>0
|Gu ∗ f | .

We get a dimensionless estimate for the maximal function of the Poisson
semi-group, consequence of the one in (1.20.G∗) for the Gaussian case. We
have ∥∥∥∥ sup

t>0
|Ptf |

∥∥∥∥
Lp(Rn)

6
p

p− 1

(∫
Rn
|f(x)|p dx

)1/p
. (1.31.P ∗)

The remarks about comparing to Mf are still in order here. Stein [73,
Lemma 1, p. 48] proves (1.31.P ∗) with different constants and in a dif-
ferent way, capable of easier generalizations to non Euclidean settings. He
does not deal with the Gaussian maximal function, but applies the Hopf
maximal inequality (1.10) to the Gaussian semi-group together with the
subordination principle. Using subordination, Stein shows that the Poisson
maximal function P ∗f = supt>0 |Ptf | is bounded by an average of expres-
sions t−1 ∫ t

0 (Gsf) ds that are controlled by Hopf.

The formula (1.30) proves that the marginals of Pt are other Poisson
distributions: indeed, the mixing distribution, which has density ht, does not
depend on the dimension n, and the projections on R`, 1 6 ` < n, of Gaussian
distributions N(0, σ2 In) on Rn are N(0, σ2 I`) Gaussian distributions. We
can also deduce the density of the distribution Pt for each t > 0, writing

Pt(x) =
∫ +∞

0
e−|x|

2/(2s)(2πs)−n/2 ts
−3/2
√

2π
e−t

2/(2s) ds

= t

∫ +∞

0
(2πs)−n/2−1/2 e−(t2+|x|2)/(2s) ds

s
, x ∈ Rn .

Setting u = s/(t2 + |x|2), then v = 1/(2u), we get

Pt(x) = t
(
π(t2 + |x|2)

)−(n+1)/2
∫ +∞

0
e−v v(n+1)/2 dv

v
.
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The Poisson kernel Pt on Rn is thus given by the formula

Pt(x) = P
(n)
t (x) = Γ[(n+ 1)/2]

π(n+1)/2
t

(t2 + |x|2)(n+1)/2 , x ∈ Rn , t > 0 . (1.32)

In dimension n = 1, the Poisson kernel is the Cauchy kernel, equal to

Pt(x) = P
(1)
t (x) = t

π(t2 + x2) , x ∈ R , t > 0 . (1.33.C)

The coefficient that comes into the n-dimensional formula (1.32) satisfies the
asymptotic estimate

Γ[(n+ 1)/2]
π(n+1)/2 '

√
2
πn

1
ωn

=
√

2n
π

1
sn−1

,

where ωn is the volume of the unit ball in Rn and sn−1 the (n−1)-dimensional
measure of the unit sphere Sn−1 in Rn, given by

ωn = πn/2

(n/2)! := πn/2

Γ
(
(n/2) + 1

) , sn−1 = nωn . (1.34)

From this, we obtain estimates on the measure of Euclidean balls for the
probability measure P1(x) dx on Rn. Writing P1(x) = F (|x|), we get an
exact asymptotic estimate when the dimension n tends to infinity: for
ν > 0 fixed, we have∫
{|x|>

√
n/ν}

P1(x) dx

= sn−1

∫ +∞

√
n/ν

rn−1F (r) dr '
√

2
π

∫ +∞

√
n/ν

√
n

r

(
r2

1 + r2

)(n+1)/2 dr
r

=
√

2
π

∫ +∞

1/ν

(
1 + 1

nu2

)−(n+1)/2 du
u2 =

√
2
π

∫ ν

0

(
1 + y2

n

)−(n+1)/2

dy .

Therefore, when n tends to infinity, we see that∫
{ν |x|>

√
n}
P1(x) dx −→ 2

∫ ν

0
e−y

2/2 dy√
2π

. (1.35)

2. General dimension free inequalities, second part

In this section, we gather results that depend on the Fourier transform.
In order that the Fourier transform be isometric on L2(Rn), we set

∀ ξ ∈ Rn, f̂(ξ) =
∫
Rn
f(x) e−2iπx·ξ dx , µ̂(ξ) =

∫
Rn

e−2iπx·ξ dµ(x) ,

when f is in L1(Rn) ∩ L2(Rn) or when µ is a bounded measure on Rn.
By the Plancherel theorem (some say Parseval’s theorem), we know that
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this defines a mapping from L1(Rn) ∩ L2(Rn) to L2(Rn) that extends to a
unitary transformation F of L2(Rn). The inverse mapping F−1 of F sends
every square integrable function ξ 7→ g(ξ) to F

(
ξ 7→ g(−ξ)

)
, also expressible

by x 7→ (Fg)(−x). We shall employ the notation g∨ = F−1g for the inverse
Fourier transform.

The Plancherel–Parseval theorem extends to functions f with values in
a Euclidean space F , giving then an isometry from L2(Rn, F ) to itself. This
is clear for instance by looking at coordinates in an orthonormal basis of F .

With this normalization of the Fourier transform, we have that

γ̂n(ξ) = e−2π2|ξ|2 , ξ ∈ Rn,

and the Fourier transform of the Poisson kernel Pt on Rn is equal to e−2πt|ξ|,
for every ξ ∈ Rn. Indeed, as the marginals on R of Pt are Cauchy distribu-
tions with the same parameter t, we find by the residue theorem that

P̂t(ξ) =
∫
R

t e−2iπs|ξ|

π(t2 + s2) ds = e−2πt|ξ| .

This information on the Fourier transform gives another way of checking
the semi-group property Ps ∗ Pt = Ps+t of Poisson distributions. Using the
Fourier inversion formula, we notice for future use that the harmonic exten-
sion u(x, t) = (Ptf)(x) of f ∈ S(Rn) considered in (1.29) can be written
as

u(x, t) =
∫
Rn

e−2πt|ξ| f̂(ξ) e2iπx·ξ dξ , x ∈ Rn, t > 0 . (2.1)

2.1. Littlewood–Paley functions

The Littlewood–Paley function g(f) associated to a function f on Rn is
defined by

∀ x ∈ Rn , g(f)(x) =
(∫ +∞

0

∣∣t∇u(x, t)
∣∣2 dt

t

)1/2
,

where u is the harmonic extension of f to the upper half-space in Rn+1, and
where ∇u is the gradient of u in Rn+1. The classical theory, see for example
Zygmund [85, vol. 2] for the circle case in Chap. 14, §3 and Chap. 15, §2,
indicates that the norm of f in Lp(Rn), 1 < p < +∞, is equivalent to that
of g(f). One has that

κ−1
p ‖f‖p 6 ‖g(f)‖p 6 κp‖f‖p , (2.2)

– 36 –



Dimension free bounds

with a constant κp depending on p, but independent of the dimension n. A
variant of this Littlewood–Paley function is defined by

g1(f)2 =
∫ +∞

0

∣∣∣∣t ∂∂t Ptf
∣∣∣∣2 dt

t
. (2.3)

It is clear that g1(f) 6 g(f), since (∂/∂t)(Ptf) is a coordinate of the vec-
tor ∇u. The function g1 is one of the variants studied by Stein [73]. More
generally, for every integer k > 1, Stein sets

gk(f)2 =
∫ +∞

0

∣∣∣∣tk ∂k∂tk Ptf
∣∣∣∣2 dt

t
.

Let us define Qj = P2j − P2j+1 , for every j ∈ Z. Since∑
j∈Z
|Qjf |2 =

∑
j∈Z

∣∣∣∣ ∫ 2j+1

2j

(
∂

∂t
Ptf

)
dt
∣∣∣∣2,

we obtain by Cauchy–Schwarz that∑
j∈Z
|Qjf |2 6

∑
j∈Z

2j
∫ 2j+1

2j

∣∣∣∣ ∂∂t Ptf
∣∣∣∣2 dt 6

∑
j∈Z

∫ 2j+1

2j

∣∣∣∣ ∂∂t Ptf
∣∣∣∣2 tdt = g1(f)2 .

The classical result (2.2) on g(f) implies that for 1 < p < +∞, there exists
a constant qp independent of the dimension n such that∥∥∥∥(∑

j∈Z
|Qjf |2

)1/2
∥∥∥∥
Lp(Rn)

6 qp ‖f‖Lp(Rn), f ∈ Lp(Rn) . (2.4)

Observe that the same proof implies that a similar inequality, with a dif-
ferent constant depending on c > 1, will hold for differences of the form
Q̃j = Ptj − Ptj−1 , where (tj)j∈Z is an increasing sequence of positive real
numbers, provided that we have tj+1 6 ctj for all js. On the other hand, by
Rota’s argument (1.15), one can obtain (2.4) from the Burkholder–Gundy
inequalities of Theorem 1.6. Inequalities similar to (2.4) would hold for the
Gaussian semi-group (Gt)t>0 defined in (1.19). Let us fix T > 0. We have
seen that G2tf , 0 6 t 6 T , is the projection on the σ-field GT generated
by BT of the memberMT−t of the Brownian martingaleMs = (PT−sf)(Bs),
0 6 s 6 T , running under the infinite invariant measure given by the
Lebesgue measure on Rn. We then apply (1.15). Using Gaussian Qj s would
allow us to avoid a few minor technical difficulties later, and this is essentially
what Bourgain [13] does for the cube problem, see Section 8.

Relying on (1.15) and Remark 1.9 gives for the constant qp in (2.4) an
upper bound of order p/(p−1) when p→ 1. This can also be obtained if one
follows Stein [73, p. 48–51]. When 1 < p 6 2, the proof given there yields
‖g(f)‖p 6 (p− 1)−1/2p1−p/2

p ‖f‖p for the right-hand side inequality in (2.2),
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where pp is the constant in the maximal Lp-inequality for the Poisson semi-
group. Since we have pp 6 p/(p− 1) by (1.31.P ∗), we get that

qp 6 p/(p− 1) when 1 < p 6 2 . (2.5)

Looking at the Fourier side, we see that
∑
j∈Z Q̂j(ξ) = 1 for every ξ 6= 0,

since P̂2j (ξ) = e−2j+1π|ξ| tends to 1 when j → −∞ and to 0 when j → +∞.
It implies for the convolution operators, still denoted by Qj , that∑

j∈Z
Qj = Id . (2.6)

2.1.1. Littlewood–Paley and maximal functions

Stein [73, Chap. III, §3, p. 75] explains how to get Lp estimates for several
maximal functions related to semi-groups, by using the Littlewood–Paley
functions. Consider a continuous function ϕ on the half-line [0,+∞), differ-
entiable on (0,+∞), and denote by Φ its antiderivative vanishing at 0. For
every t > 0, one has

tϕ(t) =
∫ t

0

(
sϕ(s)

)′ ds =
∫ t

0
ϕ(s) ds+

∫ t

0
sϕ′(s) ds = Φ(t) +

∫ t

0
sϕ′(s) ds .

Comparing L1 and L2 norms, one sees that∫ t

0
|sϕ′(s)| ds

t
6

(∫ t

0
|sϕ′(s)|2 ds

t

)1/2
6

(∫ t

0
|sϕ′(s)|2 ds

s

)1/2
.

Therefore, one has

|ϕ(t)| 6 |Φ(t)|
t

+
(∫ +∞

0
|sϕ′(s)|2 ds

s

)1/2
, t > 0 .

One gets that

sup
t>0
|ϕ(t)| 6 sup

t>0

|Φ(t)|
t

+
(∫ +∞

0
|sϕ′(s)|2 ds

s

)1/2
.

If ϕ(s) = (Psf)(x) for a given x ∈ Rn, the upper bound becomes

sup
t>0
|(Ptf)(x)| 6 sup

t>0

1
t

∣∣∣∣ ∫ t

0
(Psf)(x) ds

∣∣∣∣+ g1(f)(x) .

One can (again) control the norm in Lp, 1 < p < +∞, of the maximal
function of the Poisson semi-group, by the Hopf maximal inequality and the
estimate for the Littlewood–Paley function. This control is easy in L2, espe-
cially when L2 admits an orthonormal basis (fj) such that Ptfj = e−tλj fj
for every j, λj > 0, for example in the case of the Laplacian on a bounded
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domain Ω ⊂ Rn. If f =
∑
j ajfj in L2(Ω), one has Ptf =

∑
j aj e−λjt fj ,

and∫
Ω
g1(f)(x)2 dx =

∫ +∞

0

∫
Ω

∣∣∣∣∑
j

ajtλj e−tλj fj(x)
∣∣∣∣2 dx dt

t

=
∫ +∞

0

(∑
j

|aj |2t2λ2
j e−2tλj

)
dt
t

=
∑
j

|aj |2
∫ +∞

0
t2λ2

j e−2tλj dt
t

=
(∫ +∞

0
u2 e−2u du

u

) ∑
λj>0

|aj |2 6
Γ(2)

4 ‖f‖22 = 1
4 ‖f‖

2
2 .

For the other Littlewood–Paley functions gk(f), one has in the same way∫
Ω
gk(f)(x)2 dx =

∫ +∞

0

∫
Ω

∣∣∣∣∑
j

ajt
kλkj e−tλj fj(x)

∣∣∣∣2 dx dt
t

=
∑
j

|aj |2
∫ +∞

0
t2kλ2k

j e−2tλj dt
t
6

Γ(2k)
4k ‖f‖22 .

One can also work on Rn by Fourier transform with Parseval. One gets∫
Rn
gk(f)(x)2 dx = (2π)2k

∫ +∞

0

∫
Rn

∣∣f̂(ξ)tk|ξ|k e−2πt|ξ|∣∣2 dξ dt
t

= Γ(2k)
4k ‖f‖22 .

We have also other relations like

t2ϕ′(t) =
∫ t

0

(
s2ϕ′(s)

)′ ds = 2
∫ t

0
sϕ′(s) ds+

∫ t

0
s2ϕ′′(s) ds

implying that

sup
t>0
|tϕ′(t)| 6 2

∫ +∞

0
|sϕ′(s)|2 ds

s
+
∫ +∞

0
|s2ϕ′′(s)|2 ds

s
.

This brings back the successive maximal functions associated with each of
the expressions tk∂k/∂tk(Ptf), k > 1, to quantities that can be estimated
or are already estimated, as in

sup
t>0

∣∣∣∣t ∂∂t (Ptf)(x)
∣∣∣∣ 6 2g1(f)(x) + g2(f)(x) , x ∈ Rn .

2.2. Fourier multipliers

We introduce two dilation operators that appear in duality, for instance
when dealing with the Fourier transform. Given a function g on Rn and
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λ > 0, we use for these operations the notation

g(λ)(x) = λ−ng(λ−1x) , g[λ](x) = g(λx) , x ∈ Rn . (2.7)

If g already has a subscript, as in g = g1, we shall use the heavier notation
(g1)(λ) or (g1)[λ]. One sees, for example when g is integrable and h bounded,
that∫

Rn
g(λ)(x)h(x) dx =

∫
Rn
g(y)h[λ](y) dy , and (̂g(λ))(ξ) = ĝ(λξ) , ξ ∈ Rn ,

that is to say, we have (̂g(λ)) = (ĝ)[λ]. Clearly, g(λµ) = (g(λ))(µ). The g(λ)
dilation preserves the integral of g; it is extended to measures µ on Rn by
setting µ(λ)(f) = µ(f[λ]), namely∫

Rn
f(x) dµ(λ)(x) =

∫
Rn
f(λx) dµ(x) (2.8)

for every f in the space K(Rn) of continuous and compactly supported func-
tions. The measure µ(λ) is the image of µ under the mapping Rn 3 x 7→ λx.
If dµ(x) = g(x) dx, then g(λ) is the density of µ(λ).

Let ξ 7→ m(ξ) belong to L∞(Rn). For f ∈ L2(Rn), we have f̂ ∈ L2(Rn)
by Plancherel, ξ 7→ m(ξ)f̂(ξ) is also in L2(Rn) and is therefore the Fourier
transform of some function Tmf ∈ L2(Rn). We thus get a linear operator Tm
on L2(Rn) if we define Tmf , for every f ∈ L2(Rn), by means of its Fourier
transform, letting

(Tmf)̂(ξ) = m(ξ)f̂(ξ) , ξ ∈ Rn .

Let Pm be the operator of multiplication by m, defined by Pmϕ = mϕ. The
operator Tm = F−1PmF is bounded on L2(Rn) since by Parseval, one has
that ∫

Rn
|(Tmf)(x)|2 dx =

∫
Rn
|m(ξ)|2|f̂(ξ)|2 dξ 6 ‖m‖2∞ ‖f‖22 . (2.9)

We shall say that Tm is the operator associated to the multiplier m.

One can ask whether Tm also operates as a bounded mapping on certain
Lp spaces. In this survey, “bounded on Lp” will always mean bounded from
Lp to Lp. Let q be the conjugate exponent of p, defined by 1/q + 1/p = 1.
Assuming that 1 < p < +∞, we see that Tm is bounded on Lp(Rn) if and
only if

∫
Rn m(ξ)ϕ̂(ξ)ψ̂(ξ) dξ is uniformly bounded when ϕ,ψ ∈ S(Rn) belong

to the unit balls of Lp(Rn) and Lq(Rn) respectively, hence Tm is then also
bounded on Lq(Rn) (and on L2(Rn) by interpolation, so m has to be a
bounded function, see the line after (2.12.P)).
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We now observe that the multiplier m and its dilates m[λ] : ξ 7→ m(λξ),
λ > 0, define operators having equal norms on Lp(Rn). We see that

(Tm[λ]f(λ))̂(ξ) = m(λξ)f̂(λξ)

hence Tm[λ]f(λ) = (Tmf)(λ). Consider the operator Sλ : f 7→ f(λ). For every
p ∈ [1,+∞] and 1/q + 1/p = 1, the multiple Sλ,p := λn/qSλ of Sλ is an
isometric bijection of Lp(Rn) onto itself. The relation Sλ ◦ Tm = Tm[λ] ◦ Sλ
becomes

Tm[λ] = Sλ,pTmS
−1
λ,p (2.10)

and this implies that Tm and Tm[λ] have the same norm on Lp(Rn). More
generally, let m = (m(j))j∈J be a family of multipliers and define Tmf =
supj∈J |Tm(j)f |. If we set m[λ] =

(
m

(j)
[λ]
)
j∈J , then we have again that

Tm[λ] = Sλ,pTmS−1
λ,p (2.11)

because Sλ commutes with f 7→ |f | and Sλ(supj∈J fj) = supj∈J Sλfj . Con-
sequently, Tm[λ] and Tm also have the same norm on Lp(Rn).

We shall speak of the action on Lp of the multiplier m and set
‖m‖p→p := ‖Tm‖p→p .

If Tm is bounded on Lp, one says that m is a multiplier on Lp, or a Lp-
multiplier. The next lemma will be useful, it is nothing but a direct conse-
quence of the equality ‖m[λ]‖p→p = ‖m‖p→p for every λ > 0, and of the
triangle inequality in Lp.

Lemma 2.1. — Suppose that 1 6 p 6 +∞ and that m(ξ) is a Lp(Rn)-
multiplier. If the function ψ is integrable on (0,+∞), the multiplier N defined
by

N(ξ) =
∫ +∞

0
ψ(λ)m(λξ) dλ , ξ ∈ Rn ,

is a Lp(Rn)-multiplier and ‖N‖p→p 6 ‖ψ‖L1(0,+∞) ‖m‖p→p.

Note that clearly, multiplier operators commute to each other, and com-
mute to translations and differentiations. We will apply many times the easy
fact (2.9), which can be written as

‖m‖2→2 = ‖Tm‖2→2 6 ‖m‖L∞(Rn) . (2.12.P)
The inequality is actually an equality, since by Parseval, the norm of Tm on
L2(Rn) is equal to that of Pm, the multiplication operator by m.

If K is a function integrable on Rn, it acts by convolution on Lp(Rn) for
all values 1 6 p 6 +∞, and one gets easily by convexity of the Lp norm that

‖K ∗ f‖Lp(Rn) 6 ‖K‖L1(Rn) ‖f‖Lp(Rn) . (2.13)
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This is an easy example of operator associated to a multiplier, since convolu-
tion of f with K corresponds to multiplication of f̂ by K̂. The Fourier trans-
form m = K̂ of K is thus a multiplier on all spaces Lp(Rn), 1 6 p 6 +∞.
Consider the Fourier transform m of the convolution kernel K ∈ L1(Rn),
equal to

m(ξ) =
∫
Rn
K(x) e−2iπx·ξ dx , ξ ∈ Rn .

For ξ 6= 0, let ξ = |ξ|θ and x = y + sθ, where y is in the hyperplane
θ⊥ orthogonal to θ ∈ Sn−1, and s ∈ R. By Fubini, we have for every real
number u that

m(uξ) =
∫
R

(∫
θ⊥
K(y + sθ) dn−1y

)
e−2iπsu|ξ| ds ,

where dn−1y denotes the normalized Lebesgue measure on the Euclidean
space θ⊥ ⊂ Rn. In what follows we associate to K and to θ in the unit
sphere Sn−1 the function ϕθ,K defined on R by

∀ s ∈ R, ϕθ,K(s) :=
∫
θ⊥
K(y + sθ) dn−1y , (2.14)

so that for ξ 6= 0 and θ = |ξ|−1ξ, letting ϕθ = ϕθ,K we have

m(uξ) =
∫
R
ϕθ(s) e−2iπsu|ξ| ds =

∫
R

1
|ξ|
ϕθ

(
v

|ξ|

)
e−2iπvu dv . (2.15)

The function R 3 u 7→ m(uθ) is the Fourier transform (in dimension 1) of ϕθ.

2.2.1. Multipliers “of Laplace type”

We consider a scalar function F on (0,+∞) that admits an expression of
the form

∀ λ > 0 , F (λ) = λ

∫ +∞

0
e−λt a(t) dt , (2.16)

where a is a measurable function bounded on (0,+∞). The multiplier m(ξ)
“of Laplace type” associated to F is defined by m(ξ) = F (|ξ|), for ξ ∈ Rn.
We note that ‖F‖∞ 6 ‖a‖∞, thus by (2.12.P), this multiplier m is bounded
on L2(Rn) with operator norm 6 ‖a‖∞. Stein proves the following result.

Proposition 2.2 ([73, Theorem 3′, p. 58]). — Let F be defined on
(0,+∞) by (2.16), for some function a ∈ L∞(0,+∞). The operator Tm asso-
ciated to the multiplier m(ξ) = F (|ξ|) is bounded on Lp(Rn) for 1 < p < +∞
and

‖Tm‖p→p 6 λp‖a‖∞ ,

where λp is a constant independent of the dimension n.
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The identity operator belongs to this class (when a(t) ≡ 1), we thus see
that λp > 1 for every p. It follows from the proposition that the imaginary
powers of (−∆)1/2 act on the spaces Lp(Rn) when 1 < p < +∞, with norms
bounded independently of the dimension n. Indeed, we have the formula of
Laplace type

λ ib = 1
Γ(1− ib) λ

∫ +∞

0
e−λt t− ib dt , λ > 0 , a(t) = t− ib

Γ(1− ib) , (2.17)

hence ‖a‖∞ = |Γ(1− ib)|−1, for every b ∈ R. According to the estimate (3.4)
for the Gamma function, we get from Proposition 2.2 that

∀ b ∈ R,
∥∥|ξ| ib∥∥

p→p 6 λp(1 + b2)−1/2 eπ|b|/2 , 1 < p < +∞ . (2.18)

Stein’s proof of Proposition 2.2 draws on Lp inequalities for the Littlewood–
Paley functions g1(f) and g2(f), and a comparison g1(Tmf) 6 κg2(f). We
now sketch another possibility, which invokes martingale inequalities. If F
is as in Proposition 2.2 and m(ξ) = F (|ξ|), then Tmf , for f ∈ S(Rn), can
be expressed by

−
(
Tm[2π]f

)
=
∫ +∞

0
a(t)
(
∂

∂t
Ptf

)
dt . (2.19)

Indeed, we know by (2.1) that

(Ptf)(x) = u(x, t) =
∫
Rn

e−2πt|ξ| f̂ (ξ) e2iπx·ξ dξ

and(∫ +∞

0
a(t)
(
∂

∂t
Ptf

)
dt
)

(x)

=
∫ +∞

0
a(t)

(∫
Rn

(−2π|ξ|) e−2πt|ξ| f̂ (ξ) e2iπx·ξ dξ
)

dt

= −
∫
Rn
F (2π|ξ|) f̂ (ξ) e2iπx·ξ dξ = −

(
Tm[2π]f

)
(x) .

Suppose that a is a step function supported in [t0, tN ] ⊂ [0,+∞). Then

a(t) =
N∑
j=1

aj1[tj−1,tj)(t) ,

with 0 = t0 < t1 < . . . < tN . By (2.19), we obtain that

−Tm[2π]f =
N∑
j=1

aj(Ptj − Ptj−1)(f) .

It follows that Tmf can be considered as projection of a martingale trans-
form by a conditional expectation EG . Let uj = tj/2, j = 0, . . . , N , and
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T := uN . We have seen in (1.13) that Ptjf = P2ujf is the image under
the projection EG of the martingale member MT−uj = (Pujf)(XT−uj ), so
letting Li = MT−uN−i , i = 0, . . . , N , we see that Tm[2π]f is equal to

EG
( N∑
j=1

aj(MT−uj−1 −MT−uj )
)

= EG
( N∑

i=1

aN−i+1(Li − Li−1)
)
,

which is the transform of the martingale (Li)Ni=0 by the bounded non-
random multipliers (aN−i+1)Ni=1. Also, LN is equal to MT = f(XT ) that
has the distribution of f with respect to the (infinite) invariant measure,
the Lebesgue measure on Rn (see Remark 1.2), hence ‖f‖p = ‖MT ‖p. In
this simple case, one deduces Proposition 2.2 from Remark 1.8 about the
Burkholder–Gundy inequalities, and it can be easily generalized, first to
compactly supported continuous functions a. Using Remark 1.9, we find
in this way that

λp 6 κp
∗ , p∗ := max(p, p/(p− 1)) , 1 < p < +∞ . (2.20)

2.3. Riesz transforms

In dimension 1, there is only one Riesz transform R, which is called the
Hilbert transform H. It is defined for f ∈ L2(R) by

∀ ξ ∈ R , (Rf)̂(ξ) = (Hf)̂(ξ) = − iξ
|ξ|
f̂(ξ) .

This is given by a multiplier of constant modulus 1 (almost everywhere), thus
the transformation is isometric and invertible on L2(R) by Parseval, and H
is a unitary operator on L2(R) with inverseH−1 = −H. If ũ(x, t) denotes the
harmonic extension of Hf to the upper half-plane, then u(x, t)+ iũ(x, t) is a
holomorphic function of the complex variable z = x+ it, because its Fourier
transform vanishes for ξ < 0, implying by inverse Fourier transform that
u(x, t) is an integral in ξ > 0 of the holomorphic functions e−2π|ξ|t e2iπξx =
e2iπξ(x+it). A classical theorem going back to Marcel Riesz [65] states that
the Hilbert transform is bounded on Lp(R) when 1 < p < +∞. This is
also a consequence of the results on the Littlewood–Paley function g(f),
or of martingale inequalities as we shall see below. Some of the first deep
connections between Brownian motion and classical Harmonic Analysis can
be found in Burkholder–Gundy–Silverstein [18].

The Brownian argument is easier for the Hilbert transform HT on the
unit circle T ⊂ R2. Let (Bt)t>0 be a plane Brownian motion defined on
some (Ω,F , P ), starting from 0 in R2, and let τ be the first time t when
Bt hits the circle T. By rotational invariance, the distribution of Bτ is
the uniform probability measure on the circle. Let f be a function in
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Lp(T) and let u be its harmonic extension to the unit disk. Assume that
2πu(0) =

∫ 2π
0 f(cos θ, sin θ) dθ = 0, and denote by a ∧ b the minimum of

a and b real. The random process (Mt)t>0 = (u(Bt∧τ ))t>0 is a Brownian
martingale, which can be expressed by the Itō integral

u(Bt∧τ ) =
∫ t∧τ

0
∇u(Bs) · dBs .

Suppose that 1 < p < +∞. By the continuous version of the Burkholder–
Gundy inequalities, the norm ‖f‖Lp(T) = ‖u(Bτ )‖Lp(Ω,F,P ) is equivalent to
the norm in Lp(Ω,F , P ) of the square function of the martingale (Mt)t>0,
given by

S(f) :=
(∫ τ

0
|∇u(Bs)|2 ds

)1/2

.

If f̃ = HTf denotes the function on T conjugate to f and ũ its harmonic
extension to the unit disk, then |∇ũ(x)| = |∇u(x)| for x in the unit disk,
according to the Cauchy–Riemann equations for the function u+ iũ holo-
morphic in the disk. It follows that S(f̃) = S(f) and the Lp-boundedness
of the Hilbert transform for the circle is established via the Burkholder–
Gundy inequalities of Theorem 1.6. The bound for the norm ofHT obtained
in this manner is related to the constants in Burkholder–Gundy. The ex-
act value of the Lp norm of H is known, this is due to Pichorides [61], see
Remark 2.3 below.

In dimension n, there are n Riesz transforms Rj , defined on L2(Rn) by

(Rjf)̂(ξ) = − iξj
|ξ|

f̂(ξ) , j = 1, . . . , n .

Since
∥∥(∑n

j=1 |Rjf |2
)1/2∥∥2

2 =
∑n
j=1 ‖Rjf‖22, one has by Parseval that∥∥∥∥( n∑

j=1
|Rjf |2

)1/2∥∥∥∥
2

= ‖f‖2 . (2.21)

The Riesz transforms are “collectively bounded” in Lp(Rn), by a constant ρp
independent of the dimension n (Stein [76]), meaning that∥∥∥∥( n∑

j=1
|Rjf |2

)1/2∥∥∥∥
p

6 ρp‖f‖p , 1 < p < +∞ . (2.22)

Duoandikoetxea and Rubio de Francia [30] have connected in a few lines this
inequality to the properties of the Hilbert transform (see also Pisier [63]).

Proof. — For each nonzero vector u in Rn, let us introduce on L2(Rn)
the Hilbert transform Hu in the direction u by setting

∀ ξ ∈ Rn , (Huf)̂(ξ) = − iu · ξ
|u · ξ|

f̂(ξ) = −i sign(u · ξ) f̂(ξ) .
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We deduce easily from the one-dimensional case that Hu acts on Lp(Rn),
with the same norm as that of H on Lp(R). It is enough to check the case
when u is the first basis vector e1; if one writes the points x in Rn as
x = (t, y), t ∈ R, y ∈ Rn−1, and if for f belonging to the Schwartz class
S(Rn) we set fy(t) = f(t, y), we can see that (He1f)(t, y) = (Hfy)(t). Then,
applying Fubini’s theorem, we obtain∫∫

|(He1f)(t, y)|p dtdy =
∫
Rn−1

(∫
R
|(Hfy)(t)|p dt

)
dy

6 ‖H‖pp→p
∫
Rn−1

(∫
R
|fy(t)|p dt

)
dy = ‖H‖pp→p‖f‖pp .

We can consider that Rf = (R1f, . . . , Rnf) is the operator associated to
the vector-valued multiplier

m(ξ) = −i|ξ|−1ξ ∈ Rn, ξ ∈ Rn ,

that is to say, the operator sending f ∈ S(Rn) to the function Tmf from
Rn to Rn whose Rn-valued Fourier transform is equal to f̂(ξ)m(ξ). For
f ∈ S(Rn), let us look at the vector-valued integral

(Hf)(x) =
∫
Rn

(Huf)(x)udγn(u) ∈ Rn , x ∈ Rn ,

where γn is the Gaussian probability measure from (1.17). The operator H
corresponds to the vector-valued multiplier defined when ξ 6= 0 by

−i
∫
Rn

sign(u · ξ)udγn(u) = −i
(∫

R
|v|dγ1(v)

)
|ξ|−1ξ = −i

√
2
π
|ξ|−1ξ .

This can be seen by integrating on affine hyperplanes orthogonal to ξ. The
“normalized” partial integral on the hyperplane ξ⊥+v|ξ|−1ξ, v ∈ R, is equal
to ∫

ξ⊥
sign(v)(w + v|ξ|−1ξ) dγξ⊥(w) = |v| |ξ|−1ξ .

It follows that Rf =
√
π/2Hf . For x fixed, the norm of (Hf)(x) is the

supremum of scalar products with vectors θ∈Sn−1, and letting 1/q+1/p=1,
one has that

|(Hf)(x)| 6 sup
θ∈Sn−1

∫
Rn
|θ · u||(Huf)(x)|dγn(u)

6

(∫
R
|v|q dγ1(v)

)1/q(∫
Rn
|(Huf)(x)|p dγn(u)

)1/p
.
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Using the notation gq of (1.18) for the Gaussian moments, we get

(∫
Rn
|(Rf)(x)|p dx

)1/p
=
√
π

2

(∫
Rn
|(Hf)(x)|p dx

)1/p

6

√
π

2 gq
(∫

Rn

∫
Rn
|(Huf)(x)|p dγn(u)dx

)1/p

6

√
π

2 gq ‖H‖p→p ‖f‖p . (2.23)

This argument yields ρp 6
√
π/2 gq ‖H‖p→p for the constant ρp in (2.22).

When p = 2, this gives ρ2 6
√
π/2 instead of the correct value ρ2 = 1

of (2.21). When p tends to 1, we obtain by (1.18) that

(∫
Rn
|(Rf)(x)|p dx

)1/p
6 κ
√
q‖H‖p→p ‖f‖p . �

Remark 2.3. — The value gq =
(∫

R |v|
q dγ1(v)

)1/q tends to √2/π when
p tends to +∞, and the asymptotic result ρp ' ‖H‖p→p obtained from (2.23)
in this case is essentially best possible. Indeed, Iwaniec and Martin [47] have
shown that the operator norm on Lp(Rn) of each individual Riesz transform
Rj , j = 1, . . . , n, is equal to the one of the Hilbert transform H on Lp(R),
hence 1 6 ‖H‖p→p 6 ρp. According to Pichorides [61], the norm of the
Hilbert transform is given by

‖H‖p→p = cot
(
π

2p∗

)
, with p∗ = max

(
p, p/(p− 1)

)
.

Iwaniec and Martin [47] also bound the “collective” norm in (2.22) by√
2Hp(1), where Hp(1) is the norm on Lp(C) ' Lp(R2) of the “complex

Hilbert transform”, which corresponds to the multiplier C 3 ξ 7→ i |ξ|−1ξ, in
other words, the operator R1 + iR2 on Lp(R2). Iwaniec and Sbordone [48,
Appendix] add a few lines and give Hp(1) 6 π

2 ‖H‖p→p so that finally

ρp 6
√

2Hp(1) 6 π√
2
‖H‖p→p 6 κp∗ . (2.24)

Remark. — The proof from [30] is in the spirit of themethod of rotations,
which uses integration in polar coordinates to get directional operators in
its radial part, see also Section 4.1. With this method, one can relate to
the Hilbert transform not only the Riesz transforms, but also more general
singular integrals with odd kernel, see [39, Section 5.2] for example.
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3. Analytic tools

3.1. Some known facts about the Gamma function

From Euler’s formula

∀ z ∈ C \ (−N) , Γ(z) = lim
n→∞

n! nz

z (z + 1) . . . (z + n) ,

one passes to the Weierstrass infinite product for 1/Γ, stating that

1
Γ(z + 1) = 1

zΓ(z) = eγz
∞∏
n=1

(
(1 + z/n) e−z/n

)
,

where γ is the Euler–Mascheroni constant. It follows that 1/Γ is an entire
function, with simple zeroes z = 0,−1,−2, . . . . For the interpolation argu-
ments to come, we need upper estimates on the modulus of 1/Γ(σ + iτ) for
σ, τ real. From the preceding formula and from Γ(z) = Γ(z), we infer that∣∣∣∣ 1

Γ(1 + iτ)

∣∣∣∣2 =
∞∏
n=1

(
1 + τ2

n2

)
= sinh(πτ)

πτ
, τ ∈ R , (3.1)

according to another result due to Euler, the famous formula

sin(πz)
πz

=
∞∏
n=1

(
1− z2

n2

)
. (3.2.E)

The connoisseur has seen that we just came upon a special case of the “Euler
reflection formula”, stating that Γ(z)−1Γ(1 − z)−1 = sin(πz)/π for every
z ∈ C, or equivalently Γ(1 + z)−1Γ(1 − z)−1 = sin(πz)/(πz). For every x
real, one has

sinh(πx)
πx

6
eπ|x|

1 + π|x|
6

eπ|x|

(1 + x2)1/2 . (3.3)

The right-hand inequality is evident, the left-hand one is equivalent to saying
that for every y > 0, we have (1+y) sinh(y) 6 y ey or h(y) := (y−1) e2y +y+
1 > 0, which is true because h(0) = h′(0) = 0 and h′′(y) = 4y e2y > 0 when
y > 0. Using (3.1) and (3.3), we get in particular that

∀ τ ∈ R ,
∣∣∣∣ 1
Γ(1 + iτ)

∣∣∣∣ 6 (√1 + τ2
)−1/2 eπ|τ |/2 . (3.4)
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More generally than in (3.1), for σ ∈ [0, 1], let us write∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣2 = e2γσ
∏
n>1

([
(1 + σ/n)2 + (τ/n)2]e−2σ/n

)

= e2γσ
∏
n>1

(
(1 + σ/n)2 e−2σ/n)∏

n>1

(
1 +

(
τ

n+ σ

)2)

= Γ(1 +σ)−2
∏
n>1

(
1 +

(
τ

n+ σ

)2)
.

We have by convexity of ln(1 + x−2) for x > 0 that∏
n>1

(
1 +

(
τ

n+σ

)2)
6

(∏
n>1

(
1 +

(
τ

n

)2))1−σ(∏
n>1

(
1 +

(
τ

n+1

)2))σ

= (1 + τ2)−σ
∏
n>1

(
1 +

(
τ

n

)2)

= (1 + τ2)−σ sinh(πτ)
πτ

.

It follows that∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣2 6 Γ(1 + σ)−2(1 + τ2)−σ sinh(πτ)
πτ

and applying (3.3) we obtain∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣ 6 Γ(1 + σ)−1(√1 + τ2
)1/2−1−σ eπ|τ |/2 . (3.5)

We extend this bound by using the functional equation zΓ(z) = Γ(z + 1).
When z = k + 1 + σ + iτ , with σ ∈ (0, 1) and k > 1 an integer, we have∣∣∣∣ 1

Γ(k + 1 + σ + iτ)

∣∣∣∣ =
( k∏
j=1

(
(j + σ)2 + τ2)−1/2

)∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣
6
(√

1 + τ2
)−k∣∣∣∣ 1

Γ(1 + σ + iτ)

∣∣∣∣ . (3.6)

Letting a ∧ b = min(a, b) for a, b ∈ R, we see that

Γ(1 + σ) =
∫ +∞

0
uσ e−u du

>
∫ +∞

0
(u ∧ 1) e−u du =

∫ 1

0
e−u du = 1− e−1 >

1
2 .
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Let us mention that the actual minimal value of Γ on (0,+∞) is reached
at

xΓ = 1.46163 . . . and that Γ(xΓ) > 0.88 . (3.7)
Note that on (0,+∞), the function x 7→ ln Γ(x) is convex and ln Γ(1) =
ln Γ(2) = 0, hence Γ(x) 6 1 when x ∈ [1, 2] and Γ(x) > 1 on (0, 1] and
[2,+∞).

We get consequently by (3.5) and (3.6) that∣∣∣∣ 1
Γ(k + 1 + σ + iτ)

∣∣∣∣ 6 2
(√

1 + τ2
)1/2−k−1−σ eπ|τ |/2 . (3.8)

When z = −k + σ + iτ , with k > 0 an integer, we obtain by the functional
equation ∣∣∣∣ 1

Γ(z)

∣∣∣∣ =
∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣ 0∏
j=−k

((j + σ)2 + τ2)1/2 .

For j = 0,−1, the factors in the product are 6 (1 + τ2)1/2, thus∣∣∣∣ 1
Γ(−k + σ + iτ)

∣∣∣∣ 6 (1 + τ2)(k+1)/2
∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣ when k = 0, 1 , (3.9)

and when j 6 −2, we have ((j+σ)2 +τ2)1/2 6 (|j|−σ)(1+τ2)1/2. It follows
for z = −k + σ + iτ , k > 2, that∣∣∣∣ 1

Γ(z)

∣∣∣∣ 6 (k−σ)(k−1−σ) . . . (2−σ)
(
1+τ2)(k+1)/2

∣∣∣∣ 1
Γ(1 + σ + iτ)

∣∣∣∣ . (3.10)
By the functional equation and the convexity of ln Γ on (0,+∞), we have

Γ(1 + σ)−1(k − σ)(k − 1− σ) . . . (2− σ) = Γ(k + 1− σ)
Γ(2− σ)Γ(1 + σ)

6
Γ(k + 1− σ)

Γ(3/2) = 2√
π

Γ(k + 1− σ) < 2Γ(k + 1− σ) .

Coming back to (3.10) and using (3.5), we conclude when k > 2 that∣∣∣∣ 1
Γ(−k + σ + iτ)

∣∣∣∣ 6 2Γ(k − σ + 1)
(√

1 + τ2
)1/2+k−σ eπ|τ |/2 . (3.11)

When Re z > −1, it follows from (3.8) and (3.9) that∣∣∣∣ 1
Γ(z)

∣∣∣∣ 6 2
(√

1 + (Im z)2
)1/2−Re z eπ| Im z|/2 ,

so, in every half-plane of the form Re z > a, one has by (3.11) an upper
bound ∣∣∣∣ 1

Γ(z)

∣∣∣∣ 6 βa(√1 + | Im z|2
)1/2−a eπ| Im z|/2 , (3.12.Γ)

with βa = 2Γ(|a|+ 1) when a 6 −1, and βa = 2 otherwise.
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Remark. — The rather crude estimate (3.12.Γ) is sufficient for our pur-
poses. In [73], Stein refers to Titchmarsh [82, p. 259], for an exact asymptotic
estimate. When σ is fixed and |τ | → +∞, one has

|Γ(σ + iτ)| '
√

2π e−π|τ |/2 |τ |σ−1/2 .

When σ>1, the preceding proof gives a lower bound 2−1√2π e−π|τ |/2 |τ |σ−1/2

for every τ . We can see it by replacing the inequality (3.3) with the evi-
dent inequality sinh(πx)/(πx) 6 (2π|x|)−1 eπ|x|. It is not possible to replace√

1 + | Im z|2 by | Im z| in (3.12.Γ) when Re z 6 −1, because the zeroes
−1,−2, . . . of 1/Γ are simple. For more results on the Gamma function, we
refer to Andrews–Askey–Roy [2].

3.2. The interpolation scheme

We begin with the classical three lines lemma, an easier version of which is
the Hadamard three-circle theorem. After this, we shall turn to interpolation
of holomorphic families of linear operators.

3.2.1. The three lines lemma

Lemma 3.1. — Let S denote the open strip {z : 0 < Re z < 1} in the
complex plane. Let f be a function holomorphic in S and continuous on the
closure of S. Assume that f is bounded in S and that

|f(0 + iτ)| 6 C0, |f(1 + iτ)| 6 C1

for all τ ∈ R. Then, for every θ ∈ (0, 1), one has that |f(θ)| 6 C1−θ
0 Cθ1 .

Remark 3.2. — Of course f(θ + iτ) admits the same bound for every
τ ∈ R, by translating f vertically. The somewhat strange assumption that
f must be bounded on the whole strip by a value which does not appear
in the final result is not the finest assumption that makes the conclusion
valid, see a better criterion below. However, when Lemma 3.1 applies, the
function f is bounded at last. It is well known that some restriction on the
size of f inside the strip is needed for the lemma to hold true. Indeed, in
the strip Sπ = {z : |Re z| 6 π/2}, the function f(z) = ecos z has modulus
one on the two lines Re z = ±π/2, but it is “very big” when Re z = 0,
since |f(iτ)| = ecosh(τ). For a function f holomorphic in an open vertical
strip S, continuous on the closure and bounded by 1 on the two boundary
lines, either f is bounded by 1 on S, or else sup| Im z|=|τ | |f(z)| must become
extremely large when |τ | tends to infinity. This is the typical situation with
the theorems of Phragmén–Lindelöf type, see [69, Chap 12, 12.7] for example.
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Here is a sufficient criterion ensuring that |f | is bounded by its supremum
on the boundary ∂Sw of a vertical strip Sw of width w. If f is holomorphic
on Sw, continuous on the closure with |f | 6 1 on ∂Sw, and if for some
a < π/w one has

|f(z)| = O
(
exp(ea| Im z|)

)
when z tends to infinity in Sw, then |f | is bounded by 1 on the strip. Let
us prove it assuming ln |f(z)| 6 κ ea| Im z| in Sπ = {|Re z| 6 π/2}, for
an a < 1 = π/w. Set gε(z) = e−ε cos(bz), with ε > 0 and a < b < 1. If
z = σ + iτ and |σ| 6 π/2, we have
|gε(z)| = exp

(
−εRe cos(bz)

)
= exp

(
−ε cos(bσ) cosh(bτ)

)
6 exp

(
−ε cos(bπ/2) cosh(bτ)

)
6 exp

(
−Bε eb|τ |

)
6 1 , Bε > 0 ,

hence |f(z)gε(z)| 6 1 on ∂Sπ, and if |τ | = | Im z| > (b− a)−1 ln(κ/Bε) we
get

ln |f(z)gε(z)| 6 κ ea|τ |−Bε eb|τ | 6 0 . (3.13)

Given any z0 ∈ Sπ, we can find a rectangle Rε = {|Re z| 6 π/2, | Im z| 6
τ0(ε)} containing z0 such that |f(z)gε(z)| 6 1 on ∂Rε. We then have
|f(z0)gε(z0)| 6 1 by the maximum principle, |f(z0)| 6 | eε cos(bz0) | for
every ε > 0, thus |f(z0)| 6 1.

Several times later on, we encounter situations where the function f is not
bounded on the two lines limiting a vertical strip S, but has instead a growth
exponential in |τ | = | Im z|. The next lemma generalizes the preceding. Our
proof and estimate are not the “correct” ones, as we shall explain below after
Corollary 3.4, but they give a reasonable explicit bound. In these Notes, we
shall say that a function f defined on a vertical strip S has an admissible
growth in the strip if for some κ > 0, the function f admits in S a bound of
the form |f(z)| 6 κ eκ| Im z|.

Lemma 3.3. — Let f be a function holomorphic in the strip S = {z :
0 < Re z < 1}, with admissible growth in S and continuous on the closure of
S. Assume that there exist real numbers a0, a1 > 0 and b0, b1 such that for
every τ ∈ R, one has

|f(0 + iτ)| 6 ea0|τ |+b0 , |f(1 + iτ)| 6 ea1|τ |+b1 .

For every θ ∈ (0, 1), it follows that

|f(θ)| 6 exp
(√

θ(1− θ)
√

(1− θ)a2
0 + θa2

1 + (1− θ)b0 + θb1

)
.

Proof. — We introduce the holomorphic function g(z) := ecz2/2+dz, with
c > 0 and d real. If z = σ + iτ , we see that |g(z)| = ec(σ2−τ2)/2+dσ. On the
vertical side Re z = 0 of S, we have that

|f(iτ)g(iτ)| 6 ea0|τ |+b0−cτ2/2 6 ea
2
0/(2c)+b0 =: E0
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and when Re z = 1, we get the upper bound

|f(1 + iτ)g(1 + iτ)| 6 ea1|τ |+b1−cτ2/2+c/2+d 6 ea
2
1/(2c)+b1+c/2+d =: E1 .

We choose d so that E0 = E1, and we need not mention the value of d.

It follows from the assumption |f(z)| 6 κ eκ| Im z| = κ eκ|τ | that f(z)g(z)
tends to zero at infinity in S. Let us fix θ ∈ (0, 1). If f(θ) 6= 0, there exists
τ0 > 0 such that |f(z)g(z)| < |f(θ)g(θ)| when | Im z| > τ0. By the maximum
principle for the compact rectangle R = {0 6 Re z 6 1, | Im z| 6 τ0}, we
know that the maximum of |f(z)g(z)| is reached at the boundary of R, but
it cannot be on the horizontal sides | Im z| = τ0. Hence |f(θ)g(θ)| 6 E0 =
E1 = E1−θ

0 Eθ1 , we get therefore

|f(θ)| 6 e−cθ
2/2−dθ E1−θ

0 Eθ1

= exp
(

(1− θ)a2
0 + θa2

1
2c + (1− θ)b0 + θb1 + cθ(1− θ)/2

)
and after optimizing in c > 0, we conclude that

|f(θ)| 6 exp
(√

(1− θ)a2
0 + θa2

1

√
θ(1− θ) + (1− θ)b0 + θb1

)
. �

Corollary 3.4. — Let f be a function holomorphic in S = {z : α0 <
Re z < α1}, with admissible growth in the strip S and continuous on the
closure of S. Assume that there exist real numbers u0, u1 > 0 and v0, v1 such
that

|f(α0 + iτ)| 6 eu0|τ |+v0 , |f(α1 + iτ)| 6 eu1|τ |+v1

for every τ ∈ R. Let θ ∈ [0, 1], set αθ = (1−θ)α0 +θα1, uθ = (1−θ)u0 +θu1
and vθ = (1− θ)v0 + θv1. For every τ ∈ R, one has

|f(αθ + iτ)| 6 Ew,θ(u0, u1) euθ |τ |+vθ ,
where w = α1 − α0 denotes the width of the strip S and where

Ew,θ(u0, u1) := exp
(
w

√
θ(1−θ)

√
(1−θ)u2

0 + θu2
1

)
.

Notice that
√
θ(1− θ) 6 1/2 for every θ ∈ [0, 1]. When 0 6 u0, u1 6 u,

one can always employ the simpler bound Ew,θ(u, u) 6 ewu/2.

Proof. — We begin with S1 := {0 < Re z < 1}. We bound the modulus
of f(θ + iτ0) for τ0 in R by performing a vertical translation of f , then
invoking Lemma 3.3. The function F (z) = f(z + iτ0) satisfies |F (j + iτ)| 6
euj |τ |+(uj |τ0|+vj), j = 0, 1, and the bound for |F (θ)| given at Lemma 3.3
implies that

|f(θ + iτ0)| 6 E1,θ(u0, u1) euθ |τ0|+vθ , τ0 ∈ R . (3.14)
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It is easy to pass to S = {α0 < Re z < α1} with the transform that replaces
f(z), defined for z ∈ S, by F (Z) = f(α0 +Zw) for Z ∈ S1. If |f(αj + iτ)| 6
euj |τ |+vj , j = 0, 1, then |F (j + iτ)| 6 ewuj |τ |+vj and by (3.14) we have that

|f(αθ + iτ0)| = |F (θ + iτ0/w)|

6 E1,θ(wu0, wu1) e(wuθ)|τ0/w|+vθ = Ew,θ(u0, u1) euθ |τ0|+vθ . �

Applying Corollary 3.4 in the case where u0 = u1 = u > 0 and vj = 0, one
sees that when f has an admissible growth in S, the hypothesis |f(αj+iτ)| 6
eu|τ | for all τ ∈ R and j = 0, 1, implies |f(α+ iτ)| 6 ewu/2 eu|τ | in the strip.
It is not possible to replace the “bounding factor” ewu/2 by 1, as we shall
understand below.

The “correct” proof of Lemma 3.3 uses a lemma given by Hirschman [45,
Lemma 1], cited by Stein [70]. In our case, we consider the function U ,
harmonic in the open strip S1 = {0 < Re z < 1} and continuous on
the closed strip, equal to aj |τ | + bj at each boundary point j + iτ , with
aj > 0, τ ∈ R and j = 0, 1. Let V be the harmonic conjugate of U
in S1, defined up to an additive constant by the fact that ∇V (z), for
z ∈ S1, is equal to R∇U(z) where R is the rotation of angle +π/2 in
R2 ' C. Let us set V (1/2) = 0 in order to fix V entirely. Since U is
harmonic, the 1-form −Uy dx+Ux dy is closed and V (z) =

∫ 1
0 R∇U(γ(s)) ·

γ′(s) ds for any C1 path γ in S1 such that γ(0) = 1/2 and γ(1) = z. Then
U + iV is holomorphic, by the Cauchy–Riemann equations. Consider the
holomorphic outer function

g(z) = exp
(
−U(z)− iV (z)

)
, z ∈ S1 ,

for which |g(z)| = exp(−U(z)) and |g(z)| 6 e−(b0∧b1) in S1. If f is as in
Lemma 3.3, then |fg| 6 1 at the boundary of S1 and fg has an admissible
growth. It follows from an easy variation of Lemma 3.1 that |(fg)(θ)| 6 1
thus |f(θ)| 6 eU(θ), and it remains to express U(θ), with the help of the
harmonic measure at θ for S1.

We shall obtain the harmonic measures for Sπ = {z ∈ C : |Re z| <
π/2} from the case of the open unit disk D, by a conformal mapping (see
also [39, proof of Lemma 1.3.8]). Let σ belong to Iπ = (−π/2, π/2) = Sπ ∩R.
The Poisson probability measure µσ at σ relative to Sπ can be written as
µσ = µσ,0 + µσ,1, where µσ,0 is supported on B0 = −π/2 + iR and µσ,1 on
B1 = π/2 + iR. If h is real, harmonic in Sπ, bounded and continuous on the
closure of Sπ, the value of h at σ is equal to

h(σ) =
∫
∂Sπ

hdµσ =
∫
B0

hdµσ,0 +
∫
B1

hdµσ,1 . (3.15)

The Poisson probability measure νr forD at r ∈ (−1, 1) has density gr(e iβ) =
(1− r2)/(1−2r cosβ+ r2) with respect to the invariant probability measure
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on the unit circle T. Let Φ be the holomorphic bijection from Sπ onto D
given by Φ(z) = tan(z/2) when z ∈ Sπ, extended to |Re z| = π/2 by the
same formula. Then ∂Sπ is sent to T \ {i ,−i} and if Φ(π/2 + iτ) = eiβ , we
have β ∈ (−π/2, π/2) and tanh(τ/2) = tan(β/2). For r = tan(σ/2) we see
that νr = Φ#µσ and∫

B1

hdµσ,1 =
∫
R
h(π/2 + iτ)fσ(τ) dτ with fσ(τ) = cosσ

2π(cosh τ − sin σ) ,

while
∫
B0
hdµσ,0 =

∫
R h(−π/2 + iτ)f−σ(τ) dτ . One finds ‖µσ,1‖1 = θ :=

σ/π+1/2 and ‖µσ,0‖1 = 1−θ by harmonicity of h(z) = Re z. When σ tends
to π/2, the density fσ resembles the Cauchy kernel P (1)

ε in (1.33.C) with
ε = π/2− σ, since

fσ(τ) = 1
2π

sin ε
cosh τ − cos ε '

ε

π(τ2 + ε2) .

One can also comprehend fσ as sum of the alternate series of Cauchy kernels

fσ = P
(1)
π/2−σ − P

(1)
π+π/2+σ + P

(1)
2π+π/2−σ − P

(1)
2π+π+π/2+σ

+ P
(1)
4π+π/2−σ − P

(1)
4π+π+π/2+σ + · · · ,

indeed, if ϕσ denotes the sum of the series above and if g belongs to K(R),
then G(σ+ iτ) = (ϕσ ∗g)(τ) is harmonic in Sπ, tends to g(τ) when σ → π/2
and to 0 when σ → −π/2, the same properties as for (fσ ∗ g)(τ).

Let h∗ be a continuous function on ∂Sπ, and suppose that the two func-
tions t 7→ e−|t| h∗(±π/2+it) are Lebesgue-integrable on the real line. Then,
writing

h̃∗(z) =
∫
R

(
h∗(π/2+i(τ−t))fσ(t) + h∗(−π/2+i(τ−t))f−σ(t)

)
dt (3.16)

for every z = σ + iτ ∈ Sπ, one defines a harmonic function h̃∗ in Sπ,
continuous on the closure if one sets h̃∗(z∗) = h∗(z∗) for z∗ ∈ ∂Sπ. Let
Hc(Sπ) denote the class of functions harmonic in Sπ and continuous on
the closure. Not every h ∈ Hc(Sπ) can be expressed by (3.16) from its
restriction h∗ = h

∣∣
∂Sπ

. First, h∗ must be µσ-integrable, but even then, h(z) =
Re cos(z) = cos(σ) cosh(τ), for which h∗ = 0, is a counterexample.

Let us say here that g defined on Sπ, resp. ∂Sπ, is moderate if there is
a < 1 such that g(z) = O(ea| Im z|) for z ∈ Sπ, resp. ∂Sπ. If h∗ is moderate
and continuous on ∂Sπ, the extension h̃∗ in (3.16) is in Hc(Sπ), and it is
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moderate because

|h̃∗(σ + iτ)| 6 κ
∫
R

ea|τ−t|(fσ + f−σ)(t) dt

6 κ

(
ea +

∫ +∞

1

ea|t|

cosh t− 1 dt
)

ea|τ | .

Lemma 3.5 (after [45]). — If h ∈ Hc(Sπ) is moderate and h∗ = h
∣∣
∂Sπ

,

then h = h̃∗.

If one replaces Sπ by a strip Sw of width w, then clearly the moderation
condition in Sw must be formulated for z ∈ Sw as g(z) = O(ea| Im z|) with
a < π/w.

Proof. — We have that h∗ is moderate on ∂Sπ, hence U = h − h̃∗ is
moderate on Sπ and vanishes on ∂Sπ. Given z0 ∈ Sπ, a < 1 such that
U = O(ea|τ |), ε > 0 and b ∈ (a, 1), we see as in (3.13) that U−εRe cos(bz) is
6 0 on the boundary of a rectangle containing z0, hence U(z0) 6 εRe cos(z0)
by the maximum principle. Doing it also with −U and letting ε → 0 we
conclude that h− h̃∗ = 0. �

We now study the function h1 defined by h1(π/2 + iτ) = |τ |, h1(−π/2 +
iτ) = 0 for every τ ∈ R and its (moderate) harmonic extension given at
σ ∈ Iπ by

h1(σ) =
∫
R
|τ |fσ(τ) dτ = 2

π

∫ +∞

0
arctan

(
cosσ

eτ − sinσ

)
dτ .

Recall that ‖fσ‖L1(R) = θ = σ/π + 1/2. When σ = 0, we have the easy
bound

h1(0) = 2
π

∫ +∞

0
arctan(e−τ ) dτ < 2

π

∫ +∞

0
e−τ dτ = 2

π
.

One can find h1(0) by writing the power series expansion of arctan(x),
letting then x = e−τ and integrating in τ ∈ (0,+∞). One gets h1(0) =
2G/π < 0.584, where G =

∑+∞
k=0(−1)k(2k+ 1)−2 is the Catalan constant,

0.915 < G < 0.916. One has

h′1(σ) = 2
π

∫ +∞

0

e−2τ − e−τ sinσ
e−2τ −2 e−τ sinσ + 1 dτ = 1

π
ln
(
2− 2 sinσ

)
,

thus h1 is concave on Iπ and maximal when σ = π/6. One can find nu-
merically that 0.646 < h1(π/6) < 0.647. By concavity, we obtain for each
σ ∈ Iπ that

h1(σ) = h1(σ)− h1(−π/2) 6 h′1(−π/2)(σ + π/2) = θ ln 4 . (3.17)
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One has h1(π/2) = 0, the behavior of h1(σ) when ε = π/2 − σ → 0 is
given by

h1(σ) =− 1
π

∫ ε

0
ln(2− 2 cos s) ds

' − 1
π

∫ ε

0
ln(s2) ds= 2

π

(
ε ln(1/ε) + ε

)
. (3.18)

Since h1( ·+ iτ)− h1( · ) is bounded by |τ | on B1 and vanishes on B0, we
have

0 < h1(σ+ iτ) 6 h1(σ) + θ |τ | 6 h1(π/6) + θ|τ | , σ ∈ Iπ , τ ∈ R . (3.19)

If Sw = {z ∈ C : α0 < Re z < α1} has width w = α1 − α0 and if
λ = w/π, we may associate to h, harmonic on Sw, the harmonic function
H(Z) = h(α1/2 + λZ) for Z ∈ Sπ, where αt = (1 − t)α0 + tα1 when
t ∈ [0, 1]. If we set h1,w(α1 + iτ) = |τ | and h1,w = 0 on α0 + iR, then
H1,w = λh1, and we get from (3.19) that

h1,w(αθ + iτ) = h1,w(α1/2 + λσ + iτ) = λh1(σ + iτ/λ)
6 wh1(π/6)/π + θ |τ | .

We now comment on Corollary 3.4. If f is holomorphic in Sw with ad-
missible growth, satisfies |f(αj+ iτ)| 6 euj |τ | on ∂Sw, uj > 0, j = 0, 1, the
“correct” bound at z ∈ Sw for f is eUu,w(z) where Uu,w = u0h0,w +u1h1,w,
with h0,w(α1/2 + ζ) = h1,w(α1/2− ζ). One gets in particular Uu,w(α1/2) =
2λ(u0 + u1)G/π. When u0 = u1 = 1, this finer method gives at α1/2 a
bounding factor e(4G/π)(w/π) instead of Ew,1/2(1, 1) = ew/2, and 4G/π2 <
0.3713 < 1/2.

Let Vu,w be the harmonic conjugate of Uu,w. Our first method in Corol-
lary 3.4 applied to f0(z) = eUu,w(z)+iVu,w(z) yields

Uu,w(αθ + iτ) 6 lnEw,θ(u0, u1) + uθ |τ | . (3.20)

If u0 = u1 = u > 0, we get Uu,w(αθ) = u(h0,w+h1,w)(αθ) 6 w
√
θ(1− θ)u.

This estimate (3.20) has the right order of magnitude in w and u, but not
in θ when θ tends to 0 or 1. The correct order when θ → 0 is κθ log(1/θ),
according to (3.18).

Remark 3.6. — We shall have to deal with cases where the bounds on
the lines limiting the strip Sw = {z ∈ C : α0 < Re z < α1}, w = α1 − α0,
have the form

|f(αj + iτ)| 6 (1 + τ2)cj euj |τ |+vj , cj , uj > 0 , j = 0, 1 .

It is obviously possible to “absorb” the polynomial factor by replacing uj in
the exponential with uj + ε, ε > 0 arbitrary, and modifying vj accordingly,
but one can work a little more carefully as follows.
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Let `1,w be the moderate harmonic function on Sw such that `1,w(α1 +
iτ) = ln(1+τ2) for τ ∈ R and `1,w = 0 on α0+iR. Let αθ = (1−θ)α0+θα1,
λ = w/π, σ = πθ − π/2 and L1,w(Z) = `1,w(α1/2+λZ). By Lemma 3.5
and (3.16), we get

`1,w(αθ + iτ) = `1,w(α1/2 + λσ + iτ) = L1,w(σ + iτ/λ)

=
∫
R
L1,w(π/2+iτ/λ− it)fσ(t) dt 6

∫
R

ln
(
1+(λ|t|+|τ |)2)fσ(t) dt .

Applying Jensen’s inequality to the probability density f̃σ = θ−1fσ, one
sees that

exp
(∫

R
ln
(
[1 + (λ|t|+ |τ |)2]1/2

)
f̃σ(t) dt

)
6

∫
R
[1+(λ|t|+|τ |)2]1/2f̃σ(t) dt 6 (1 + τ2)1/2 + λ

∫
R
|t|f̃σ(t) dt ,

bounded by (1+τ2)1/2+λ ln 4 by (3.17). For every τ ∈ R, one has therefore

0 < `1,w(αθ + iτ) < 2θ ln
(
(1 + τ2)1/2 + λ ln 4

)
. (3.21)

Define a harmonic function U in Sw, continuous on the closure, by U =
c0`0,w + c1`1,w, where `0,w(z) = `1,w(2α1/2 − z), so that U(αj + iτ) =
cj ln(1 + τ2). Let V be conjugate to U in Sw. Then g = e−U− iV is holo-
morphic in Sw and |(fg)(αj + iτ)| 6 euj |τ |+vj on ∂Sw. By (3.21), we can
bound |f(z)| at z = αθ + iτ by multiplying the inside bound of Corol-
lary 3.4 for fg with the additional factor

eU(αθ+iτ) 6
(
(1 + τ2)1/2 + ln(4)w/π

)2cθ 6 (1 + ln(4)w/π)2cθ (1 + τ2)cθ ,

where cθ = (1− θ)c0 + θc1. Since ln(4)/π < 1/2, we may remember that

|f(αθ + iτ)| 6 (1 + w/2)2cθ Ew,θ(u0, u1) (1 + τ2)cθ euθ |τ |+vθ . (3.22)

3.2.2. Interpolation of holomorphic families of linear operators

We now recall the classical complex interpolation method for bounding
in the norm of Lp(X,Σ, µ), when 1 < p < +∞, a linear operator Tα that is
a member of a holomorphic family of operators (Tz), for z in a vertical strip
S containing α. We consider a linear space E which is a common subspace
of all Lr(X,Σ, µ), 1 6 r 6 +∞, and which is dense in Lr(X,Σ, µ) when
1 6 r < +∞. This space E can be the space of simple Σ-measurable and
µ-integrable functions, or for the specific spaces Lr(Rn), it can be S(Rn)
or the space K(Rn). We consider a closed strip α0 6 Re z 6 α1 in C, with
α0 < α < α1. We assume that each Tz, for z in this closed strip, is defined
on E and linear with values in L1(X,Σ, µ) + L∞(X,Σ, µ). The holomorphy
assumption means that for f, g ∈ E , the function z 7→ 〈Tzf, g〉 is holomorphic
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in the open strip α0 < Re z < α1, but one also assumes that it extends as a
continuous function on the closed strip. The above bracket is bilinear, given
by
∫
X

(Tzf)g dµ. Later in these Notes, we shall abuse slightly and speak
about holomorphic family of linear operators in the closed strip α0 6 Re z 6
α1.

We consider 1 6 p0, p1 6 +∞ and p between p0 and p1, so that 1 <
p < +∞. We assume that when Re z = αj , j = 0, 1, the Tz s are uniformly
bounded from E , equipped with the Lpj norm, to Lpj (X,Σ, µ), and we as-
sume that for a certain θ ∈ (0, 1), we have both

1
p

= 1− θ
p0

+ θ

p1
and α = (1− θ)α0 + θα1 .

We want to show that Tα is bounded from E , equipped with the Lp norm,
to Lp(X,Σ, µ). Then, by the density of E , we will be able to extend to
Lp(X,Σ, µ) the bound obtained for the functions in E .

We must of course bound 〈Tαf, g〉, uniformly for f in the intersection of
E with the unit ball of Lp(X,Σ, µ) and for g in the unit ball of the dual
Lq(X,Σ, µ), 1/p+ 1/q = 1. Denote by q0 the conjugate of p0 and by q1 that
of p1. Observe that we have also 1/q = (1− θ)/q0 + θ/q1. We write f(x) =
u(x)|f(x)|, g(x) = v(x)|g(x)| for every x ∈ X, with |u(x)| = |v(x)| = 1.
Next, for each z ∈ C, we set

fz(x) = u(x)|f(x)|p(sz+t) , gz(x) = v(x)|g(x)|q(1−sz−t) , x ∈ X , (3.23)

where s, t real are chosen such that sα0 + t = 1/p0 and sα1 + t = 1/p1. This
yields sα + t = 1/p. We see that fα = f , gα = g and we also see that the
exponents have been chosen so that the assumptions ‖f‖p 6 1 and ‖g‖q 6 1
imply

∀ τ ∈ R , ‖fα0+iτ‖p0 6 1 , ‖fα1+iτ‖p1 6 1 ,
‖gα0+iτ‖q0 6 1 , ‖gα1+iτ‖q1 6 1 .

We notice for future reference that if f and g are bounded by M on X, then

|fz| 6 max(Mp/p0 ,Mp/p1), |gz| 6 max(Mq/q0 ,Mq/q1) (3.24)

when α0 6 Re z 6 α1, because Re(sz + t) stays between 1/p0 and 1/p1 and
Re(1− sz − t) between 1/q0 and 1/q1 when z ∈ S. We now apply the three
lines Lemma 3.1 for bounding the value H(α) = 〈Tαf, g〉 of the holomorphic
function

H : z 7→ 〈Tzfz, gz〉 , z ∈ S , (3.25)
from the bounds on the lines Re z = α0 and Re z = α1. When Re z = αj , we
get

|H(z)| = |〈Tzfz, gz〉| 6 ‖Tz‖pj→pj ‖fz‖pj ‖gz‖qj 6 ‖Tz‖pj→pj ,
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for j = 0, 1. In addition, the holomorphic function H must be bounded on
the strip, see Remark 3.2 above. If true, we know by Lemma 3.1 that

|H(α)| =
∣∣〈Tαf, g〉∣∣ 6 ( sup

τ∈R
‖Tα0+iτ‖p0→p0

)1−θ(
sup
τ∈R
‖Tα1+iτ‖p1→p1

)θ
,

and by taking the supremum over f and g, we obtain

‖Tα‖p→p 6
(

sup
τ∈R
‖Tα0+iτ‖p0→p0

)1−θ(
sup
τ∈R
‖Tα1+iτ‖p1→p1

)θ
. (3.26)

Finally, we can extend Tα from the dense subspace E to Lp(X,Σ, µ). Some-
times, rather than looking for extension, one obtains in this way a sharper
estimate for the norm of an operator Tα already known to be bounded on
Lp(X,Σ, µ).

This complex method, introduced for Lp spaces by Thorin [80, 81] for
one linear operator, extended by Stein [70] to families, can also be extended
(see [6]) to spaces of the form Lp(Lr) and more generally, by the abstract
complex interpolation method due to Calderón [19], to a pair of the form
(Lp0(A0), Lp1(A1)). One then obtains estimates in Lp(Aθ), where Aθ is the
space associated to the pair (A0, A1) by Calderón’s method with parameter
θ ∈ (0, 1).

In many cases later on, the norms of the operators (Tz)z∈S are not uni-
formly bounded on the boundary lines, but obey for some λ > 0 estimates
of the form

‖Tα0+iτ‖p0→p0 6 C0 eλ|τ | , ‖Tα1+iτ‖p1→p1 6 C1 eλ|τ | , τ ∈ R .

Using Corollary 3.4, we can handle this situation. We must simply check
that the above function H(z) = Hf,g(z) in (3.25) has an admissible growth
in the strip. We have to find an ad hoc argument giving such a growth for
each choice of f and g in suitable dense subsets, growth depending on f, g.
Indeed, in general, we do not know yet bounds on the norm ‖Tz‖pz→pz for
z ∈ S, where w/pz = (α1−Re z)/p0 +(Re z−α0)/p1 and where w = α1−α0
is the width of S. If each function Hf,g has an admissible growth in S, we
obtain here at last that

‖Tα‖p→p 6 C1−θ
0 Cθ1 eλw

√
θ(1−θ) .

If an additional polynomial factor is present in the bound of ‖Tαj+iτ‖pj→pj ,
j = 0, 1, then we make use of Remark 3.6 and of the estimate (3.22).
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3.3. On the definition of maximal functions

Let us consider a family (Kt)t>0 of integrable functions on Rn and define
a related maximal function by the formula

µ(f) = sup
t>0
|Kt ∗ f | (3.27)

for f ∈ Lp(Rn), 1 6 p < +∞. We are faced with a standard difficulty of
processes with continuous time parameter. In this generality, the convolution
Kt ∗ f is only defined almost everywhere, for each t > 0, and the preceding
supremum is not a well defined equivalence class of measurable functions.
However, if D is a countable subset of (0,+∞), there is no problem in con-
sidering

µD(f) = sup
t∈D
|Kt ∗ f | ,

and a classical workaround for defining µ(f) consists in introducing the
essential supremum: there is a countable subset D0 ⊂ (0,+∞) such that
µD(f) = µD0(f) almost everywhere, whenever D ⊃ D0. In other words, for
every t > 0, we then have |Kt∗f | 6 µD0(f) almost everywhere. The essential
supremum is defined to be the equivalence class of µD0(f). It is also the least
upper bound of the family (|Kt ∗ f |)t>0 in the Banach lattice Lp(Rn).

Most often, we shall have the specific problem where one considers an
integrable kernel K on Rn and defines a maximal function using the dilates
of K, by

µ(f) = sup
t>0
|K(t) ∗ f | .

If f ∈ Lp(Rn) and if K belongs to Lq(Rn), with q < +∞ and 1/q+ 1/p = 1,
then K(t) ∗ f is defined pointwise and t 7→ K(t) is continuous from (0,+∞)
to Lq. It follows that t 7→ (K(t) ∗ f)(x) is continuous for every f ∈ Lp(Rn),
x ∈ Rn, and the aforementioned problem disappears. If K ∈ L1(Rn) and
f ∈ Lp(Rn) are nonnegative, then (K(t) ∗ f)(x) is a definite value in [0,+∞]
for every x ∈ Rn, but it is not immediately clear that a direct application
of (3.27) gives what we want. However, we can find an increasing sequence
(fk)k>0 of bounded nonnegative Borel functions tending almost everywhere
to f . Then for every x ∈ Rn and k > 0, the map t 7→ (K(t) ∗ fk)(x) is
continuous from (0,+∞) to [0,+∞), because t 7→ K(t) is continuous from
(0,+∞) to L1(Rn). It follows that t 7→ (K(t)∗f)(x) is lower semi-continuous,
since it is an increasing limit of continuous functions. For every countable
dense set D one has thus

µD(f)(x) = sup
s∈D

(K(s) ∗ f)(x) = sup
t>0

(K(t) ∗ f)(x) .

This argument does not apply to kernels that can also assume negative
values, and it is precisely the case that will appear later.
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We will have to investigate maximal functions such as µ(f) =
supt>0 |K(t) ∗f |, usually when K ∈ L1(Rn), but also more generally when K
is a bounded measure on Rn. It will be often convenient to start the study
with nice functions, for example functions ϕ belonging to the Schwartz class
S(Rn), for which µ(ϕ) is clearly defined. If a function f ∈ Lp(Rn) is given
and since S(Rn) is dense in Lp(Rn), we may find for every ε > 0 a sequence
(ϕk)k>0 in S(Rn) such that

f =
+∞∑
k=0

ϕk in Lp(Rn) , and
+∞∑
k=0
‖ϕk‖p < ‖f‖p + ε .

Since the convolution with K(t) is linear and continuous on Lp(Rn), we have

K(t) ∗ f =
+∞∑
k=0

K(t) ∗ ϕk in Lp(Rn) , and
+∞∑
k=0
‖K(t) ∗ ϕk‖p < +∞ ,

so the series
∑+∞
k=0K(t) ∗ ϕk converges also almost everywhere to K(t) ∗ f ,

and we have almost everywhere

|K(t) ∗ f | 6
+∞∑
k=0
|K(t) ∗ ϕk| 6

+∞∑
k=0

µ(ϕk) .

For any countable subset D ⊂ (0,+∞) we get µD(f) 6
∑+∞
k=0 µ(ϕk), imply-

ing that µ(f), defined as essential supremum, is bounded by
∑+∞
k=0 µ(ϕk). If

we know that there exists κ such that ‖µ(ϕ)‖p 6 κ‖ϕ‖p when ϕ ∈ S(Rn), it
follows that

‖µ(f)‖p 6
+∞∑
k=0
‖µ(ϕk)‖p 6 κ

+∞∑
k=0
‖ϕk‖p 6 κ(‖f‖p + ε) ,

for every ε > 0. In order to bound µ(f) in Lp(Rn), it is therefore enough
to obtain a uniform bound for Schwartz functions. Clearly, any dense linear
subspace of Lp(Rn) consisting of nice functions can be used instead of S(Rn).

The classical maximal function Mf , as well as MCf in (0.3.M), is actually
defined by means of supt>0K(t) ∗ |f |. This makes sense whenever the kernel
K is nonnegative, but not for a general K. We shall distinguish

MKf := sup
t>0

K(t) ∗ |f | and MKf := sup
t>0

∣∣K(t) ∗ f
∣∣

by the tiny notational difference between the slanted or unslanted letter
M. When the kernel K is nonnegative, we have obviously MKf 6 MKf =
MK(|f |).
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4. The results of Stein for Euclidean balls

We prove here the remarkable fact due to Stein [75] that for p > 1, the
maximal operator associated to Euclidean balls, i.e., the classical Hardy–
Littlewood maximal operator M defined in (0.1), may be bounded in Lp(Rn)
independently of the dimension n. Full details appeared in [77]. Other proofs
have appeared since then, let us mention Auscher and Carro [4] who found
the simple explicit bound 2+

√
2 in L2(Rn), extended by interpolation as (2+√

2)2/p for p > 2. It is not known whether or not the weak (1, 1) norm of the
maximal operator M is also bounded independently of the dimension. Even
if we shall not develop this weak type aspect mentioned in our introduction,
let us recall that the best upper estimate that is known for the weak (1, 1)
norm of M is the Stein–Strömberg O(n) bound [77].

Theorem 4.1 (Stein [75]). — Let 1 < p 6 +∞. For every integer n > 1
and all functions f ∈ Lp(Rn), one has that

‖Mf‖Lp(Rn) 6 C(p)‖f‖Lp(Rn) ,

where C(p) is a constant independent of the dimension n.

4.1. Proof of Theorem 4.1

The main tool in the proof is the spherical maximal operatorM defined
by

(Mf)(x) = (Mσf)(x) = sup
r>0

∣∣∣∣ ∫
Sn−1

f(x− rθ) dσ(θ)
∣∣∣∣ , x ∈ Rn ,

where σ is the normalized Haar measure on the unit sphere Sn−1. It is clear
thatMf is well defined when f is regular, but not when f ∈ L1

loc(Rn). The-
orem 4.2 below means in particular that for suitable p and n, Mf can be
defined when f ∈ Lp(Rn), for example by the method described at the end
of Section 3.3. The maximal functionM(|f |) controls Mf pointwise, as one
sees easily by using polar coordinates. The maximal operatorM is bounded
in Lp(RN ) for some p and N , with a bound depending on the dimension N ,
according to the following theorem also due to Stein. An extension by Bour-
gain of this result can be found in [8].

Theorem 4.2 (Stein [74]). — Let N > 3 and assume that N/(N−1)<
p 6 +∞. There exists a constant C(N, p) such that for every function f ∈
Lp(RN ), one has

‖Mf‖Lp(RN ) 6 C(N, p)‖f‖Lp(RN ) .
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The condition p > N/(N − 1) can be easily seen necessary, and the case
p = +∞ is obvious, with C(N,∞) = 1. We postpone the proof of this theo-
rem to the next section. It requires a number of harmonic analysis methods,
including square function, multipliers and Littlewood–Paley decomposition.

In order to prove Theorem 4.1, we first introduce the following weighted
maximal operator, depending on a parameter k ∈ N. For f ∈ S(Rn), let

(Mn,kf)(x) = sup
r>0

∫
|y|6r |f(x− y)| |y|k dy∫

|y|6r |y|k dy
, x ∈ Rn ,

where |y| denotes the Euclidean norm of y ∈ Rn. Taking polar coordinates
gives us the pointwise inequality

(Mn,kf)(x) 6 (M|f |)(x) , x ∈ Rn ,

from which we can deduce by applying Theorem 4.2 that for every integer
N > 3, for p such that N/(N − 1) < p 6 +∞ and for every f in Lp(RN ),
we have

‖MN,kf‖Lp(RN ) 6 C(N, p)‖f‖Lp(RN ) , (4.1)
where C(N, p) is the constant in Theorem 4.2. We shall obtain Theorem 4.1
by lifting to Rn the inequality (4.1) obtained in a lower dimension N = n−k.
This is done by integrating over the Grassmannian of (n− k)-planes in Rn.
This method of descent is in the spirit of the Calderón–Zygmund method of
rotations.

We write Rn = Rn−k×Rk and x = (x1, x2) accordingly, for every x ∈ Rn,
with x1 ∈ Rn−k and x2 ∈ Rk. For each U in the orthogonal group O(n), we
introduce the auxiliary maximal operator

(MU
k f)(x) = sup

r>0

∫
Rn−k 1{|y1|6r} |f(x− U(y1, 0))| |y1|k dy1∫

Rn−k 1{|y1|6r} |y1|k dy1
, x ∈ Rn .

We need two lemmas.

Lemma 4.3. — Let n > k+ 3 and p > (n− k)/(n− k− 1). Then for all
f ∈ Lp(Rn) and U ∈ O(n), we have

‖MU
k f‖Lp(Rn) 6 C(n− k, p) ‖f‖Lp(Rn) ,

where C(n− k, p) is the constant appearing in Theorem 4.2.

Proof. — Let us set f[U ](x) = f(Ux), for every x ∈ Rn. Since U ∈ O(n),
the mapping SU : f 7→ f[U ] is an isometry of Lp(Rn). Observe that∫
|y1|6r

∣∣f(Ux− U(y1, 0)
)∣∣ |y1|k dy1 =

∫
|y1|6r

∣∣f[U ](x− (y1, 0))
∣∣ |y1|k dy1 ,
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hence we have that (MU
k f)(Ux) = (MId

k f[U ])(x), for every x ∈ Rn. This
means that SUMU

k = MId
k SU . It follows that we need only consider MId

k .
Now, for every x = (x1, x2) ∈ Rn, we have

(MId
k f)(x1, x2) = sup

r>0

∫
Rn−k 1{|y1|6r}

∣∣f(x1 − y1, x2)
∣∣ |y1|k dy1∫

Rn−k 1{|y1|6r} |y1|k dy1

=
(
Mn−k,k fx2

)
(x1)

with fx2(x1) = f(x1, x2). Applying (4.1) to Mn−k,k for each x2 ∈ Rk gives∫
Rn−k

∣∣(MId
k f)(x1, x2)

∣∣p dx1 6 C(n− k, p)p
∫
Rn−k

∣∣fx2(x1)
∣∣p dx1 ,

therefore

‖MId
k f‖

p
Lp(Rn) 6 C(n− k, p)p

∫
Rk

(∫
Rn−k

∣∣fx2(x1)
∣∣p dx1

)
dx2

= C(n− k, p)p ‖f‖pLp(Rn) . �

Lemma 4.4. — For every locally integrable function f on Rn and 1 6
k 6 n, one has the pointwise inequality

(Mf)(x) 6
∫
O(n)

(MU
k f)(x) dµn(U) , x ∈ Rn ,

where µn denotes the normalized Haar measure on O(n).

Proof. — The desired pointwise inequality follows from the next equality,
true for every nonnegative Borel function g on Rn, stating that∫

|y|6r g(y) dy∫
|y|6r dy

=

∫
O(n)

∫
Rn−k 1{|y1|6r} g

(
U(y1, 0)

)
|y1|k dy1dµn(U)∫

Rn−k 1{|y1|6r} |y1|k dy1
. (4.2)

Indeed, for each r > 0 and x ∈ Rn, the previous equality allows us to write

1
|Br|

∫
Br

|f(x− y)|dy =

∫
O(n)

∫
|y1|6r

∣∣f((x− U(y1, 0)
)∣∣ |y1|k dy1dµn(U)∫

|y1|6r |y1|k dy1

6
∫
O(n)

(MU
k f)(x) dµn(U) ,

and we conclude by taking the supremum over all r > 0.

It remains to check (4.2). By standard measure-theoretic arguments about
classes of functions generating the Borel σ-algebra of Rn, we can suppose
that g has the form g(x) = g0(|x|)g1(x′), with x = |x|x′ and x′ ∈ Sn−1. By
taking polar coordinates, we see that the left-hand side of (4.2) is equal to

n

rn

(∫ r

0
g0(t)tn−1 dt

)(∫
Sn−1

g1(y′) dσn−1(y′)
)
,
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where σn−1 is the invariant probability measure on Sn−1. The right-hand
side is
n

rn

(∫ r

0
g0(t)tn−1 dt

)(∫
O(n)

∫
Sn−k−1

g1
(
U(y′1, 0)

)
dσn−k−1(y′1)dµn(U)

)
.

Observe that for every θ0 ∈ Sn−1, we have∫
O(n)

g1(Uθ0) dµn(U) =
∫
Sn−1

g1(θ) dσn−1(θ) ,

since the left-hand side of this equality defines a probability measure on
Sn−1, namely BSn−1 3 A 7→

∫
O(n) 1A(Uθ0) dµn(U), which is invariant under

the left-action of O(n), hence equal to σn−1. We have therefore∫
O(n)

∫
Sn−k−1

g1
(
U(y′1, 0)

)
dσn−k−1(y′1)dµn(U)

=
∫
Sn−k−1

(∫
O(n)

g1
(
U(y′1, 0)

)
dµn(U)

)
dσn−k−1(y′1)

=
∫
Sn−k−1

(∫
Sn−1

g1(θ) dσn−1(θ)
)

dσn−k−1(y′1)

=
∫
Sn−1

g1(y′) dσn−1(y′) ,

completing the proof. �

Proof of Theorem 4.1. — Let 1 < p 6 +∞. There is obviously nothing
to do if n 6 2. When n 6 p/(p−1), the “bad” Vitali-bound C(n) = 3n in the
classical maximal inequality (ST) is less than a function of p alone, namely
3p/(p−1). We can therefore assume that both inequalities n > p/(p− 1) and
n > 3 hold. We then write n = (n−k)+k with n−k =

⌊
max

(
p/(p−1), 2

)⌋
+1,

and the result follows from Lemma 4.3 and Lemma 4.4 since with this choice,
the bound C(n− k, p) in Lemma 4.3 is now a function of p alone. �

4.2. Boundedness of the spherical maximal operator

In this section, we prove Theorem 4.2 following the approach of Rubio
de Francia [68], see also Grafakos [39]. Let n > 2. The spherical maximal
operator is expressed by

(Mf)(x) = sup
r>0

∣∣[mσ(r ·) f̂(·)
]∨(x)

∣∣ = sup
r>0

∣∣(σ(r) ∗ f
)
(x)
∣∣ , x ∈ Rn ,

where h∨(x) = ĥ(−x) denotes the inverse Fourier transform of a function h,
mσ is the Fourier transform of the uniform probability measure σ on the unit
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sphere Sn−1, and σ(r) is the dilated probability measure defined in (2.8). It
is known that

mσ(ξ) = σ̂(ξ) = (2π|ξ|)−(n−2)/2J(n−2)/2(2π|ξ|) , ξ ∈ Rn , (4.3)

with Jν the Bessel function of order ν. This equality follows from the fact
that the two functions t 7→ t−(n−2)/2J(n−2)/2(t) and

t 7→ F (t) =
∫
Sn−1

e itx1 dσ(x) = 2sn−2

sn−1

∫ 1

0
(1− s2)(n−3)/2 cos(st) ds

are entire functions g satisfying g(0) = 1 and t2(g′′(t)+g(t)) = −(n−1)tg′(t).

We shall rely on the Littlewood–Paley theory, decomposing multipliers
into dyadic pieces with localized frequencies. More precisely, we shall domi-
nateM by a series of maximal operators

∑+∞
`=0 MK` , where each kernel K`

is radial with a well localized Fourier transform m`. We establish that MK`

is of strong type when p = 2 and of weak type (1, 1). Then, we get an Lp

bound for MK` by interpolation, and the range of p in Theorem 4.2 is chosen
for making the series of bounds convergent. For the case p = 2, we mainly
use for m` both the decay at infinity and a support property, together with
a precise upper bound for the L2(Rn) norm of a related square function.
When p = 1, we invoke the usual Hardy–Littlewood theorem. Before giving
the proof of Theorem 4.2, we introduce the dyadic decomposition of mσ = σ̂.

Let ϕ0 be a smooth radial function on Rn satisfying for every ξ ∈ Rn
that

ϕ0(ξ) =
{

1 if |ξ| 6 1
0 if |ξ| > 2 .

Let ψ(ξ) = ϕ0(ξ)− ϕ0(2ξ) for ξ in Rn. This function ψ is supported in the
annulus {1/2 6 |ξ| 6 2}. For every integer ` > 1 we define

ϕ`(ξ) = ϕ0(2−`ξ)− ϕ0(21−`ξ) = ψ[2−l](ξ) , ξ ∈ Rn ,

and for every ` > 0, we consider the dyadic radial piece m` = ϕ`mσ

associated to the multiplier mσ. We can check that
∑+∞
`=0 ϕ` = 1, thus

mσ =
∑+∞
`=0 m`. For every ` > 0, we introduce the integrable kernel K` =

m∨` = ϕ∨` ∗ σ and we set

(MK`f)(x) = sup
r>0

∣∣[m`(r ·)f̂(·)
]∨(x)

∣∣ = sup
r>0

∣∣[(ϕ∨` )(r) ∗σ(r) ∗ f
]
(x)
∣∣ , x ∈ Rn ,

when f ∈ S(Rn). In particular, we have MK0f = supr>0
∣∣(ϕ∨0 )(r) ∗ σ(r) ∗ f

∣∣
and

MK`f = sup
r>0

∣∣(ψ∨)(2−`r) ∗ σ(r) ∗ f
∣∣ , ` > 1 .
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For every x ∈ Rn and r > 0, we see that (σ(r) ∗f)(x) =
∑+∞
`=0 ((K`)(r) ∗f)(x)

and we get the pointwise inequality

(Mf)(x) 6
+∞∑
`=0

(MK`f)(x) . (4.4)

In a first subsection, we present some useful results on this type of maxi-
mal operators and associated square functions. Then, we shall prove that
each MK` , for ` > 0, is of strong type when p = 2 and of weak type when
p = 1, and we give the proof of Theorem 4.2 in a third subsection.

4.2.1. Maximal operator and square function

Let m(ξ) be a multiplier that is a bounded continuous function on Rn,
vanishing at 0, with |m(ξ)| = O(|ξ|) in a neighborhood of 0. For f in the
Schwartz class S(Rn) and for x ∈ Rn, set

(gmf)(x) =
(∫ +∞

0
|(Tm[u]f)(x)|2 du

u

)1/2

=
(∫ +∞

0

∣∣∣∣ ∫
Rn
m(uξ)f̂(ξ) e2iπx·ξ dξ

∣∣∣∣2 du
u

)1/2
.

We obtain the Littlewood–Paley function g1(f) of (2.3) when m(ξ) =
2π|ξ| e−2π|ξ|.

Lemma 4.5. — Assume that the multiplier m(ξ) is a bounded function
of ξ ∈ Rn, supported in an annulus of the form {a 6 |ξ| 6 ra}, a > 0 and
r > 1. For every function f ∈ S(Rn), one has that

‖gmf‖L2(Rn) 6
√

ln r ‖m‖L∞(Rn)‖f‖L2(Rn) .

Proof. — According to the Fubini theorem, followed by Parseval, Fubini
again and setting finally v = u|ξ|, we have∫

Rn
|(gmf)(x)|2 dx

=
∫ +∞

0
‖Tm[u]f‖

2
2

du
u

=
∫ +∞

0

∫
Rn
|m(uξ)|2|f̂(ξ)|2 du

u
dξ

6 ‖m‖2∞
∫
Rn

(∫ ra

a

dv
v

)
|f̂(ξ)|2 dξ = ‖m‖2∞ ln(r)‖f‖22 . �
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Lemma 4.6. — Assume that m(ξ) is of class C1 on Rn and vanishes
outside a compact subset of Rn \ {0}. For every t > 0 and f ∈ S(Rn), we
have ∣∣∣∣ ∫

Rn
m(tξ)f̂(ξ) e2iπx·ξ dξ

∣∣∣∣2 6 2(gmf)(x) (gm∗f)(x) , x ∈ Rn ,

where we have set m∗(ξ) = ξ · ∇m(ξ) for every ξ ∈ Rn.

Proof. — For each s > 0 let us set

(gm,sf)(x) = (Tm[s]f)(x) =
∫
Rn
m(sξ)f̂(ξ) e2iπx·ξ dξ , x ∈ Rn .

We note that

s
d
ds (gm,sf)(x) =

∫
Rn
sξ ·∇m(sξ)f̂(ξ) e2iπx·ξ dξ =

∫
Rn
m∗(sξ)f̂(ξ) e2iπx·ξ dξ ,

which allows us to see this quantity as (gm∗,sf)(x). Since m vanishes in a
neighborhood of 0, one has (gm,0f)(x) = 0, thus

|(gm,tf)(x)|2 =
∫ t

0

d
ds |(gm,sf)(x)|2 ds

= 2 Re
∫ t

0
(gm,sf)(x) s d

ds (gm,sf)(x) ds
s

= 2 Re
∫ t

0
(gm,sf)(x)(gm∗,sf)(x) ds

s
.

By Cauchy–Schwarz, and bounding the integral on [0, t] by the integral on
[0,+∞), we obtain that

|(gm,tf)(x)|2 6 2
(∫ +∞

0

∣∣(gm,sf)(x)
∣∣2 ds

s

)1/2(∫ +∞

0

∣∣(gm∗,sf)(x)
∣∣2 ds

s

)1/2

= 2(gmf)(x) (gm∗f)(x) . �

Lemma 4.7. — Let K be an integrable kernel on Rn. Suppose that m, the
Fourier transform of K, is of class C1 on Rn and supported in an annulus
of the form {a 6 |ξ| 6 ra}, a > 0 and r > 1. For every function f ∈ S(Rn),
one has that

‖MKf‖2L2(Rn) =
∥∥sup
t>0
|K(t) ∗ f |

∥∥2
L2(Rn)

6 2 ln(r)‖m‖L∞(Rn)‖m∗‖L∞(Rn)‖f‖2L2(Rn) ,

where m∗(ξ) = ξ · ∇m(ξ) for ξ ∈ Rn.

Proof. — By Lemma 4.6, we have for every x ∈ Rn and t > 0 that∣∣(K(t) ∗ f )(x)
∣∣2 =

∣∣∣∣ ∫
Rn
m(tξ)f̂(ξ) e2iπx·ξ dξ

∣∣∣∣2 6 2(gmf)(x)(gm∗f)(x) .
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This upper bound is independent of t, thus(
(MKf)(x)

)2
6 2(gmf)(x)(gm∗f)(x) ,

and by Cauchy–Schwarz we get∥∥MKf
∥∥2
L2(Rn) 6 2‖gmf‖L2(Rn)‖gm∗f‖L2(Rn) .

According to Lemma 4.5, we conclude that∥∥MKf
∥∥2
L2(Rn) 6 2 ln(r)‖m‖L∞(Rn)‖m∗‖L∞(Rn)‖f‖2L2(Rn) . �

The following proposition is nearly obvious.

Proposition 4.8. — Let K ∈ S(Rn) be a radial kernel. For every p in
(1,+∞], the maximal operator MK is bounded on Lp(Rn).

One also gets the weak type (1, 1) for MK , but we shall not use it.

Proof. — Since K is a Schwartz radial function, we can find an integrable
function Ω, radial and radially decreasing, such that |K| 6 Ω. It implies that

sup
r>0

∣∣[K(r) ∗ f
]
(x)
∣∣ 6 sup

r>0

(
Ω(r) ∗ |f |

)
(x) , x ∈ Rn ,

and Ω being radial and radially decreasing, we classically have

sup
r>0

(
Ω(r) ∗ |f |

)
(x) 6 ‖Ω‖L1(Rn)(Mf)(x) , x ∈ Rn . (4.5)

By Theorem 0.1, the usual maximal theorem for M, we get the conclusion.
For proving (4.5), it suffices to show that∣∣(Ω ∗ f)(x)

∣∣ 6 ‖Ω‖L1(Rn)(Mf)(x) , x ∈ Rn . (4.6)

Suppose that Ω 6 1 for simplicity, and consider for each integer k > 1
the set

Ak = {x ∈ Rn : Ω(x) > 2−k} .

This set Ak is a Euclidean ball, and if we define g =
∑

k>1 2−k1Ak , we
can check that g/2 6 Ω 6 g. We rewrite g as

g =
∑
k>1

ak
1Ak
|Ak|

,

with ak > 0 for every k > 1. Since Ω is integrable, g is also integrable and∑
k>0

ak =
∫
Rn
g(x) dx 6 2

∫
Rn

Ω(x) dx = 2‖Ω‖L1(Rn) .
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We have for every x ∈ Rn that∣∣(Ω ∗ f)(x)
∣∣ 6 (g ∗ |f |)(x) =

∑
k>1

ak
|Ak|

∫
x+Ak

|f(y)| dy

6

(∑
k>0

ak

)
(Mf)(x) 6 2‖Ω‖L1(Rn)(Mf)(x) .

The inequality with constant 1 can be reached by refining the partition,
replacing the values 2−k by (1+ε)−k, with ε > 0 tending to 0. One can also
give a direct proof involving integration by parts, or the Fubini theorem
and level sets of Ω. �

4.2.2. Strong and weak type results for MK` , ` > 1

We begin with the strong type result, when p = 2.

Proposition 4.9. — For every integer ` > 1 and every f ∈ L2(Rn) one
has that ∥∥MK`f

∥∥
L2(Rn) 6 C(n)2−`(n−2)/2‖f‖L2(Rn) ,

where C(n) is a constant independent of `.

Proof. — For each ` > 1, the multiplier m` = K̂` is C1, supported in the
annulus

I` = {ξ ∈ Rn : 2`−1 6 |ξ| 6 2`+1} .
Applying Lemma 4.7 to K`, with m∗` (ξ) = ξ · ∇m`(ξ) and r = 4, we obtain∥∥MK`f

∥∥2
L2(Rn) 6 2 ln(4)‖m`‖L∞(Rn)‖m∗`‖L∞(Rn)‖f‖2L2(Rn) .

The desired result will be consequence of the inequalities
‖m`‖L∞(Rn) 6 C1(n)2−`(n−1)/2 , ‖m∗`‖L∞(Rn) 6 C2(n)2−`(n−3)/2 (4.7)

that we establish now, with C1(n) and C2(n) independent of `. Thanks to
well-known properties of Bessel functions (see for instance [2, p. 238]), we
have

sup
t>1

t1/2|Jα(t)| < +∞ , and d
dt Jα(t) = 1

2
(
Jα−1(t)− Jα+1(t)

)
. (4.8)

The first property follows from the fact that uα(t) =
√
tJα(t) satisfies a

differential equation u′′α(t)+(1+καt
−2)uα(t) = 0 for t > 0, hence vα(t) :=

(uα(t)2 + u′α(t)2)/2 satisfies v′α(t) = −καt−2uα(t)u′α(t) 6 |κα|t−2vα(t),
yielding vα(t) 6 e|κα| vα(1) for every t > 1. The second property can be
checked on the coefficients of the power series

∑
m>0(−1)m

(
m!Γ(m+α+

1)
)−1(t/2)2m of t−αJα(t), and when α = n ∈ N, it is even simpler to see

it on the integral expression 2πJn(t) =
∫ 2π

0 e i(t sin s−ns) ds.

– 71 –



L. Deleaval, O. Guédon and B. Maurey

Since m` and m∗` are supported in the annulus I`, we need only bound
m`(ξ) and m∗` (ξ) when 1 6 2`−1 6 |ξ| 6 2`+1 (we have ` > 1). We then
obtain (4.7) by recalling (4.3) and by applying (4.8) to t = 2π|ξ| > 1, which
give that

|m`(ξ)| 6 c1(n)|ξ|−n/2+1/2 and |m∗` (ξ)| 6 c2(n)|ξ|−n/2+3/2 . �

We state in the next proposition a crucial weak type estimate for MK` .

Proposition 4.10. — Let ` > 1. For all f ∈ L1(Rn) and every λ > 0,
one has that ∣∣{x ∈ Rn : (MK`f)(x) > λ

}∣∣ 6 C(n) 2`

λ
‖f‖L1(Rn) ,

where C(n) is a constant independent of ` and λ.

Proof. — We claim that it is enough to prove that for each ` > 1, we
have ∣∣K`(x)

∣∣ 6 C(n) 2`(
1 + |x|

)n+1 , x ∈ Rn . (4.9)

Indeed, since (1 + |x|)−n−1 is radial, radially decreasing and integrable, we
will have for all x ∈ Rn, as in (4.6), that

sup
r>0

∣∣[(K`)(r) ∗ f
]
(x)
∣∣ 6 C̃(n) 2`(Mf)(x) .

The result of Proposition 4.10 follows then from the weak estimate in Theo-
rem 0.1, the standard maximal theorem. We now turn to the proof of (4.9).
We want a bound for K` = ϕ∨` ∗σ, for ` > 1, where σ is the uniform probabil-
ity measure on Sn−1 and ϕ∨` = (ψ∨)(2−`). Since ψ∨ belongs to the Schwartz
class, we can bound |ψ∨| by a multiple cng of the radial and radially de-
creasing integrable function g(x) = (1 + |x|)−n−1. In order to bound K`, we
shall prove that

c−1
n |K`(x)| 6 (g(2−`) ∗ σ)(x) =

∫
Sn−1

g(2−`)(x− z) dσ(z)

6 C(n)2`(1 + |x|)−n−1 .

This is easy when |x| > 2, because for each z in Sn−1, we have then |x−z| >
|x| − 1 > |x|/2 and 1 + |x| 6 2|x|. Recalling g(2−`)(y) = 2n`g(2`y), we get

G`(x) := (g(2−`) ∗ σ)(x) 6 max
z∈Sn−1

g(2−`)(x− z) 6 2n` (1 + 2` |x|/2)−n−1

6 2n`2−(`−1)(n+1) |x|−n−1 = 2n+1−` |x|−n−1

6 22n+1 (1 + |x|)−n−1 ,

even better than required. Suppose now that |x| 6 2. It is enough to prove
that G`(x) 6 C(n)2`, since we have 1 + |x| 6 3 in this second case, hence it
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will follow that C(n)2` 6 [C(n)3n+1]2`(1 + |x|)−n−1. For y ∈ Rn, we write
y = (v, t) with v ∈ Rn−1 and t real. By the rotational invariance, we may
restrict the study to x = (0, s), s > 0. We write each z ∈ Sn−1 as z = (v, t),
and thus x− z = (−v, s− t). Let π0 be the orthogonal projection of Rn onto
the hyperplane of vectors (w, 0), w ∈ Rn−1. Since g(2−`) is radial and radially
decreasing, we see that g(2−`)(x−z) 6 g(2−`)(π0(x−z)) = g(2−`)(−v, 0). This
yields

G`(x) = G`(0, s) =
∫
Sn−1

g(2−`)(x− z) dσ(z)

6
∫
Sn−1

g(2−`)(π0(x− z)) dσ(z)

=
∫
Rn−1

g(2−`)(−v, 0) dν(v) ,

where ν is the projection on Rn−1 of the probability measure σ. We have
that

dν(v) = 2
sn−1

1{|v|<1}√
1− |v|2

dv = C(n)
1{|v|<1}√

1− |v|2
dv ,

where sn−1 is the measure of Sn−1 recalled in (1.34). We cut the integral
with respect to ν into two parts, according to |v| < 1/2 or not. In the part E1
corresponding to |v| < 1/2, we have 1− |v|2 > 3/4, hence

E1 6

√
4
3 C(n)

∫
|v|<1/2

g(2−`)(v, 0) dv 6 2C(n)
∫
Rn−1

g(2−`)(v, 0) dv .

We are integrating on Rn−1 the function g(2−`) that is normalized for a
change of variable in dimension n. This implies that

E1 6 2C(n)2`2(n−1)`
∫
Rn−1

g(2`v, 0) dv = 2C(n)2`
∫
Rn−1

g(u, 0) du ,

a bound of the expected form. In the second case, we have |v| > 1/2 and
g(2−`)(v, 0) = 2n`(1 + 2`|v|)−n−1 6 2n`2−(`−1)(n+1) 6 2n .

It follows that the integral E2 limited to |v| > 1/2, with respect to the
probability measure ν, is bounded by a function of n. �

4.2.3. Conclusion

Proof of Theorem 4.2. — Thanks to the results of the previous subsec-
tion, the proof is easy. Using the Marcinkiewicz theorem (see Zygmund [85,
Chap. XII], or [64, Theorem 5.60]), we shall interpolate between the weak
type (1, 1) and the strong type (2, 2). We apply Proposition 4.9, Propo-
sition 4.10 in RN and interpolation with parameter θ = 2 − 2/p, where
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1 < p 6 2. For all ` > 1 and all f ∈ Lp(RN ), since the chosen interpolation
parameter θ satisfies (1− θ)/1 + θ/2 = 1/p, we have∥∥MK`f

∥∥
Lp(RN ) 6 κ(1, 2, p)C(N)

(
2`
)−1+2/p(2−`(N−2)/2)2−2/p‖f‖Lp(RN ) ,

where κ(1, 2, p) is independent of N and `. We have thus obtained that∥∥MK`f
∥∥
Lp(RN ) 6 C

′(N, p)2` [N/p−(N−1)]‖f‖Lp(RN ) .

For p > N/(N − 1), the series
∑
`>1 2` [N/p−(N−1)] converges. Moreover, we

know by Proposition 4.8 that MK0 maps Lp(RN ) to itself for all 1 < p < +∞.
Therefore, in view of (4.4), we obtain that M is bounded on Lp(RN ) for
every real number p such that N/(N − 1) < p 6 2. For p > 2, we proceed by
interpolation between the L2(RN ) case and the trivial L∞(RN ) case. �

5. The L2 result of Bourgain

In an article published in 1986, Bourgain has generalized the L2 case of
the Stein result presented in Section 4. This L2 case for Euclidean balls only
required Proposition 4.9 and the “method of rotations”. The maximal oper-
ator MC associated to a symmetric convex body C was defined in (0.3.M).

Theorem 5.1 (Bourgain [9]). — There exists a universal constant κ2
such that for every integer n > 1 and every symmetric convex body C ⊂ Rn,
one has

∀ f ∈ L2(Rn) , ‖MCf‖L2(Rn) 6 κ2 ‖f‖L2(Rn) .

The rest of this section is devoted to the proof of this maximal theorem,
together with the description of the general framework concerning maximal
functions associated to convex sets. We shall in particular establish some
geometric inequalities for log-concave distributions that will be applied in
the subsequent sections.

5.1. The general setting

Let C be a symmetric convex body in Rn. Throughout these Notes, we
let KC be the density of the uniform probability measure µC on C, and mC

denotes the Fourier transform of KC or of µC . Hence, we have

KC(x) = 1
|C|

1C(x) , dµC(x) = KC(x) dx, mC(ξ) = K̂C(ξ) = µ̂C(ξ) ,

for all x, ξ ∈ Rn. Notice that KλC = (KC)(λ) and mλC(ξ) = mC(λξ) for
each λ > 0 and ξ ∈ Rn. We already know that the maximal operator MC
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acts boundedly on Lp(Rn), 1 < p 6 +∞, but the bounds we have so far
depend on n.

This Lp result comes from the weak type estimate (0.4) given by the Vitali
covering lemma. Except for the value of the constant, it is clear that this
weak type (1, 1) result for MC is optimal, as we can see by taking for f the
indicator 1C of the symmetric convex body C ⊂ Rn. Let C have volume 1,
so that ‖f‖1 = 1. For any given r > 0 and x ∈ rC, we see that x+(r+1)C
contains C, therefore

(MCf)(x) > |(r + 1)C|−1
∫
x+(r+1)C

1C(y) dy = |(r + 1)C|−1 = (r + 1)−n

and {MCf > (r + 1)−n} ⊃ rC. Every value c in the interval (0, 2−n] can
be written as c = (r + 1)−n for some r > 1, hence

∀ c ∈ (0, 2−n] ,
∣∣{MCf > c}

∣∣ > |rC| = (r + 1)−n

c
rn >

2−n

c
.

The maximal function MC1C is not integrable. It belongs to the space
L1,∞(Rn), the so-called weak-L1 space, and nothing better: any bounded
radial and radially decreasing function belonging to L1,∞(Rn) is smaller
than a multiple of MC1C .

The maximal function MCf is given by MCf = supt>0 (KC)(t)∗|f |, where
(KC)(t) is the dilate from (2.7). More generally, letK be a probability density
on Rn, resp. an integrable kernel K. We define the maximal function MK or
MK by

MKf = sup
t>0

K(t) ∗ |f | , resp. MKf = sup
t>0

∣∣K(t) ∗ f
∣∣ .

If A is linear and bijective on Rn, we can see that the maximal operators
MC and MAC have the same norm on Lp(Rn). For a function f on Rn we
define f(A) by

∀ x ∈ Rn , f(A)(x) = |detA|−1f(A−1x) .

We have |f |(A) =
∣∣f(A)

∣∣, (supi fi)(A) = supi (fi)(A), and (f ∗ g)(A) = f(A) ∗
g(A) since∫
Rn
|detA|−2f(A−1(x−y))g(A−1y) dy = |detA|−1

∫
Rn
f(A−1x−z)g(z) dz .

It is clear that (f(A))(t) = f(tA) = (f(t))(A). If SA is the mapping f 7→ f(A),
then SA,p := |detA|1/qSA, with q conjugate to p, is an onto isometry of
Lp(Rn).

The density KAC is equal to (KC)(A). For every integrable kernel K
on Rn, we see now that K and K(A) produce maximal functions that are
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conjugate by the isometry SA,p of Lp(Rn), and have therefore the same norm
on Lp(Rn). We have

MK(A)f(A) = sup
t>0

∣∣(K(A))(t) ∗ f(A)
∣∣ = sup

t>0

∣∣(K(t))(A) ∗ f(A)
∣∣

= sup
t>0

∣∣(K(t) ∗ f)(A)

∣∣ = (MKf)(A) .

It follows that MK(A) ◦ SA,p = SA,p ◦MK . This remark allows us to assume
that C is in isotropic position: one says that a symmetric convex body C is
in isotropic position if the quadratic form

QC : ξ 7→ QC(ξ) =
∫
C

(ξ · x)2 dx , ξ ∈ Rn ,

is a multiple of the square ξ 7→ |ξ|2 of the Euclidean norm on Rn. Since QC
is positive definite for every symmetric convex body C, we can bring it to
the form ξ 7→ λ|ξ|2, λ > 0, by a suitable linear change of coordinates. For
an isotropic symmetric convex set C0 of volume 1, one defines the isotropy
constant L(C0) by

L(C0)2 =
∫
C0

(e1 · x)2 dx , and one has then
∫
C0

(ξ · x)2 dx = L(C0)2 |ξ|2

for every ξ ∈ Rn. For C∗ isotropic of the form C∗ = rC0, r > 0, we get
|C∗| = rn and for every ξ ∈ Rn, we have∫

Rn
(ξ · x)2KC∗(x) dx = 1

|C∗|

∫
C∗

(ξ · x)2 dx = r−n
∫
C0

(ξ · ru)2rn du

= r2L(C0)2 |ξ|2 = |C∗|2/nL(C0)2 |ξ|2 .
(5.1)

Let A linear and invertible put C∗ in another isotropic position AC∗, so that
QAC∗(ξ) = λ|ξ|2 for some λ > 0 and all ξ ∈ Rn. Letting ν = λ|AC∗|−1 we
get

ν|ξ|2 =
∫
Rn

(ξ · y)2KAC∗(y) dy =
∫
Rn

(ξ ·Ax)2KC∗(x) dx

= |C∗|2/nL(C0)2 |AT ξ|2 ,

hence A is a multiple ρU of an isometry U , |detA| = ρn and ν =
|C∗|2/nL(C0)2ρ2 = |AC∗|2/nL(C0)2, thus |AC∗|−2/n ∫

Rn(θ ·y)2KAC∗(y) dy =
L(C0)2 for every θ ∈ Sn−1.

When C is isotropic, it follows that L(C) := L(C0) is well defined by

L(C)2 = |C|−2/n
∫
Rn

(θ · x)2KC(x) dx

= |C|−1−2/n
∫
C

(θ · x)2 dx , θ ∈ Sn−1 .

(5.2)
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A well-known open question (see [58]) is to decide whether the isotropy
constant is bounded above by a universal constant valid for all symmetric
convex bodies and every n. The best upper bound that is known so far, due
to Klartag [49] improving Bourgain [12], is L(C) 6 κn1/4 in dimension n.
It is known that L(C) is bounded below by a universal constant. However,
neither this known fact nor the unsolved problem will interfere with the
treatment of the maximal function problem.

Clearly,KC and (KC)(λ) have the same maximal function for every λ > 0,
so we can choose any multiple among isotropic positions of C. Here, we do
not follow Bourgain [9] who chooses the isotropic position of volume 1, we
prefer the isotropic position such that µC has covariance matrix In. We thus
assume that

∀ θ ∈ Sn−1 ,

∫
Rn

(θ · x)2 dµC(x) = 1
|C|

∫
C

(θ · x)2 dx = 1 . (5.3)

This means that the one-dimensional marginals of µC , images of µC by
x 7→ θ · x for θ ∈ Sn−1, have all variance 1. We shall say in this case that C
is isotropic and normalized by variance. We have then in addition that∫

C

|x|2 dx = n|C| and |C| = L(C)−n .

If we look for a (centrally symmetric) Euclidean ball in Rn normalized
by variance, its radius r = rn,V must therefore satisfy

∫ r
0 t

n+1sn−1 dt =
n
∫ r

0 t
n−1sn−1 dt, giving

rn,V =
√
n+ 2 . (5.4)

In the same way, we can bring to isotropy a symmetric probability density
K on Rn, i.e., such that K(−x) = K(x) for x ∈ Rn, by a linear change to
K(A) for some A linear and invertible. When K is isotropic, there exists
σ > 0 such that ∫

Rn
(ξ · x)2K(x) dx = σ2|ξ|2 , ξ ∈ Rn ,

which means that all one-dimensional marginals of K have the same vari-
ance σ2. We shall then say for brevity that K is isotropic with variance σ2.
The dilated density K(1/σ) : x 7→ σnK(σx) is normalized by variance. For
example, the standard Gaussian γn in (1.17) is normalized by variance. For
the study of maximal functions, we can always assume that K is normalized
by variance.
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5.2. On the volume of sections

We have seen in (2.14) that the Fourier transform m of a kernel K ∈
L1(Rn) can be expressed as

m(uξ) =
∫
R
ϕθ,K(s) e−2iπsu|ξ| ds , u ∈ R, ξ ∈ Rn \ {0} ,

where one has set θ = |ξ|−1ξ and ϕθ(s) = ϕθ,K(s) =
∫
θ⊥
K(y+sθ) dn−1y for

every s ∈ R. When K is the kernel KC corresponding to a symmetric convex
body C, the function ϕθ is the “normalized” function of (n− 1)-dimensional
volumes of hyperplane sections parallel to θ⊥, defined by

ϕθ,C(s) =
∫
θ⊥
KC(y + sθ) dn−1y =

∣∣C ∩ (θ⊥ + sθ)
∣∣
n−1

|C|n
.

We know by the Brunn–Minkowski inequality [37, Theorem 4.1] that ϕθ,C
is log-concave on R. Indeed, a form of this inequality states that

|(1− λ)A+ λB| > |A|1−λ|B|λ

whenever A,B are compact subsets of Rn and λ ∈ [0, 1]. Recall that a
function K > 0 on Rn is log-concave when

K
(
(1− α)x0 + αx1

)
> K(x0)1−αK(x1)α , x0, x1 ∈ Rn, α ∈ [0, 1] ,

in other words, when logK is concave on the convex set {K > 0}.

More generally than Brunn–Minkowski, the Prékopa–Leindler inequal-
ity [37, Theorem 7.1] implies that the function ϕθ,K defined in (2.14) is a
log-concave probability density on the real line if K is a log-concave proba-
bility density on Rn. The statement of Prékopa–Leindler is as follows: if α is
in (0, 1), if f0, f1, fα nonnegative and integrable Borel functions on Rn are
such that

fα
(
(1− α)x0 + αx1

)
> f0(x0)1−α f1(x1)α

for all x0, x1 ∈ Rn, then∫
Rn
fα(x) dx >

(∫
Rn
f0(x) dx

)1−α(∫
Rn
f1(x) dx

)α
.

Given θ ∈ Sn−1, s0, s1 real and letting fj(y) = K(y + sjθ) for y ∈ θ⊥ and
j = 0, 1, sα = (1 − α)s0 + αs1 and fα(y) = K(y + sαθ), we obtain that
ϕθ,K is log-concave by applying Prékopa–Leindler on θ⊥ ' Rn−1 to these
functions f0, f1 and fα. Similarly, one shows that convolutions of log-concave
densities are log-concave. Without more effort, Bourgain’s proof also gives
the following theorem.
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Theorem 5.2. — There exists a constant κ2 < 140 such that for every
integer n > 1 and every symmetric log-concave probability density K on Rn,
one has

∀ f ∈ L2(Rn) , ‖MKf‖L2(Rn) 6 κ2 ‖f‖L2(Rn) .

We turn to the proof of the main inequalities about log-concave functions,
which will be used throughout our Notes. We introduce the right maximal
function f∗r of a locally integrable function f on an interval [τ,+∞) of the
line by setting

f∗r (x) = sup
t>0

1
t

∫ x+t

x

|f(s)|ds , x > τ . (5.5)

One sees that f∗r 6 f∗ 6 2Mf , where f∗ is the uncentered maximal function
from (0.2), and f∗r (x) > |f(x)| at each Lebesgue point x of f , hence almost
everywhere. When ψ is nonnegative, integrable and decreasing on [x,+∞),
then ∫ +∞

x

|f(s)|ψ(s) ds 6
(∫ +∞

x

ψ(s) ds
)
f∗r (x) . (5.6)

One can get (5.6) as in (4.6), by approximating ψ by a combination of
functions t−1

k 1[x,x+tk]. We can also define in a similar way a left maximal
function f∗` .

Lemma 5.3. — Let ϕ be an integrable log-concave function on an inter-
val [τ,+∞), let p belong to (0,+∞) and let

S0(τ) =
∫ +∞

τ

ϕ(s) ds, Sp(τ) =
∫ +∞

τ

(s− τ)pϕ(s) ds .

Then Sp(τ) is finite. Furthermore, assuming Sp(τ) > 0, we have

ϕ(τ)p 6 Γ(p+ 1)S0(τ)p+1

Sp(τ) , max
s>τ

ϕ(s)p > ϕ∗r(τ)p > S0(τ)p+1

(p+ 1)Sp(τ) . (5.7)

Proof. — We have ϕ > 0 by definition of log-concavity. We assume
Sp(τ) > 0, hence S0(τ) > 0. We may suppose τ = 0 by translating and
S0 := S0(0) = 1 by homogeneity. We begin with the left-hand inequality
in (5.7), assuming a := ϕ(0) > 0. Consider the log-affine probability density
ψ(s) = a e−as on [0,+∞), chosen so that ψ(0) = ϕ(0). By log-concavity,
the set I = {ϕ > ψ} is an interval, such that 0 ∈ I ⊂ [0,+∞). Since ϕ
and ψ both have integral 1 on [0,+∞), the interval I is not reduced to {0}.
If I = [0,+∞), the densities are equal and

Sp :=
∫ +∞

0
spϕ(s) ds =

∫ +∞

0
spψ(s) ds = 1

ap

∫ +∞

0
(as)p e−as ads

= Γ(p+ 1)
ap

.
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Otherwise, the interval I is bounded, let s0 := sup I > 0. We have ψ 6 ϕ
on [0, s0) and ϕ(s) < ψ(s) when s > s0, implying that Sp(0) is finite. The
antiderivative F of ϕ−ψ vanishing at 0 is first increasing, then decreasing on
[0,+∞), and tends to 0 at infinity because ϕ and ψ have equal integrals. It
follows that F is nonnegative on [0,+∞). Recalling that 0 6 ϕ(s) < ψ(s) at
infinity, we know that |F (s)| is exponentially small at infinity, and integrating
by parts we obtain∫ +∞

0
sp
(
ϕ(s)− ψ(s)

)
ds = −p

∫ +∞

0
sp−1F (s) ds 6 0 .

One concludes the first part by writing

Sp =
∫ +∞

0
spϕ(s) ds 6

∫ +∞

0
spψ(s) ds = Γ(p+ 1)

ap
.

For the right-hand inequality in (5.7), we let b = ϕ∗r(0) > 0 and consider
the probability density ψ(s) = b1[0,1/b](s) on [0,+∞). Let F be the anti-
derivative of ϕ− ψ vanishing at 0. When 0 < x 6 1/b we have by definition
of ϕ∗r(0) that

F (x)
x

= 1
x

∫ x

0
(ϕ(s)− ψ(s)) ds =

(
1
x

∫ x

0
ϕ(s) ds

)
− b 6 0 .

We see that ψ(x) = 0 6 ϕ(x) when x > 1/b. It follows that the function F
is 6 0 on [0, 1/b], then increasing on [1/b,+∞), tends to 0 at infinity, thus
F is 6 0 on the half-line [0,+∞). Arguing as before, we have consequently

Sp =
∫ +∞

0
spϕ(s) ds > b

∫ 1/b

0
sp ds = 1

(p+ 1)bp . �

For every θ ∈ Sn−1, the function ϕθ,C associated to a symmetric convex
set C is even, log-concave and has integral 1 by definition. We shall thus be
in a position to apply to it the following Corollary 5.4.

Corollary 5.4. — Suppose that ϕ is a symmetric log-concave probabil-
ity density on R and let σ2 :=

∫
R s

2ϕ(s) ds. One has that
1

12σ2 6 ϕ(0)2 = max
s∈R

ϕ(s)2 6
1

2σ2 .

Proof. — Since ϕ is even and log-concave, we have ϕ(0) = maxs∈R ϕ(s).
We apply Lemma 5.3 with p = 2, τ = 0, and observe that S0(0) = 1/2,
S2(0) = σ2/2. �

The preceding result is sharp, as one sees with the two examples

ϕ0(s) = 1√
2

e−
√

2|s| , ϕ1(s) = 1
2
√

3
1[−
√

3,
√

3](s) , s ∈ R . (5.8)
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The next corollary is not very sharp, but easy to deduce from Lemma 5.3.
When the function ϕ > 0 is defined on the line and p ∈ [0,+∞), we set

S+
p (τ) =

∫ +∞

τ

(s− τ)pϕ(s) ds , S−p (τ) =
∫ τ

−∞
|s− τ |pϕ(s) ds .

Corollary 5.5. — Let ϕ be a centered log-concave probability density
on R and let σ2 :=

∫
R s

2ϕ(s) ds. We have that

1
24σ2 6

ϕ∗` (0)2 + ϕ∗r(0)2

2 6 max
s∈R

ϕ(s)2 6
4
σ2 .

Proof. — We begin with the rightmost inequality. Let us fix τ real. Since
ϕ is a centered probability density, one has that

S+
2 (τ) + S−2 (τ) =

∫
R

(s− τ)2ϕ(s) ds = σ2 + τ2 > σ2 , τ ∈ R .

Up to a symmetry around τ , possibly replacing the function ϕ by s 7→
ϕ(2τ − s), we may assume that S+

2 (τ) > σ2/2. We have S+
0 (τ) =∫ +∞

τ
ϕ(s) ds 6 1 since ϕ is a probability density on R, thus by Lemma 5.3

with p = 2 we get

ϕ(τ)2 6
2S+

0 (τ)3

S+
2 (τ)

6
4
σ2 .

Since τ is arbitrary, we obtain the right-hand inequality. Let us pass to the
other inequality. By Lemma 5.3 with p = 2 on the intervals (0,+∞) and
(−∞, 0), we conclude using S±2 (0) 6 σ2 and S+

0 (0) + S−0 (0) = 1 that

ϕ∗r(0)2 + ϕ∗` (0)2 >
S+

0 (0)3

3S+
2 (0)

+ S−0 (0)3

3S−2 (0)
>
S+

0 (0)3 + S−0 (0)3

3σ2 >
1

12σ2 . �

Lemma 5.6. — Let ϕ be a symmetric log-concave probability density
on R, with variance σ2. The function ϕ decays exponentially at infinity,
with a rate depending on its variance and satisfying

∀ s ∈ R , σϕ(σs) 6 min(2 e−|s|/2, 11 e−|s|) .

Proof. — Without loss of generality, we may assume that σ = 1. It follows
then from Corollary 5.4 that 1/(2

√
3) 6 a := ϕ(0) 6 1/

√
2. Consider the

log-affine function ψβ(s) = a e−βs on [0,+∞), with β > 0, satisfying ψβ(0) =
ϕ(0). If we have ϕ(τ0) 6 ψβ(τ0) for some τ0 > 0, it implies by log-concavity
that ϕ(s) 6 ψβ(s) 6 e−βs /

√
2 for s > τ0, and in order to obtain a bound for

ϕ everywhere, we can apply for the values 0 6 s 6 τ0 the obvious inequalities

ϕ(s) 6 ϕ(0) = a 6 a eβ(τ0−s) 6 (eβτ0 /
√

2) e−βs .

For any τ0 > 0, we obtain since ϕ is even that

ϕ(τ0) 6 ψβ(τ0) ⇒ ϕ(s) = ϕ(|s|) 6 eβτ0−ln
√

2 e−β|s| , s ∈ R . (5.9)
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On the other hand, if ϕ(s) > ψβ(s) for every s ∈ (0, τ ], then

1/2 =
∫ +∞

0
s2ϕ(s) ds >

∫ τ

0
s2ψβ(s) ds = a

β3

∫ βτ

0
u2 e−u du

= a

β3

[
− e−u(u2 + 2u+ 2)

]βτ
u=0
>

1
2
√

3β3

(
2− e−βτ (β2τ2 + 2βτ + 2)

)
.

Equivalently, when ϕ(s) > ψβ(s) for every s ∈ (0, τ ], we get that

e−βτ
(
β2τ2 + 2βτ + 2

)
> 2−

√
3β3 . (5.10)

Suppose that β3 < 2/
√

3. Then (5.10) cannot be true if τ is large. For
every such β, there exists τ0 > 0 such that ϕ(τ0) 6 ψβ(τ0) and by (5.9), there
is a constant c(β) such that ϕ(s) 6 c(β) e−β|s| on the line. For numerical
purposes, it is more convenient to express this as follows. If 0 <

√
3β3 < 2

and if
e−x(x2 + 2x+ 2) 6 2−

√
3β3 , (5.11)

then x > 0, and letting x0(β) = x, we know that ϕ(s) 6 ψβ(|s|) 6 e−β |s| /
√

2
when |s| > τ0(β) := x0(β)/β, and ϕ(s) 6 c(β) e−β |s| for every s ∈ R by (5.9),
with

c(β) = eβτ0(β)−ln
√

2 = ex0(β)−ln
√

2 . (5.12)
An almost optimal x satisfying (5.11) can be found numerically. We have for
example that ϕ(s) 6 2.218 e−|s|/2 for all s when β = 1/2, with x0(0.5) =
1.143. We also find c(1) < 94.295 with a choice x0(1) = 4.893. We can then
improve the first estimate given by (5.12) for β = 1. When |s| 6 x0(1) =
τ0(1), we write

ϕ(s) 6 2.218 e−|s|/2 = 2.218 e|s|/2 e−|s| 6 2.218 eτ0(1)/2 e−|s| < 26 e−|s| .

More generally, if we know a modified bound cm(β1) such that ϕ(s) 6
cm(β1) e−β1|s| for every s and if ϕ(s) 6 e−β2|s| /

√
2 when |s| > τ0(β2), with

β1 < β2, then for |s| 6 τ0(β2) we can write

ϕ(s) 6 cm(β1) e−β1|s| = cm(β1) e(β2−β1)|s| e−β2|s|

6 cm(β1) e(β2−β1)τ0(β2) e−β2|s| ,

so that
cm(β2) 6 max

(
e(β2−β1)τ0(β2) cm(β1), 1/

√
2
)
. (5.13)

The following table displays admissible values for x0(β), τ0(β), then the cor-
responding rough bound c(β) from (5.12), and the modified bounds cm(β)
obtained step by step applying (5.13), by dividing the interval [0, 1] in ten
equal segments, beginning with c(0) = cm(0) = ϕ(0) 6 1/

√
2 < 0.708.

We have replaced each higher precision value of x by the upper bound
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x0(β) = d1000.xe/1000, and used this replacement consistently in the fur-
ther calculations of τ0(β), c(β) and cm(β).

β x0(β) τ0(β) c(β) cm(β)
0.0 0.000 0.000 0.708 0.708
0.1 0.182 1.820 0.849 0.850
0.2 0.381 1.906 1.036 1.029
0.3 0.603 2.010 1.293 1.259
0.4 0.854 2.135 1.662 1.559
0.5 1.143 2.287 2.218 1.960
0.6 1.484 2.474 3.119 2.511
0.7 1.903 2.719 4.742 3.296
0.8 2.451 3.064 8.203 4.478
0.9 3.255 3.617 18.328 6.430
1.0 4.893 4.893 94.295 10.489

We obtain the announced bounds when β = 1/2 and β = 1. One can obvi-
ously refine the previous argument and show that

ϕ(s) 6 c(0) exp
(∫ 1

0
τ0(β) dβ

)
e−|s| 6 1√

2
exp

(∫ 1

0
τ0(β) dβ

)
e−|s| .

We may get in this way that ϕ(s) < 9 e−|s|. An exact estimate could perhaps
be obtained by an extreme point argument, as in [35]. Some numerical ex-
periments suggest that for every β > 0, the maximum on R of s 7→ eβ|s| ϕ(s),
for ϕ symmetric log-concave probability density with variance 1, occurs for
one of the two examples ϕ0, ϕ1 mentioned in (5.8). The example ϕ0(s) shows
that eβ|s| ϕ(s) is unbounded when β >

√
2 and σ = 1. �

Our next estimate is so poor that it does not deserve to be given explicitly.

Corollary 5.7. — There exists a numerical value κ > 0 such that for
every centered log-concave probability density ϕ on R with variance σ2 = 1,
one has

∀ s ∈ R , ϕ(s) 6 κ e−|s|/κ .

Proof. — Since ϕ is centered, we know that
∫ +∞

0 sϕ(s) ds =∫ 0
−∞ |s|ϕ(s) ds, and we can thus set S1 := S+

1 (0) = S−1 (0). For p 6= 1, let us
write S±p instead of S±p (0). We have that S+

2 , S
−
2 6 σ

2 = 1. By Corollary 5.5
and Lemma 5.3 with p = 1, applied on the intervals [0,+∞) and (−∞, 0],
we get

2 > max
s>0

ϕ(s) > (S+
0 )2

2S1
, 2 > max

s60
ϕ(s) > (S−0 )2

2S1
.
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It follows that 8S1 > (S+
0 )2 + (S−0 )2 > 1/2 so S1 > 1/16. We also need a

lower bound for S±0 . Let κ1 = 16. By Cauchy–Schwarz we have

κ−2
1 6 S2

1 6 S
−
0 S
−
2 6 S

−
0 , κ−2

1 6 S2
1 6 S

+
0 S

+
2 6 S

+
0 ,

hence S−0 , S
+
0 > κ

−2
1 . Suppose that the maximum of ϕ is reached at s0 > 0.

Then ϕ is non-decreasing on (−∞, s0] and by Lemma 5.3 with p = 2 we get

4 > ϕ(0)2 = max
s60

ϕ(s)2 >
(S−0 )3

3S−2
>
κ−6

1
3 =: κ−2

2 . (5.14)

The symmetric probability density ϕ1(s) = (2S−0 )−1ϕ(−|s|) on R is log-
concave, has variance σ2

1 = S−2 /S
−
0 6 κ

2
1. By (5.14), we have (S−0 )3/S−2 6 12.

By Lemma 5.6, we know that

ϕ1(s) 6 11
σ1

e−|s|/σ1 , and ϕ(s) 6 22
(

(S−0 )3

S−2

)1/2
e−|s|/σ1 6 77 e−|s|/κ1

for s 6 0. Let us pass to the positive side. We let ϕ̃ be equal to ϕ(s0) on [0, s0]
and to ϕ on [s0,+∞). Then S̃+

0 > S+
0 > κ−2

1 and since κ−1
2 6 ϕ(0) 6

ϕ(x) 6 ϕ(s0) 6 2 when 0 6 x 6 s0, we have ϕ̃ 6 2κ2ϕ on [0,+∞). The
symmetrized function ϕ1 corresponding to ϕ̃ satisfies σ2

1 = S̃+
2 /S̃

+
0 6 2κ2

1κ2.
Also, we know that (S̃+

0 )3/S̃+
2 6 3 max ϕ̃(s)2 6 12. The rest is identical to

the negative case. �

The next lemma is easy and classical. The (total) mass of a real valued
(thus bounded) measure µ on (Ω,F) is defined by setting ‖µ‖1 = µ+(Ω) +
µ−(Ω) = |µ|(Ω), where µ = µ+ − µ− is the Hahn decomposition of µ as
difference of two nonnegative measures, and |µ| = µ+ + µ−. On the line or
on Rn we have

‖µ‖1 = sup
{∣∣∣∣ ∫

Rn
ψ dµ

∣∣∣∣ : ψ ∈ K(Rn), ‖ψ‖∞ 6 1
}
,

and when µ has a density f , one has that ‖f(x) dx‖1 = ‖f‖L1(Rn).

Lemma 5.8. — Let µ be a real valued measure on R and let m(t) = µ̂(t)
be its Fourier transform. For every t ∈ R we have

|m(t)| 6 ‖µ‖1 . (5.15a)

If dµ(s) = ψ(s) ds with ψ integrable, then m = µ̂ = ψ̂ and |m(t)| 6
‖ψ‖L1(Rn).

Let us further assume that
∫
R(1 + |s|) d|µ|(s) < +∞. Then m is C1 on

R and
im′(t) = 2π

∫
R
s e−2iπst dµ(s) ,

so im′ is the Fourier transform of the real valued measure 2πsdµ(s).
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Let ν be a real valued measure on R and let ψ(s) = ν
(
(−∞, s]

)
, for every

s ∈ R. The measure ν is the derivative of ψ in the sense of distributions and
assuming ψ integrable, we have

2iπtψ̂(t) = 2iπt
∫
R
ψ(s) e−2iπst ds =

∫
R

e−2iπst dν(s) , (5.15b)

so 2iπtψ̂(t) is the Fourier transform of the derivative ν of ψ.

Let j, k be nonnegative integers. Suppose that ψ is of class Ck−1 on the
line, with a kth derivative ψ(k) in the sense of distributions that is a bounded
measure νk on R, and that lim|s|→+∞ ψ(s) = 0,

∫
R |s|

j d|νk|(s) < +∞. Then
m is Cj and

(2π|t|)k |m(j)(t)| 6 (2π)j
∥∥(sjψ(s)

)(k)∥∥
1 . (5.15c)

Consequently, for t 6= 0, we have that

|m(j)(t)| 6 (2π)j−k

|t|k
k−1∑

i=(k−j)+

(
k

i

)
j !

(j + i− k)!

∫
R
|s|i+j−k |ψ(i)(s)|ds

+ (2π)j−k

|t|k

∫
R
|s|j d|νk|(s) . (5.15d)

In the line above, one can replace
∫
R |s|

j d|νk|(s) with
∫
R |s|

j |ψ(k)(s)|ds,
when ψ admits a derivative ψ(k) and dνk(x) = ψ(k)(x) dx.

Proof. — The first inequality (5.15a) is obvious. Assuming that∫
R |s| d|µ|(s) is finite, we write

m(t) =
∫
R

e−2iπst dµ(s) :=
∫
R

e−2iπst dµ+(s)−
∫
R

e−2iπst dµ−(s) ,

and we obtain by the dominated convergence theorem that

m′(t) = −2iπ
∫
R
s e−2iπst dµ(s) .

If ν in (5.15b) has the form dν(x) = ψ′(x) dx with ψ′ a true derivative, we
use integration by parts, otherwise we use Fubini’s theorem for ν+ and ν−.
We get

2iπt
∫
R
ψ(t) e−2iπst ds =

∫
R

e−2iπst dν(s) .

The verification of (5.15d) is left to the reader. Notice that by (5.16), the
hypotheses imply that

∫
R |s|

i+j−k |ψ(i)(s)|ds < +∞ when (k − j)+ 6 i < k.
Indeed, if g(`+1) is integrable on [0,+∞), then g(`) tends to a limit L at
infinity and if g tends to 0 at infinity, it follows that L = 0, for example by
the Taylor formula. �

The next lemma is straightforward.
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Lemma 5.9. — Let ν be a nonnegative measure on (0,+∞) and α > 0.
One has

α

∫ +∞

0
sα−1ν

(
[s,+∞)

)
ds =

∫ +∞

0
sα dν(s) .

Let F be a function on (0,+∞) such that |F (s)| 6
∫ +∞
s

dν(s) for s > 0.
One has

α

∫ +∞

0
sα−1|F (s)|ds 6

∫ +∞

0
sα dν(s) .

Suppose that the function g is differentiable on R, with lims→±∞ g(s) = 0
and g′ integrable on the line. It follows that

α

∫
R
|s|α−1 |g(s)|ds 6

∫
R
|s|α |g′(s)|ds . (5.16)

If in addition g is even and non-increasing on [0,+∞), one has∫
R
|s|α |g′(s)|ds = α

∫
R
|s|α−1g(s) ds , and

∫
R
|g′(s)|ds = 2g(0) .

Proof. — The first assertion is an immediate consequence of Fubini, be-
cause

α

∫ +∞

0
sα−1ν

(
[s,+∞)

)
ds = α

∫∫
1{0<s<t} sα−1 dν(t)ds =

∫ +∞

0
tα dν(t) ,

with integrals finite or not. The remaining facts are left to the reader.
For (5.16), use dν(s) = |g′(s)|ds. �

We arrive to the main result of this section.

Proposition 5.10 ([9, §4]). — Let Klc be a symmetric log-concave prob-
ability density on Rn, isotropic with variance σ2. Let mlc be the Fourier
transform of Klc. For every ξ ∈ Rn one has that

π
√

2σ |ξ| |mlc(ξ)| 6 1 , |1−mlc(ξ)| 6 2πσ |ξ| , |ξ ·∇mlc(ξ)| 6 2 . (5.17.B)

The middle inequality follows from the fact that for every θ ∈ Sn−1, one has

|θ · ∇mlc(tθ)| 6 2πσ , t ∈ R .

Remark. — These inequalities are valid for mC , when C is a symmetric
convex body, isotropic and normalized by variance. The case of convex bodies
is the one given by Bourgain, but the proof is the same in the log-concave
case.

Proof. — We have seen in (2.14) that for θ ∈ Sn−1 and t real, one can
write

mlc(tθ) =
∫
R
ϕθ(s) e−2iπst ds ,
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where ϕθ is obtained by integrating Klc on affine hyperplanes parallel to θ⊥.
It is enough to prove the case σ = 1. We know that ϕθ is log-concave ac-
cording to Prékopa–Leindler, it is even, has integral 1 and variance 1 by
hypothesis. By Lemma 5.6, one has that ϕθ(s) 6 2 e−|s|/2 for every s ∈ R,
but the desired estimates do not depend on this exponential decay, which
ensures however absolute convergence for the integrals that follow. For ev-
ery t, by (5.15d) with j = 0, k = 1 and since ϕθ is even and decreasing on
(0,+∞), we have using Lemma 5.9 that

|mlc(tθ)| =
∣∣∣∣ ∫

R
ϕθ(s) e−2iπst ds

∣∣∣∣ 6 1
2π|t|

∫
R
|ϕ′θ(s)|ds = ϕθ(0)

π|t|
.

The function ϕθ has variance 1 by our normalization assumption, and ac-
cording to Corollary 5.4 we have the upper bound ϕθ(0) 6 1/

√
2. Writing

ξ = |ξ|θ, it follows that π
√

2 |ξ| |mlc(ξ)| 6 1 for every ξ in Rn.

Notice that our writing is not correct, because ϕθ might be discontinuous
at the ends of its support, so that ϕ′θ is a measure in that case, with two
Dirac masses at the end points of the support. This happens for example
with ϕθ,C when C is polyhedral and θ orthogonal to a facet. We leave the
easy changes to the reader.

Given θ ∈ Sn−1, the derivative of t 7→ mlc(tθ) is expressed by

θ · ∇mlc(tθ) =
∫
R

(−2iπs)ϕθ(s) e−2iπst ds ,

and

|θ · ∇mlc(tθ)| 6 2π
∫
R
|s|ϕθ(s) ds 6 2π

(∫
R
s2ϕθ(s) ds

)1/2
= 2π ,

hence |1−mlc(ξ)| = |mlc(0)−mlc(|ξ|θ)| 6 2π |ξ|. We see also that

tθ · ∇mlc(tθ) =
∫
R

(−2iπt)sϕθ(s) e−2iπst ds = −
∫
R

(
sϕθ(s)

)′ e−2iπst ds .

We estimate the two parts coming from
(
sϕθ(s)

)′, first∣∣∣∣ ∫
R
ϕθ(s) e−2iπst ds

∣∣∣∣ 6 ∫
R
ϕθ(s) ds = 1 ,

and as ϕθ is even and non-increasing on [0,+∞), we have by Lemma 5.9
that ∣∣∣∣ ∫

R
sϕ′θ(s) e−2iπst ds

∣∣∣∣ 6 ∫
R
|sϕ′θ(s)|ds =

∫
R
ϕθ(s) ds = 1 .

We conclude that |tθ ·∇mlc(tθ)| 6 2 and get |ξ ·∇mlc(ξ)| 6 2 for every ξ. �
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Lemma 5.11. — Let Klc be an even log-concave probability density on
Rn, normalized by variance, and mlc its Fourier transform. For every θ ∈
Sn−1 one has ∣∣∣∣ dj

dtjmlc(tθ)
∣∣∣∣ 6 δj,c 1

1 + 2π |t| , j > 0 , t ∈ R ,

where δj,c is a universal constant, estimated at (5.18).

Proof. — We know that mlc(tθ) = ϕ̂θ(t). From Lemma 5.8, (5.15d) with
k = 0, it follows that∣∣∣∣ dj

dtjmlc(tθ)
∣∣∣∣ =

∣∣ϕ̂θ(j)(t)
∣∣ 6 (2π)j

∫
R
|s|jϕθ(s) ds ,

and with k = 1,∣∣∣∣ dj

dtjmlc(tθ)
∣∣∣∣ 6 (2π)j−1

|t|

(
j

∫
R
|s|j−1ϕθ(s) ds+

∫
R
|s|j |ϕ′θ(s)|ds

)
.

The function ϕθ is a symmetric log-concave probability density on R, with
variance 1. By Corollary 5.4, we have for j = 0 that(

1 + 2π|t|
)
|mlc(tθ)| 6

∫
R
(ϕθ(u) + |ϕ′θ(u)|) du 6 1 + 2ϕθ(0) 6 1 +

√
2 .

For j > 1, we have
∫
R |u|

j |ϕθ ′(u)|du = j
∫
R |u|

j−1ϕθ(u) du by Lemma 5.9,
and (

1 + 2π|t|
)∣∣∣∣ dj

dtjmlc(tθ)
∣∣∣∣ 6 (2π)j

∫
R

(
|u|j + 2j|u|j−1)ϕθ(u) du .

The function ϕθ satisfies
∫
R s

2ϕθ(s) ds = 1, implying that

δ0,c 6 1 +
√

2 < 3 ; δ1,c 6 6π ; δ2,c 6 20π2 . (5.18a)

We know by Lemma 5.6 that ϕθ(s) 6 11 e−|s|. This implies for j > 2 that

δj,c 6 22(2π)j
∫ +∞

0
(sj + 2jsj−1) e−s ds = 66(2π)jΓ(j + 1) . (5.18b)

�

Remarks 5.12. — One gets
∫
R |s|

jϕθ(s) ds 6 3j/2Γ(j + 1) by applying
Lemma 5.3 and Corollary 5.4; Lemma 5.6 yields the bound 22Γ(j+1), better
when j is large.

If the log-concave probability density K on Rn is normalized by variance
but is simply centered, then ϕθ,K is log-concave and centered for each θ, and
satisfies the exponential decay of Corollary 5.7. If ϕθ,K reaches its maximum
at s0, then∫

R
|s|j |ϕ′θ,K(s)|ds 6 2|s0|jϕθ,K(s0) + j

∫
R
|s|j−1ϕθ,K(s) ds
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admits a universal bound κj . Lemma 5.11 remains valid in this extended
case, with other constants (δj)j>0 for which we do not have satisfactory
explicit expressions. Fradelizi [34, Theorem 5] extended the Lp(Rn) result of
Theorem 6.2 (Bourgain, Carbery) to centered bodies C in Rn, not necessarily
symmetric (unluckily, the word “centered” was forgotten in the statement
given in [34]).

If C is an arbitrary convex body, then MC is bounded on Lp(Rn), p ∈
(1,+∞], but for each fixed n > 1 and p < +∞, there is no uniform bound
for the family of arbitrary convex bodies in Rn (if n = 1, examine MCf
when C = [1, 1 + ε], f = 1C and ε→ 0). In a somewhat related direction,
it is known that the Lp(Rn) norm of the uncentered operator in (0.2) is
> Cnp for some Cp > 1, when 1 < p < +∞ [40].

Corollary 5.13. — Let Klc be a symmetric log-concave probability den-
sity on Rn, isotropic with variance σ2, and let mlc be its Fourier transform.
For every ξ ∈ Rn and j > 0 one has that∣∣∣∣ dj

dtjmlc(tξ)
∣∣∣∣ 6 δj,c |σξ|j

1 + 2π |tσξ| , t ∈ R , (5.19)

where δj,c is the universal constant of Lemma 5.11.

Proof. — The result is obvious when ξ = 0, otherwise we apply Lem-
ma 5.11 with θ = |ξ|−1ξ to the normalized Fourier transform N(ξ) =
mlc(ξ/σ), obtaining thus

dj

dtjmlc(tξ) = dj

dtjN(t|σξ|θ) = |σξ|j dj

dujN(uθ)
∣∣
u=t|σξ|

6 δj,c
|σξ|j

1 + 2π |tσξ| .
�

5.3. Fourier analysis in L2(Rn)

Lemma 5.14 (Bourgain [9]). — Let K be a kernel in L1(Rn) and assume
that its Fourier transform m is C1 outside the origin. For every j ∈ Z, define
αj(m) = sup

2j−16|ξ|62j+1
|m(ξ)| and βj(m) = sup

2j−16|ξ|62j+1
|ξ · ∇m(ξ)| .

If ΓB(K) :=
∑
j∈Z

√
αj(m)

√
αj(m) + βj(m) < +∞, then the maximal op-

erator MK associated to K is bounded on L2(Rn). More precisely, one has
that∥∥MK f

∥∥
L2(Rn) =

∥∥sup
t>0
|K(t) ∗ f |

∥∥
L2(Rn) 6 2ΓB(K)‖f‖L2(Rn) , f ∈ L2(Rn) .

We shall simply write αj = αj(m) and βj = βj(m) in the rest of the
section.
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Remark. — Clearly, we have that∑
j∈Z

√
αj
√
αj + βj 6

∑
j∈Z

αj +
∑
j∈Z

√
αj βj ,

and each of the two terms in the right-hand side is less than the left-hand
side. Bourgain employs both expressions as definitions of ΓB(K), one in [9]
and the other in [10] or in [13]. The convergence of the series of αj s when j
tends to −∞ implies that m(ξ) tends to 0 when ξ tends to 0, thus m(0) = 0,
which means that the integral of K on Rn is equal to 0. This lemma will not
be applied to KC or Klc, but typically, to the difference of two kernels with
equal integrals.

Proof. — We shall give a proof less rough than Bourgain’s, relying on the
tools introduced in Section 4. We consider a C∞ function η on R such that

η(t) = 1 if t 6 1 , η(t) = 0 if t > 2 , and 0 6 η 6 1 .
Next, we set ρ(t) = η(t) − η(2t) for t ∈ R. We see that ρ vanishes outside
[1/2, 2]. Also, ρ(t) = 1 − η(2t) on [1/2, 1] and ρ(t) = η(t) on [1, 2], so that
0 6 ρ(t) 6 1 and

d0 := sup
t∈R
|tρ′(t)| = sup

t∈R
|tη′(t)| = sup

t∈[1,2]
t|η′(t)| .

Let ε > 0 be given. One can make sure that d0 < (1 + ε)/ ln 2, choosing
for η a C∞ approximation of the function η0 defined on [0, 2] by η0(t) =
min(1, 1− log2 t), for which t|η′0(t)| = 1/ ln(2) when t ∈ [1, 2].

For every j ∈ Z and ξ ∈ Rn, let ϕj(ξ) = ρ(2−j |ξ|) and consider the
annulus

Cj = {ξ ∈ Rn : 2j−1 6 |ξ| 6 2j+1} ⊂ Rn .
From the properties of ρ, we have that 0 6 ϕj 6 1, ϕj vanishes outside Cj ,
and ∑

j∈Z
ϕj(ξ) =

∑
j∈Z

(
η(2−j |ξ|)− η(2−j+1|ξ|)

)
= 1

for every ξ 6= 0, because η(2−j |ξ|) = 0 when j 6 log2(|ξ|)−1 and η(2−j |ξ|) =
1 when j > log2(|ξ|). We introduce for every j ∈ Z a multiplier mj defined
by

mj(ξ) = ϕj(ξ)m(ξ), ξ ∈ Rn,
and we let Kj = m∨j = ϕ∨j ∗K. One has

∑
j∈ZKj = K, which allows us to

write for f ∈ S(Rn) and every x ∈ Rn the upper bound

(MKf)(x) = sup
t>0
|(K(t) ∗ f)(x)| 6 sup

t>0

∑
j∈Z

∣∣[(Kj)(t) ∗ f ](x)
∣∣ 6∑

j∈Z
(MKjf)(x) .

By Lemma 4.7 with r = 4, one has∥∥MKjf
∥∥2
L2(Rn) 6 2 ln 4‖mj‖L∞(Rn)‖m∗j‖L∞(Rn)‖f‖2L2(Rn) . (5.20)
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We see that ‖mj‖∞ 6 αj , since |mj | 6 |m| and since mj is supported in the
annulus Cj . On the other hand, m∗j (ξ) = ξ · ∇mj(ξ) and we have

∇mj(ξ) = ϕj(ξ)∇m(ξ) +m(ξ)∇ϕj(ξ) .
As ϕj is supported in Cj , we get |ϕj(ξ)ξ · ∇m(ξ)| 6 βj < (1 + ε)βj/ ln 2,
and

|m(ξ)ξ · ∇ϕj(ξ)| 6 αj
∣∣∣∣ξ · 2−jρ′(2−j |ξ|) ξ

|ξ|

∣∣∣∣ 6 αjd0 < (1 + ε)αj/ ln 2 .

It follows that ‖m∗j‖∞ 6 (1 + ε)(αj + βj)/ ln 2. By (5.20) we get∥∥MKjf
∥∥
L2(Rn) 6 2

√
1 + ε

√
αj
√
αj + βj ‖f‖L2(Rn) .

After summation in j ∈ Z and letting ε→ 0, we conclude that∥∥MKf
∥∥
L2(Rn) 6 2 ΓB(K) ‖f‖L2(Rn).

We pass from f ∈ S(Rn) to f ∈ L2(Rn) as explained in Section 3.3. �

5.3.1. Conclusion of Bourgain’s argument

End of the proof of Theorem 5.1. — We begin with a version of the
proof that illustrates well the fact that Lemma 5.14 is a comparison lemma:
in vague terms, if we know that the conclusion of Theorem 5.1 is true for
one family of convex sets, then it is true for all convex sets.

We rely here on Stein’s Theorem 4.1 for the Euclidean ball B, asserting
that the maximal operator MB is bounded on Lp(Rn) for every p in (1,+∞],
with a bound independent of the dimension n. In this paragraph, we only
use the L2 case of this result. Let us call B = Bn,V the Euclidean ball in Rn,
centered at 0 and normalized by variance, which has radius

√
n+ 2 by (5.4).

Let mB denote the Fourier transform of KB . Consider also a symmetric
log-concave probability density Klc on Rn, isotropic and normalized by vari-
ance. The two functionsmlc andmB satisfy the estimates (5.17.B) of Propo-
sition 5.10. We apply Lemma 5.14 to the difference kernel K = Klc −KB .
According to (5.17.B), for every ξ ∈ Rn, the Fourier transformm = mlc−mB

satisfies

|ξ| |m(ξ)| 6
√

2/π , |m(ξ)| 6 |1−mlc(ξ)|+ |1−mB(ξ)| 6 4π |ξ| ,
|ξ · ∇m(ξ)| 6 4 .

We deduce that βj = sup2j−16|ξ|62j+1 |ξ · ∇m(ξ)| 6 4 for j ∈ Z. For j < 0
one has

αj = sup
2j−16|ξ|62j+1

|m(ξ)| 6 4π2j+1 = 4π2−|j|+1 6 32 .2−|j| ,
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and for j > 0, we have αj 6
√

2π−12−j+1 6 2−j . It follows that the two
series

∑
j∈Z αj and

∑
j∈Z

√
αjβj converge, and∑

j∈Z
αj 6 32 + 2 ,

∑
j∈Z

√
αjβj 6 20 + 10

√
2 ,

thus the maximal operator f 7→ supt>0 |K(t) ∗ f | is bounded on L2(Rn) by
a constant independent of the dimension, say, less than 2ΓB(K) < 2(54 +
10
√

2) < 137. Finally, for f > 0, we write

MKlcf = sup
t>0
|(Klc)(t) ∗ f |

6 sup
t>0
|(KB)(t) ∗ f |+ sup

t>0
|(Klc −KB)(t) ∗ f | = MBf + MKf ,

and we can estimate MKlc by the sum of two operators that are bounded
on L2(Rn) by constants independent of the dimension n. �

The proof actually given by Bourgain [9] bypasses the L2 result of Stein
on Euclidean balls. The kernelK is now given asK = Klc−P , where P is the
Poisson kernel P = P1 from (1.32) for the value t = 1 of the parameter. We
know by (1.31.P ∗) that the maximal operator f 7→ supt>0 |Ptf | associated
to the Poisson kernel acts boundedly on Lp(Rn), 1 < p 6 +∞, with a bound
6 2 when p = 2, thus independent of the dimension n. Now, everything
is said: we replace the multiplier mB by P̂ and it suffices to see that P̂
also satisfies good estimates similar to (5.17.B). But P̂ (ξ) = e−2π|ξ| clearly
satisfies the even better estimates

|ξ| |P̂ (ξ)| = |ξ| e−2π|ξ| 6 (2π e)−1 , (5.21a)

|1− P̂ (ξ)| 6 2π |ξ| , |ξ · ∇P̂ (ξ)| = 2π|ξ| e−2π|ξ| 6 e−1 , (5.21b)
where we made use of the inequality x e−x 6 e−1, true for every x > 0.
This ends the second proof of Theorem 5.1, with different constants whose
exact values are rather irrelevant. However, we found here an explicit bound
κ2 < 2 + 137 < 140, explicit but definitely not sharp.

6. The Lp results of Bourgain and Carbery

One gives again a symmetric convex body C in Rn, and µC denotes
the uniform probability measure on C. Beside the maximal function MCf
from (0.3.M), for every function f ∈ L1

loc(Rn) and every x ∈ Rn we set

(M(d)
C f)(x) = sup

j∈Z

1
|2jC|

∫
x+2jC

|f(y)|dy = sup
j∈Z

∫
Rn
|f(x+ 2jv)|dµC(v) .
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One can call M(d)
C f the “dyadic” maximal function associated to the convex

set C. Obviously, M(d)
C 6 MC . More generally, we associate to every kernel

K integrable on Rn the dyadic maximal function

(M (d)
K f)(x) = sup

j∈Z

∣∣∣∣ ∫
Rn
f(x+ 2jv)K(v) dv

∣∣∣∣ , x ∈ Rn .

In 1986, Bourgain and Carbery have obtained identical results for Lp(Rn).
Somewhat surprisingly, the cases M(d)

C and MC are different, the boundedness
of MC on Lp(Rn) being obtained only when p > 3/2, as opposed to p > 1
for M(d)

C .

Theorem 6.1 (Bourgain [10], Carbery [21]). — For every p in (1,+∞],
there exists a constant κ(d)(p) such that for every integer n > 1 and every
symmetric convex body C ⊂ Rn, one has

∀ f ∈ Lp(Rn) , ‖M(d)
C f‖Lp(Rn) 6 κ

(d)(p)‖f‖Lp(Rn) .

Theorem 6.2 (Bourgain [10], Carbery [21]). — For every p in
(3/2,+∞], there exists a constant κ(p) such that for every integer n > 1
and for every symmetric convex set C ⊂ Rn, one has that

∀ f ∈ Lp(Rn), ‖MCf‖Lp(Rn) 6 κ(p)‖f‖Lp(Rn) .

We recalled in the Introduction that the maximal theorem of strong type
is not true for p = 1, even with a constant depending on n, and even for
the smaller function M(d)

C f , since MCf 6 2nM(d)
C f . Note that Theorems 6.1

and 6.2 are obvious for L∞(Rn), with κ(d)(∞) = κ(∞) = 1. By Bourgain [9],
we have the result in L2(Rn), so we obtain it for p ∈ [2,+∞] by interpolation.
Consequently, our work will be limited to values of p in the interval (1, 2]. We
shall follow Carbery’s approach to both theorems. This approach has been
applied later in the Detlef Müller article [59] (see Section 7), on which relies
Bourgain’s recent article [13] devoted to the maximal function associated to
high dimensional cubes (see Section 8).

The proof will use the inequalities (5.17.B) and (5.19), which are also true
for log-concave densities, and by simply following the proofs of Bourgain or
Carbery, we can extend the results to the log-concave setting. As suggested
in [10], one can actually take one more step, forget convexity and exploit
only the inequalities on the Fourier transform given by Lemma 5.11. In this
more general framework, we consider a probability density Kg on Rn, or
merely a kernel Kg integrable on Rn and having a Fourier transform mg
which satisfies the following: there exist δ0,g, δ1,g > 0 such that for every
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θ ∈ Sn−1, we have∣∣∣∣mg(tθ)
∣∣∣∣ 6 δ0,g

1 + |t| ,
∣∣∣∣ d
dtmg(tθ)

∣∣∣∣ =
∣∣θ · ∇mg(tθ)

∣∣ 6 δ1,g
1 + |t| , t ∈ R .

(6.1.H)
The form of the δ0,g-bound of mg has been chosen for the sake of uniformity,
but whenKg is a probability density, we know of course that ‖mg‖L∞(Rn) = 1
and in particular we have δ0,g > 1 in that case.

Proposition 6.3. — Theorems 6.1 and 6.2 are also valid for any sym-
metric log-concave probability density Klc on Rn, namely

‖M(d)
Klc
f‖Lp(Rn) 6 κ

(d)(p)‖f‖Lp(Rn) , 1 < p 6 +∞ ,

‖MKlcf‖Lp(Rn) 6 κ(p)‖f‖Lp(Rn) , 3/2 < p 6 +∞ .

If a probability density Kg satisfies (6.1.H), then for 3/2 < p 6 2 we have

‖MKg‖p→p 6 κp (δ0,g + δ1,g)2−2/p ,

and this result extends to every p ∈ (1, 2] in the case of the dyadic operator
M(d)
Kg

.

All these results are obvious when p = +∞, and easy when p > 2 by
interpolation (L2, L∞) after the case p = 2 is obtained. When p 6 2, the
log-concave statements follow from the “general” one. Indeed, for the study
of maximal functions, we may assume that the convex set C or the sym-
metric log-concave probability density Klc is isotropic and normalized by
variance. Then, by (5.17.B) or by Lemma 5.11, mC or mlc satisfy (6.1.H)
with universal constants δ0,c and δ1,c.

6.1. A priori estimate and interpolation

Suppose that a family (Tj)j∈Z of operators on Lp(X,Σ, µ) is given, for a
set of values of p and on a certain measure space (X,Σ, µ) (further down, it
will be Rn, equipped with the Lebesgue measure). These operators can be
linear operators, or nonlinear operators of the form

Tjf = sup
v∈V
|Tj,vf | ,

where each Tj,v is linear and where v runs over a certain set V of indices.
We want to study the maximal function

T ∗f = sup
j∈Z
|Tjf | = sup

j∈Z,v∈V
|Tj,vf | .
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We also consider later a kernel K integrable on Rn. In the application to
the geometrical problem, this kernel will be (as in Section 5.3.1) the differ-
enceK = K1−K2 of two kernels, whereK1 is the uniform probability density
on an isotropic convex set C or a probability density Kg satisfying (6.1.H),
and K2 is a kernel for which the dimensionless maximal inequality is al-
ready known. We have to deal with two cases. In the first one, Tj will be
the convolution with the dilate K(2j) from (2.7) of K, and the maximal
function T ∗f = M (d)

K f will then permit us to relate the dyadic maximal
function M(d)

C f to a maximal function whose bounded character on Lp(Rn)
is already known. In the second one, the operator Tj,v will be the convolution
with K(v2j) with v ∈ [1, 2] = V , in which case

Tjf = sup
2j6t62j+1

|K(t) ∗ f | , (6.2)

and T ∗f = MKf allows us to study the “global” maximal function MCf or
MKgf .

We assume that linear operators (Qj)j∈Z such that
∑
j∈ZQj = Id are

given. In the applications to come, these operators will be those of Equa-
tion (2.6), in the Section 2.1 on Littlewood–Paley functions.

Definition 6.4 (Carbery [21]). — Given families (Tj)j∈Z and (Qj)j∈Z
as above, we say that T ∗ is weakly bounded on Lp(X,Σ, µ) if there exists a
constant A such that

∀ f ∈ Lp(X,Σ, µ) , ∀ k ∈ Z ,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lp(µ)

6 A‖f‖Lp(µ) . (Wp)

We say that T ∗ is strongly bounded on Lp(X,Σ, µ) if there exists a real
nonnegative sequence (ak)k∈Z, satisfying

∑
k∈Z a

r
k < +∞ for every r > 0,

and such that

∀ f ∈ Lp(X,Σ, µ) , ∀ k ∈ Z ,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lp(µ)

6 ak ‖f‖Lp(µ) . (Sp)

By TjQj+kf , we mean of course Tj(Qj+kf).

Remarks 6.5. — In this generality, the supremum for v ∈ V in Tjf =
supv∈V |Tj,vf | must be understood as essential supremum, as explained in
Section 3.3. In our cases of application, the function v 7→ Tj,v(x), x ∈ X,
will be a continuous function on an interval V of the line, in which case the
pointwise supremum coincides with the supremum on any countable dense
subset of V .
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It is evident that (Sp) implies (Wp), and (Sp) implies that T ∗ is bounded,
because

|Tj,vf | =
∣∣∣∣∑
k∈Z

Tj,vQj+kf

∣∣∣∣ 6∑
k∈Z
|Tj,vQj+kf | 6

∑
k∈Z
|TjQj+kf | ,

thus
|Tjf | = sup

v∈V
|Tj,vf | 6

∑
k∈Z
|TjQj+kf |, then T ∗f 6

∑
k∈Z

sup
j∈Z
|TjQj+kf |

and

‖T ∗f‖Lp(µ) 6
∑
k∈Z

∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lp(µ)

6

(∑
k∈Z

ak

)
‖f‖Lp(µ) . (6.3)

If one has (Wp0) and (Sp1) and if 1/p = (1−θ)/p0+θ/p1, with 0 < θ 6 1,
then as in (3.26) we obtain by interpolation

∀ f ∈ Lp(µ) , ∀ k ∈ Z ,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lp(µ)

6 A1−θaθk ‖f‖Lp(µ) ,

and
∑
k∈ZA

(1−θ)raθrk < +∞ for every r > 0, so (Sp) is satisfied. In order to
obtain this, we apply the complex interpolation of linear operators between
spaces Lp(`q) [7, Chap. 5, Th. 5.1.2]. Here, the range space is of the form
Lp(µ, `∞(Z)), a case covered by complex interpolation. Indeed, in the simpler
case where the Tj s are linear, we obtain the result by considering for each
k ∈ Z the linear operator

f 7→ (TjQj+kf)j∈Z ∈ Lp(X,Σ, µ, `∞(Z)) , f ∈ Lp(µ) .
If V has more than one element, the range space will be Lp(µ, `∞(Z× V )).
The nonlinear operator f 7→ supj∈Z |TjQj+kf | belongs to the class of lin-
earizable operators considered in [36].

We now describe the assumptions that will be made in the main result of
this section. First of all, we assume that there exist constants Cp, 1 < p 6 2,
such that

∀ p ∈ (1, 2], ∀ f ∈ Lp(µ),
∥∥∥∥(∑

j∈Z
|Qjf |2

)1/2∥∥∥∥
Lp(µ)

6 Cp‖f‖Lp(µ) . (A0)

If the (Qj)j∈Z are those of (2.4), then we can take Cp = qp which behaves
as 1/(p− 1) when p→ 1, according to (2.5).

We assume that Tj,v = Uj,v−Sj,v, where Uj,v and Sj,v are positive linear
operators, and we assume for S∗, defined by S∗f = supj∈Z,v∈V |Sj,vf |, that
there exist pmin in the open interval (1, 2) and constants C ′p, pmin < p 6 2,
such that

∀ p ∈ (pmin, 2] , ‖S∗‖p 6 C ′p , (A1)
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where ‖R‖p is a shorter notation for the norm ‖R‖p→p of an operator R.
The condition “Uj,v positive” will be the only reason for requiring that the
kernelKg in Proposition 6.3 be a probability density rather than an arbitrary
integrable kernel. The Uj,v s will correspond to the kernel Kg under study,
while the Sj,v s will often refer to Poisson kernels for which the maximal
function estimates in Lp(Rn) are already known by (1.31.P ∗).

We assume that for every p ∈ (pmin, 2], there exists a constant C ′′p such
that

∀ j ∈ Z , ‖Tj‖p 6 C ′′p . (A2)

We shall assume that T ∗ satisfies (S2), hence we have that

∀ f ∈ L2(µ) , ∀ k ∈ Z ,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
L2(µ)

6 ak‖f‖L2(µ) , (A3)

where
∑
k∈Z a

r
k < +∞ for every r > 0.

Proposition 6.6 (Carbery [21]). — Under the assumptions (A0), (A1),
(A2) and (A3), the maximal operator T ∗ is bounded on Lp(X,Σ, µ) for every
real number p such that pmin < p 6 2. For every p0 such that pmin < p0 <
p 6 2, we have

‖T ∗‖p 6 (Cr0)2γ/p0 (C ′′p0
)γ
(∑
k∈Z

a
(1−γ)p/2
k

)2/p
+ 2C ′p , (6.4)

with r0 = 2p/(p+ 2− p0) ∈ (p0, p) and γ = [1/p− 1/2]/[1/p0 − 1/2].

Our main interest in applications will be the maximal operator U∗, which
is also bounded on Lp(X,Σ, µ) since S∗ is bounded on Lp(X,Σ, µ) according
to (A1).

Proof. — Under the assumption (A3), one already knows by (6.3) that
T ∗ is bounded on L2(X,Σ, µ). We fix p1 = p such that pmin < p1 < 2 and we
try to prove that T ∗ is bounded on Lp1(X,Σ, µ). For doing this, it is enough
to show that for every finite subfamily (Tj)j∈J of (Tj)j∈Z, the corresponding
maximal operator

f 7→ max
j∈J
|Tjf |

is Lp1-bounded by a constant independent of the chosen finite subset J ⊂ Z.

We thus consider a family (Tj) that has only a finite number of nonzero
terms, implying that ‖T ∗‖p1 < +∞ by Property (A2). We choose p0 arbi-
trary such that pmin < p0 < p1, and we introduce r0 such that pmin < p0 <
r0 < p1 < r1 := 2, defined in this way: if θ ∈ (0, 1) is such that

1
2 = 1− θ

p0
+ θ

∞
, (6.5a)
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that is to say, if θ = 1− p0/2, then we set
1
r0

= 1− θ
p0

+ θ

p1

(
= 1

2 + 1
p1
− p0

2p1
, r0 = 2p1

p1 + 2− p0

)
. (6.5b)

Here is the plan: by a first interpolation between p0 and p1, we will show
that T ∗ satisfies (Wr0) with a constant bounded by a function of ‖T ∗‖p1 .
Next, we will interpolate between (Wr0) and (Sr1) = (S2) and obtain (Sp1),
giving a new bound for the norm ‖T ∗‖p1 , whose particular form

‖T ∗‖p1 6 A(‖T ∗‖p1 +B)β , for some β ∈ (0, 1) ,
implies that ‖T ∗‖p1 is bounded by a constant independent of the chosen
finite subfamily. This will complete the proof.

For 1 6 r, s 6 +∞, let κ(r, s) be the smallest constant such that∥∥∥∥(∑
j∈Z
|Tjgj |s

)1/s∥∥∥∥
Lr
6 κ(r, s)

∥∥∥∥(∑
j∈Z
|gj |s

)1/s∥∥∥∥
Lr

for every sequence (gj)j∈Z in Lr(X,Σ, µ).
— One sees that κ(p0, p0) 6 C ′′p0

, by (A2) and the simple sum-integral
inversion∥∥∥∥(∑

j∈Z
|Tjgj |p0

)1/p0

∥∥∥∥p0

Lp0

=
∑
j∈Z
‖Tjgj‖p0

Lp0

6 (C ′′p0
)p0

∥∥∥∥(∑
j∈Z
|gj |p0

)1/p0

∥∥∥∥p0

Lp0

.

— One has also κ(p1,+∞) 6 ‖T ∗‖p1 + 2C ′p1
. Indeed, when (Wj)j∈Z is

a family of positive operators and g = supj∈Z |gj |, one has
|Wj gj | 6Wj |gj | 6Wj g , sup

j∈Z
|Wj gj | 6 sup

j∈Z
Wj g .

Because Sj,v is positive, we have supj∈Z |Sj,vgj | 6 supj∈Z Sj,vg for
every v ∈ V , and letting Sjgj = supv∈V |Sj,vgj | we see according
to (A1) that
sup
j∈Z

Sj gj 6 S
∗g ,

∥∥sup
j∈Z

Sj gj
∥∥
Lp1 6 ‖S

∗g‖Lp1 6 C ′p1

∥∥sup
j∈Z
|gj |
∥∥
Lp1 .

Since Uj,v = Tj,v + Sj,v is positive, we obtain also for Ujf =
supv∈V |Uj,vf | that∥∥sup

j∈Z
|Uj gj |

∥∥
Lp1 6 ‖U

∗g‖Lp1 6 ‖T ∗g‖Lp1 + ‖S∗g‖Lp1

6 (‖T ∗‖p1 + C ′p1
)‖g‖Lp1 ,

and finally
∥∥supj∈Z |Tj gj |

∥∥
Lp1 6 (‖T ∗‖p1 + 2C ′p1

)
∥∥supj∈Z |gj |

∥∥
Lp1 ,

which proves the inequality κ(p1,+∞) 6 ‖T ∗‖p1 + 2C ′p1
.
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We apply complex interpolation between spaces Lp(`q) [7, Chap. 5,
Th. 5.1.2], namely between the spaces Lp0(`p0) and Lp1(`∞), which gives
the space Lr0(`2) for the chosen value θ of the interpolation parameter,
by (6.5a) and (6.5b). We already explained that the case where Tj is not
linear can also be covered by complex interpolation. It follows from (3.26)
that

κ(r0, 2) 6 κ(p0, p0)1−θκ(p1,+∞)θ 6 (C ′′p0
)1−θ(‖T ∗‖p1 + 2C ′p1

)θ .
Remark (in passing). — It is exactly in this manner that Stein [73,
Chap. VI, Th. 8, p. 103] shows the inequality (6.6) on the square func-
tion (

∑
n
|Enfn|2)1/2 of a sequence (En) of conditional expectations with

respect to an increasing sequence of σ-fields, stating that∥∥∥∥(∑
n

|Enfn|2
)1/2∥∥∥∥

q

6 κq

∥∥∥∥(∑
n

|fn|2
)1/2∥∥∥∥

q

, 1 < q < +∞ . (6.6)

When 1 < q < 2, the proof applies inversion for a pair (q0, q0), and Doob’s
maximal theorem for a pair (q1,+∞) with q0 < q < q1 and q(q1 − q0) =
2(q1 − q).

Thus, with gj = Qj+kf for a fixed k ∈ Z, one has∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lr0

6

∥∥∥∥(∑
j∈Z
|TjQj+kf |2

)1/2∥∥∥∥
Lr0

6 κ(r0, 2)
∥∥∥∥(∑
j∈Z
|Qj+kf |2

)1/2∥∥∥∥
Lr0

= κ(r0, 2)
∥∥∥∥(∑
j∈Z
|Qjf |2

)1/2∥∥∥∥
Lr0

6 Cr0 κ(r0, 2)‖f‖Lr0 .

We have proved the property (Wr0), since we got that

∀ f ∈ Lr0 , ∀ k ∈ Z,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lr0

6 Cr0 κ(r0, 2)‖f‖Lr0 .

If for a certain ρ ∈ (0, 1), we write
1
p1

= 1− ρ
r0

+ ρ

r1
= 1− ρ

r0
+ ρ

2

(
ρ = p1 − p0

2− p0

)
,

we get (Sp1) by interpolating between (Wr0) and (S2) = (Sr1), obtaining
thus

∀ k ∈ Z ,
∥∥∥∥ sup
j∈Z
|TjQj+kf |

∥∥∥∥
Lp1

6 (Cr0 κ(r0, 2))1−ρaρk ‖f‖Lp1 .

By (6.3), it follows that∥∥∥∥ sup
j∈Z
|Tjf |

∥∥∥∥
Lp1

6 (Cr0 κ(r0, 2))1−ρ
(∑
k∈Z

aρk

)
‖f‖Lp1 .
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One has finally an implicit inequality about ‖T ∗‖p1 , namely

‖T ∗‖p1 6
[
Cr0 κ(r0, 2)

]1−ρ(∑
k∈Z

aρk

)
6
[
Cr0 (C ′′p0

)1−θ(‖T ∗‖p1 + 2C ′p1
)θ
]1−ρ(∑

k∈Z
aρk

)
=
(
Cr0 (C ′′p0

)1−θ)1−ρ(∑
k∈Z

aρk

)
(‖T ∗‖p1 + 2C ′p1

)θ(1−ρ) ,

implying that ‖T ∗‖p1 is bounded by a constant depending only upon Cr0 ,
C ′p1

, C ′′p0
and the ak s. Indeed, suppose that C > 0 satisfies C 6 A(C +B)β ,

where A,B > 0 and 0 < β < 1. We write

C 6
(
A1/(1−β))1−β(C +B)β 6 (1− β)A1/(1−β) + β(C +B) ,

yielding

C 6 A1/(1−β) + β

1− β B .

This bound is essentially correct when B is small, and we shall use it below

with A =
(
Cr0 (C ′′p0

)1−θ)1−ρ(∑
k∈Z a

ρ
k

)
, B = 2C ′p1

and β = θ(1− ρ).

However, when B > A1/(1−β), a better bound (1− β)−1ABβ is available.
In this case, A 6 B1−β , thus C 6 B1−β(C +B)β 6 B + βC, hence

C 6 A

(
B

1− β +B

)β
=
(

2− β
1− β

)β
ABβ 6

1
1− β AB

β ,

because (2− β)β(1− β)1−β 6 β(2− β) + (1− β)2 = 1.

Recall that ρ = (p1−p0)/(2−p0), so β = θ(1−ρ) = 1−p1/2 < 1. We find
an explicit bound for ‖T ∗‖p1 , independent of the finite subfamily (Tj)j∈J of
(Tj)s that was chosen at the beginning, of the form

‖T ∗‖p1 6
(
Cr0 (C ′′p0

)1−θ)2(1−ρ)/p1

(∑
k∈Z

aρk

)2/p1

+ 2− p1

p1
2C ′p1

6 (Cr0)2γ/p0 (C ′′p0
)γ
(∑
k∈Z

aρk

)2/p1

+ 2C ′p1
,

with γ = [1/p1−1/2]/[1/p0−1/2]. Observe that ρ = [p1/(2p0)−1/2]/[1/p0−
1/2] = (1 − γ)p1/2. We get in particular a bound of C ′′p1

by a power
γ < 1 of C ′′p0

. There is no miracle: this power γ is the one correspond-
ing to interpolation between C ′′p0

and the value C ′′2 hidden in the assump-
tion (A3). �
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6.2. Fractional derivatives

If a function h is given in the Schwartz space S(R), one can express it as
Fourier transform of another function k ∈ S(R) and write

∀ t ∈ R , h(t) =
∫
R
k(s) e−2iπst ds .

One has then an expression for the derivatives of h by means of (unbounded)
multipliers. For every integer j > 1 and every t ∈ R, one sees that

(−1)jh(j)(t) =
∫
R

(2iπs)jk(s) e−2iπst ds .

It is tempting to extend the notion of derivative, from the integer case j ∈ N
to every complex value z such that Re z > −1, by setting

∀ t ∈ R , (Dzh)(t) =
∫
R
(2iπs)zk(s) e−2iπst ds . (6.7)

Note that D1h = −h′ with this definition. We define complex powers by

(2iπs)z = ez ln(2iπs) = ez(ln(2π|s|)+i Arg(2iπs)) = |2πs|z e iπz sign(s)/2 ,

and we have that (λ is)z = λz(is)z when λ > 0. If we dilate the function h
to h[λ], with λ > 0 as in (2.7), we know that h[λ] = F(k(λ)), therefore

(Dzh[λ])(t) =
∫
R
(2iπs)zλ−1k(λ−1s) e−2iπst ds

= λz
∫
R

(2iπu)zk(u) e−2iπuλt du .

This means that

Dz(h[λ]) = λz
(
Dzh

)
[λ] , or Dz

t h(λt) = λz(Dzh)(λt) , (6.8)

where we use the notation Dz
t h(λt) when the function of t does not have

an explicit name, as in t 7→ h(λt). For a specific value, we shall write for
example Dz

t h(λt)
∣∣
t=1

.

If we would like to extend Dz to h = 1, we might consider the function
1 as the limit of h[λ] when h(0) = 1 and λ↘ 0. Then (6.8) suggests that
Dz1 = 0 when Re z > 0, and that Dz1 is undefined if Re z < 0.

When z is not a nonnegative integer, the operator Dz is not local.
We will see later however that (Dzh)(t0) depends only on the values of
h on [t0,+∞). This could be checked right now by arguments involving
holomorphic functions.
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When −1 < Re z < 0, the differentiation Dz is in fact a fractional inte-
gration. We shall see below that (Dzh)(t) = (I−zh)(t), where Iw is given for
Rew > 0 by

(Iwh)(t) = 1
Γ(w)

∫ +∞

t

(u− t)w−1h(u) du . (6.9)

The next lemma provides the tool that relates the definitions (6.7) and (6.9).

Lemma 6.7. — Let ζ be a complex number such that Re ζ < 0
and let ε > 0. The inverse Fourier transform of the function t 7→
Γ(−ζ)−11(−∞,0)(t)(−t)−ζ−1 eεt is equal to s 7→ (ε+ 2iπs)ζ , namely

1
Γ(−ζ)

∫
R

1(−∞,0)(t)(−t)−ζ−1 eεt e2iπst dt = (ε+ 2iπs)ζ , s ∈ R .

Proof. — By a contour integral of (−z)−ζ−1 ez, running along the nega-
tive real half-line and along the half-line Hs = {(ε+ 2iπs)t ∈ C : t < 0}, we
obtain

Γ(−ζ) =
∫ 0

−∞
(−t)−ζ−1 et dt = (ε+ 2iπs)−ζ

∫ 0

−∞
(−t)−ζ−1 e(ε+2iπs)t dt ,

giving the announced result. �

Integrating (6.9) by parts, we see that

(Iwh)(t) = − 1
Γ(w + 1)

∫ +∞

t

(u− t)wh′(u) du .

This new formula makes sense for Rew > −1 and could be used for defining
the fractional derivative Dz if z = −w and Rew ∈ (−1, 0), by setting for t
real

(Dzh)(t) = − 1
Γ(1− z)

∫ +∞

t

(u− t)−zh′(u) du . (6.10)

This is proved in Lemma 6.8. It is coherent with the fact that Dα, for 0 <
α < 1, can be considered as the antiderivative of order 1−α of the derivative
D1h = −h′,

Dαh = Dα−1D1h = −Dα−1h′ = −I1−αh′ .

The operation Dz is not symmetric on R; this is obvious from the formulas
for Iw. The choice that was done of (2iπs)z instead of (−2iπs)z in (6.7)
induces the direction in which the fractional antiderivative is computed.
This direction, to +∞, is well adapted to the “radial” Carbery’s method
introduced in [20].

Lemma 6.8. — Let α ∈ (0, 1), t0 ∈ R be given and let k be a function on
R such that (1 + |s|α)k(s) is integrable on the real line. Assume that h = k̂
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is Lipschitz with |h′(t)| 6 κ1(1 + |t|)−1 for almost every t > t0. Then, for
every t > t0 and z such that Re z = α, we have

− 1
Γ(1− z)

∫ +∞

t

(u− t)−zh′(u) du =
∫
R

(2iπs)zk(s) e−2iπst ds .

Proof. — Let η be a nonnegative C∞ function on R, with integral 1 and
with compact support in [−1, 1]. Consider ε ∈ (0, 1) and

kε(s) = k(s)(η∨)[ε](s) = k(s)η∨(εs) , s ∈ R .

Then η∨ ∈ S(R), skε(s) is integrable and hε := k̂ε = h ∗ η(ε) is C1. We can
write

− h′ε(t) =
∫
R

2iπskε(s) e−2iπst ds , t ∈ R . (6.11)

Since h is Lipschitz, we also know that h′ε = h′ ∗ η(ε). Fix t > t0 + ε. When
|τ | 6 1 and u > t, we have u−ετ > t0, 1+|u| 6 1+ε|τ |+|u−ετ | 6 2+2|u−ετ |,
so

|h′ε(u)| =
∣∣∣∣ ∫ 1

−1
h′(u− ετ)η(τ) dτ

∣∣∣∣ 6 κ1

∫ 1

−1

η(τ)
1 + |u− ετ | dτ 6

2κ1

1 + |u| .

(6.12)
Applying (6.11) and |(u−t)−z| = (u−t)−α, Fubini’s theorem and the inverse
Fourier transform of v 7→ [(−v)+]−z eεv given by Lemma 6.7 with ζ = z− 1,
we get

− 1
Γ(1− z)

∫ +∞

t

(u− t)−z eε(t−u) h′ε(u) du

= 1
Γ(1− z)

∫ +∞

t

(u− t)−z eε(t−u)
(∫

R
2iπskε(s) e−2iπsu ds

)
du

= 1
Γ(1− z)

∫∫
1{t−u<0}(u−t)−z eε(t−u) 2i πskε(s) e2iπs(t−u) e−2iπst dsdu

=
∫
R

(ε+ 2iπs)z−1(2iπs)kε(s) e−2iπst ds .

Letting ε tend to 0, by a double application of Lebesgue’s dominated con-
vergence, using (6.12) and since h′ε(u)→ h′(u) at every Lebesgue point u of
h′, we obtain

− 1
Γ(1− z)

∫ +∞

t

(u− t)−zh′(u) du =
∫
R

(2iπs)zk(s) e−2iπst ds . �

It is quite comforting to have two possible ways of defining Dzh. How-
ever, we will have to handle cases where the Fourier transform h(t) is well
controlled, but where the estimates on k(s) are not so good. We shall there-
fore concentrate on the integral definition (6.10) of Dzh. We have to check
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that the properties obtained with the first definition remain true when only
the second applies.

When α ∈ (0, 1) tends to 1, one has Γ(1 − α) ' (1 − α)−1 and for ε > 0
we get

− 1
Γ(1− α)

∫ +∞

t+ε
(u− t)−αh′(u) du → 0 ,

(1− α)
∫ t+ε

t

(u− t)−α du = ε1−α → 1 .

We recover the fact that (D1h)(t) = −h′(t), already known by Fourier.

Let us mention the case of h(t) = e−λ|t|, the Fourier transform of a
Cauchy kernel. When t > 0 and 0 < Re z < 1, we have

Dz
t e−λ|t| = 1

Γ(1− z) e−λt
∫ +∞

t

(u− t)−zλ e−λ(u−t) du

= λz e−λ|t| .
(6.13)

The dilation relation (6.8) follows from a simple change of variable similar
to the one in the line above, and is left to the reader.

We have introduced in (5.5) the right maximal function h∗r of h. Notice
that for h Lipschitz on (t0,+∞) and for every t > t0, δ > 0, we have

|h(t+ δ)| 6 |h(t)|+
∫ t+δ

t

|h′(u)|du 6 h∗r(t) + δ(h′)∗r(t) . (6.14)

Lemma 6.9. — Let h be Lipschitz on (t0,+∞), α ∈ (0, 1) and h(t) =
o(tα) at +∞. Let h0 = h∗r be the right maximal function of h and h1 = (h′)∗r
that of h′. Then

|(Dαh)(t)| 6 6h0(t)1−αh1(t)α , t > t0 .

If w is complex and Rew = α, then for every t > t0 we have

|(Dwh)(t)| 6 2
α(1− α)

(1 + |w|)1−α

|Γ(1− w)| h0(t)1−αh1(t)α .

Proof. — For t > t0 and δ > 0, we express Eα := −Γ(1− α)(Dαh)(t) as

∫ t+δ

t

(u− t)−αh′(u) du+
∫ +∞

t+δ
(u− t)−αh′(u) du .
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Applying (5.6) and integration by parts, we bound each of the two pieces

|Eα| 6
δ1−α

1− α h1(t) +
∣∣∣∣[(u− t)−αh(u)

]+∞

t+δ

∣∣∣∣+ α

∣∣∣∣ ∫ +∞

t+δ
(u− t)−α−1h(u) du

∣∣∣∣
6

δ1−α

1− α h1(t) + δ−α|h(t+ δ)|

+ α

(∫ t+δ

t

δ−α−1|h(u)|du+
∫ +∞

t+δ
(u− t)−α−1|h(u)|du

)
.

By (6.14), by (5.6) for the non-decreasing function ψ defined by ψ(u) =
δ−α−1 when u ∈ [t, t+ δ] and ψ(u) = (u− t)−α−1 for u > t+ δ, we obtain

|Eα| 6
δ1−α

1− α h1(t) + δ−α
(
h0(t) + δh1(t)

)
+ (1 + α)δ−αh0(t)

= 2− α
1− α δ1−αh1(t) + (2 + α)δ−αh0(t)

6
2

1− α δ1−αh1(t) + 3δ−αh0(t) .

We choose δ = δ0 = h0(t)/h1(t) and get that

|Eα| 6
(

2
1− α + 3

)
h0(t)1−αh1(t)α .

Recalling Γ(1−α) > 1 and the minimal value Γ(xΓ) > 0.88 in (3.7) we have

|(Dαh)(t)| 6
(

2
Γ(2− α) + 3

Γ(1− α)

)
h0(t)1−αh1(t)α

6

(
2

Γ(xΓ) + 3
)
h0(t)1−αh1(t)α 6 6h0(t)1−αh1(t)α .

When w is complex and Rew = α, we use |(u − t)−w| = (u − t)−α, the
same integration by parts, |(u− t)−w−1| = (u− t)−α−1 and we get

|Ew| 6
δ1−α

1− α h1(t) + δ−α
(
h0(t) + δh1(t)

)
+ |w|

(
1 + 1

α

)
δ−αh0(t)

6
2δ1−α

1− α h1(t) + 2
α

(1 + |w|)δ−αh0(t) .

Choosing δ = (1 + |w|)h0(t)/h1(t) we obtain the announced result. �

In what follows, we shall consider the following assumptions on a func-
tion h: 

h is Lipschitz on [t0,+∞) ,
|h(t)| 6 κ0(1 + |t|)−1 for t > t0 ,
|h′(t)| 6 κ1(1 + |t|)−1 for almost every t > t0 .

(6.15)
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Corollary 6.10. — Suppose that the function h defined on (t0,+∞),
t0 > 0, satisfies (6.15). Then for every α ∈ (0, 1), we have

|(Dαh)(t)| 6 6 κ
1−α
0 κα1
1 + |t| , t > t0 .

Proof. — The two upper bounds in (6.15) are decreasing functions of
t ∈ [t0,+∞), hence they also bound h∗r or (h′)∗r . We conclude by applying
Lemma 6.9. �

Assuming that h has enough derivatives and continuing integrations by
parts, starting from (6.10), we get successive formulas for Dzh for each in-
teger j > 0, which make sense when Re z < j. Let z = j − 1 +w, with j > 1
and Rew ∈ (0, 1). We obtain that

(Dzh)(t) = (−1)j−1(Dwh(j−1))(t) = (−1)j

Γ(1− w)

∫ +∞

t

(u− t)−wh(j)(u) du ,

and for every z ∈ C such that Re z < j, we have

(Dzh)(t) = (−1)j

Γ(j − z)

∫ +∞

t

(u− t)−z+j−1h(j)(u) du . (6.16)

By gluing the successive definitions, we define entire functions of z for every
fixed t and h ∈ S(R). By the principle of analytic continuation, we conclude
that the integral formula for Dzh coincides when Re z > −1 with the one
obtained by Fourier transform (a fact that we have checked in Lemma 6.8
when 0 < Re z < 1).

Lemma 6.11. — Let α be in (0, 1). Suppose that the function h satisfies
the assumptions (6.15) on [t0,+∞), t0 > 0, and define Dαh by (6.10). We
have that

(IαDαh)(t) = t , t > t0 .

Proof. — We first assume in addition that∫ +∞

t0

|h′(u)|du < +∞ , thus h(t) = −
∫ +∞

t

h′(u) du

for every t > t0 since h is Lipschitz. For u > t0, accepting possibly infinite
integrals of nonnegative measurable functions, set

G(u) = 1
Γ(1− α)

∫ +∞

u

(v − u)−α|h′(v)|dv .

When h is decreasing on (t0,+∞), the function G is equal to Dαh, and
|Dαh| 6 G in general. Then, consider F , equal to IαG in good cases, defined
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for t > t0 by

F (t) := 1
Γ(α)

∫ +∞

t

(u− t)α−1G(u) du

= 1
Γ(α)Γ(1− α)

∫ +∞

t

(u− t)α−1
∫ +∞

u

(v − u)−α|h′(v)|dv du

= 1
Γ(α)Γ(1− α)

∫ +∞

t

(∫
1t6u6v (u− t)α−1(v − u)−α du

)
|h′(v)|dv .

Setting u = t+ y(v − t), one gets with γα = Γ(α)Γ(1− α) that

F (t) = γ−1
α

(∫ 1

0
yα−1(1− y)−α dy

) ∫ +∞

t

|h′(v)|dv

=
∫ +∞

t

|h′(v)|dv < +∞ .

The last equality can be deduced from (6.13) by applying the preceding com-
putation to h(v) = e−|v−t0|, or one can check directly that γα =

∫ 1
0 y

α−1(1−
y)−α dy. From the Fubini theorem and the same calculation without abso-
lute values, it follows that if

∫ +∞
t0
|h′(u)|du < +∞, then for every t > t0 we

have

(IαDαh)(t) = −
∫ +∞

t

h′(u) du = h(t) .

Under (6.15), we introduce hε(t) = e−ε|t−t0| h(t) with ε > 0, for which we
use the preceding case and convergence when ε → 0. When ε ∈ (0, 1) and
t > t0 we have

|hε(t)| 6 |h(t)| 6 κ0

1 + |t| , |h′ε(t)| 6 (ε|h(t)|+ |h′(t)|) 6 κ0 + κ1

1 + |t| .

By Corollary 6.10, we have |Dαhε| 6 κ(1 + |t|)−1, and we can apply twice
dominated convergence when ε→ 0 in∫ +∞

t

(u− t)α−1
(∫ +∞

u

(v − u)−αh′ε(v) dv
)

du = hε(t) . �

Assuming (6.15) and Re z > 0, we have

Dz
t (th(t)) = t(Dzh)(t)− z(Dz−1h)(t) . (6.17)
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This is obtained when 0 < Re z < 1 with an integration by parts, writing

Γ(1− z)
(
−Dz

t (th(t)) + t(Dzh)(t)
)

=
∫ +∞

t

(u− t)−z
(
(u− t)h′(u) + h(u)

)
du

=
∫ +∞

t

(u− t)−z+1h′(u) du+
∫ +∞

t

(u− t)−zh(u) du

= z

∫ +∞

t

(u− t)−zh(u) du = zΓ(1− z)(Dz−1h)(t) .

6.2.1. Multipliers associated to fractional derivatives

If K is a kernel integrable on Rn, we know by (2.15) that its Fourier
transform m is expressed for ξ 6= 0 as

m(uξ) =
∫
R
ϕθ(s) e−2iπsu|ξ| ds =

∫
R

1
|ξ|
ϕθ

(
v

|ξ|

)
e−2iπvu dv , u ∈ R ,

where θ = |ξ|−1ξ and where the function ϕθ is defined on R by (2.14). Letting
α > 0 and assuming that x 7→ |x|αK(x) is integrable on Rn, this yields

Dα
um(uξ) =

∫
R

(2iπv)α 1
|ξ|
ϕθ

(
v

|ξ|

)
e−2iπvu dv

=
∫
R

(2iπs|ξ|)αϕθ(s) e−2iπs|ξ|u ds

=
∫
Rn

(2iπx · ξ)αK(x) e−2iπux·ξ dx ,

which is naturally extended by 0 when ξ = 0. We set in what follows
(ξ · ∇)αm(ξ) := Dα

um(uξ)
∣∣
u=1

=
∫
Rn

(2iπx · ξ)αK(x) e−2iπx·ξ dx

=
∫
R

(2iπs|ξ|)αϕθ(s) e−2iπs|ξ| ds .

(6.18.∇α)

When α = 1 and ξ 6= 0, the quantity (ξ·∇)1m(ξ) is equal to−ξ·∇m(ξ), which
is the product by −|ξ| of the usual directional derivative of the function m
in the direction of the norm-one vector θ = |ξ|−1ξ. When 0 < α < 1, under
the assumptions (6.15), we can give according to Lemma 6.8 the integral
formula

(ξ · ∇)αm(ξ) = − 1
Γ(1− α)

∫ +∞

1
(u− 1)−α d

dum(uξ) du . (6.19)
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We shall use the integral formula (6.19) when m(ξ) is Lipschitz outside the
origin and when for every u0 > 0 and u > u0, we have for every θ ∈ Sn−1

that

|m(uθ)|+
∣∣ d
dum(uθ)

∣∣ 6 κ(θ, u0)
1 + |u| .

If K is an isotropic log-concave probability density with variance σ2, we
know by Corollary 5.13 that |(d/du)m(uξ)| 6 δ1,c |σξ|/(1 + 2π|uσξ|) 6
δ1,c/(2π|u|), thus

|(ξ · ∇)αm(ξ)| 6 δ1,c
2π |Γ(1− α)|

∫ +∞

1
(u− 1)−αu−1 du = καδ1,c , (6.20)

and the bounded function ξ 7→ (ξ · ∇)αm(ξ) defines an L2 multiplier. We
reach of course the same conclusion under (6.1.H) for a “general” kernel Kg.

We have seen in (2.10) that the multiplier norm of m(ξ) on Lp(Rn) is the
same as that of the dilatem(λξ), for every λ > 0. It is thus natural to look for
a norm invariant by dilation, if we want a norm capable to control the action
on Lp of a multiplier. Since we shall work radially with Carbery’s approach,
we begin with a smooth function h compactly supported in (0,+∞), and
when α ∈ (0, 1) we set with Carbery [21]

‖h‖L2
α

:=
(∫ +∞

0

∣∣∣∣tα+1Dα
t

(
h(t)
t

)∣∣∣∣2 dt
t

)1/2
. (6.21)

One verifies that this norm is invariant by dilation. By (6.8), we have

tα+1Dα
t

(
h[λ](t)
t

)
= tα+1λDα

t

(
h(λt)
λt

)
= (λt)α+1Dα

v

(
h(v)
v

)∣∣
v=λt

, (6.22)

and the change of variable u = λt in (6.21) completes the proof. Let h be
Lipschitz on (t0,+∞) for all t0 > 0. Applying (6.17) to h̃(t) = h(t)/t, we get
for all t > 0

Dα
t

(
h(t)
t

)
= α

t
Dα−1
t

(
h(t)
t

)
+ 1
t

(Dαh)(t)

= 1
t
Dα−1
t

(
αh(t)
t
− h′(t)

)
.

(6.23)

Remark 6.12. — When 1/2 < α < 1, the L2
α norm dominates the

L∞(0,+∞) norm of the function h. For a justification, let us assume in
addition that h is bounded and Lipschitz on each interval (t,+∞) with
t > 0. Then H : u 7→ h(u)/u satisfies (6.15) on (t,+∞) and we can apply
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Lemma 6.11, giving IαDαH = H, thus

h(t)
t

= 1
Γ(α)

∫ +∞

t

(u− t)α−1Dα
u

(
h(u)
u

)
du

= 1
tΓ(α)

∫ +∞

t

(t/u)(1− t/u)α−1
[
uα+1Dα

u

(
h(u)
u

)]
du
u
.

Applying Cauchy–Schwarz, Γ(α) > 1 for α ∈ (0, 1) and letting y = t/u, we
get

h(t)2 6

(∫ +∞

t

(t/u)2(1− t/u)2α−2 du
u

)(∫ +∞

t

[
uα+1Dα

u

(
h(u)
u

)]2 du
u

)
6

(∫ 1

0
y(1− y)2α−2 dy

)
‖h‖2L2

α
6

1
2α− 1 ‖h‖

2
L2
α
.

The latter calculation is the basis for the L2 part of Carbery’s Proposi-
tion 6.14.

Remark 6.13. — Using the second expression in (6.23), we see that
‖h‖2L2

α
is the integral on (0,+∞), and with respect to (dt)/t, of the square

of the modulus of

tαDα−1
t

(
αh(t)
t
− h′(t)

)
= 1

Γ(1−α)

∫ +∞

t

(u/t− 1)−α
(
αh(u)−uh′(u)

) du
u

= 1
Γ(1−α)

∫ +∞

1
(v− 1)−α

(
αh(tv)− tvh′(tv)

) dv
v
.

In most cases, this expression tends to κh(0) when t → 0, with κ > 0, and
then we have that ‖h‖L2

α
is finite only if h(0) = 0, as for Bourgain’s criterion

ΓB(K).

We do not see an easy way to compare the L2
α norm and the quantity

appearing in the ΓB criterion. However, in the very special case whereH(t) =
h(t)/t is > 0, convex and decreasing on (0,+∞), the function |H ′| = −H ′
is decreasing and it follows from Lemma 6.9 that (D1/2H)(t) is bounded by
κ
√
|H(t)H ′(t)|, hence

‖h‖2L2
1/2
6 κ

∫ +∞

0
t3
|h(t)|
t

(
|h′(t)|
t

+ |h(t)|
t2

)
dt
t

6 κ
∫ +∞

0

(
|h(t)| |th′(t)|+ |h(t)|2

)
dt
t

6 κ′
∑
j∈Z

(
αj(h)βj(h) + αj(h)2

)
.

We obtain then (in this very special situation) that ‖h‖L2
1/2
6 κΓB(h∨).
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6.3. Fourier criteria for bounding the maximal function

In the next proposition due to Carbery, we impose conditions that fit into
our presentation but are certainly too restrictive.

Proposition 6.14 (Carbery [21]). — Let K be a kernel integrable on Rn
with integral equal to 0, let m be the Fourier transform of K. Assume that
mθ := u 7→ m(uθ) is differentiable on (0,+∞) for every θ ∈ Sn−1, and that
m′θ(u), u > 0, is bounded by a constant independent of θ.

(1) If there exists α ∈ (1/2, 1) such that

Cα(m) := sup
θ∈Sn−1

∥∥t 7→ m(tθ)
∥∥
L2
α
< +∞ , (6.24)

then for every function f ∈ L2(Rn) one has

‖MKf‖L2(Rn) =
∥∥sup
t>0
|K(t) ∗ f |

∥∥
L2(Rn) 6

1√
2α− 1

Cα(m)‖f‖L2(Rn) .

(2) Suppose that p < +∞ and 1/p < α < 1. If the multiplier (ξ·∇)αm(ξ)
from (6.18.∇α) is bounded on Lp(Rn), then for every f in Lp(Rn)
one has that∥∥ sup

16t62
|K(t) ∗ f |

∥∥
Lp(Rn)

6 κα,p
(
2‖m‖p→p + ‖(ξ · ∇)αm(ξ)‖p→p

)
‖f‖Lp(Rn) , (6.25)

with κα,p 6 (2α)1−1/p(p− 1)1−2/p(α− 1/p)1/p−1.

When 1 < p 6 2, one has the simpler larger bound κα,p 6
√

2
(
α −

1/p
)−1/p. Indeed, for 0 < α < 1, we have that 21/2−1/pα1−1/p(p−1)1−2/p(α−

1/p)2/p−1 is less than
(
[α− 1/p]/ [

√
2α(p− 1)]

)2/p−1. When 1 < p 6 2, this
expression increases with α ∈ (1/p, 1], and for α = 1, one has
(1− 1/p)/(

√
2(p− 1)) = 1/(

√
2p) 6 1.

Observe that if we set ξ = |ξ|θ for some nonzero vector ξ ∈ Rn, we have∥∥t 7→ m(tξ)
∥∥
L2
α

=
∥∥t 7→ m(tθ)

∥∥
L2
α

according to the invariance by dilation (6.22) of the norm L2
α. So the supre-

mum in (1) is also the supremum on ξ ∈ Rn. We shall need the following
Lemma, slightly more general than the conclusion (1) in Proposition 6.14.

Lemma 6.15. — Let (Kt)t>0 be a family of integrable kernels on Rn,
and denote by ξ 7→ m(ξ, t) the Fourier transform of Kt. Assume that for
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every u0 > 0, there exist N and κ(u0) satisfying the following: for every ξ
in Rn, the function gξ : u 7→ m(ξ, u)/u, for u ∈ [u0,+∞), is Lipschitz and

|gξ(u)|+ |g′ξ(u)| 6 κ(u0) (1 + |ξ|)N

1 + |u| , ξ ∈ Rn, u > u0 . (6.26)

If there is α ∈ (1/2, 1) such that cα := supξ∈Rn
∥∥t 7→ m(ξ, t)

∥∥
L2
α
< +∞, then

∀ f ∈ S(Rn) ,
∥∥sup
t>0
|Kt ∗ f |

∥∥
L2(Rn) 6

1√
2α− 1

cα‖f‖L2(Rn) .

Proof. — By the assumptions, the function gξ satisfies (6.15). As in Re-
mark 6.12, we obtain by Lemma 6.11 for all ξ ∈ Rn and t > 0 that

m(ξ, t)
t

= 1
Γ(α)

∫ +∞

t

(u− t)α−1Dα
u

(
m(ξ, u)
u

)
du .

For f ∈ S(Rn), according to (6.26) and Corollary 6.10, we can use Fubini
and get

(Kt ∗ f)(x) =
∫
Rn
m(ξ, t)f̂(ξ) e2iπx·ξ dξ

= 1
Γ(α)

∫ +∞

t

t(u− t)α−1
∫
Rn
Dα
u

(
m(ξ, u)
u

)
f̂(ξ) e2iπx·ξ dξdu

= 1
Γ(α)

∫ +∞

t

(t/u)(1− t/u)α−1
(∫

Rn
uα+1Dα

u

(
m(ξ, u)
u

)
f̂(ξ) e2iπx·ξ dξ

)
du
u
.

For u > 0 and x ∈ Rn, let us set

(Pαu f)(x) =
∫
Rn
uα+1Dα

u

(
m(ξ, u)
u

)
f̂(ξ) e2iπx·ξ dξ .

This operator Pαu is associated to the multiplier

pαu(ξ) = uα+1Dα
v

(
m(ξ, v)
v

)∣∣
v=u

, ξ ∈ Rn .

One can rewrite

(Kt ∗ f)(x) = 1
Γ(α)

∫ +∞

t

(t/u)(1− t/u)α−1(Pαu f)(x) du
u
. (6.27)

By Cauchy–Schwarz and since Γ(α) > 1 when α ∈ (0, 1), we get

|(Kt ∗ f)(x)|2 6
(∫ +∞

t

(t/u)2(1− t/u)2(α−1) du
u

)(∫ +∞

0

∣∣(Pαu f)(x)
∣∣2 du

u

)
.

For α > 1/2, one has 2(α− 1) > −1 and letting y = t/u, one sees that∫ +∞

t

(t/u)2(1− t/u)2(α−1) du
u

=
∫ 1

0
y(1− y)2(α−1) dy < 1

2α− 1 .

– 112 –



Dimension free bounds

We have obtained for |(Kt ∗ f)(x)|2 a bound independent of t, hence

sup
t>0
|(Kt ∗ f)(x)|2 6 κ2

α

(∫ +∞

0

∣∣(Pαu f)(x)
∣∣2 du

u

)
,

with κ−2
α = 2α− 1. By Fubini and Parseval, we have∥∥∥∥ sup

t>0
|Kt ∗ f |

∥∥∥∥2

L2(Rn)
6 κ2

α

∫
Rn

(∫ +∞

0

∣∣(Pαu f)(x)
∣∣2 du

u

)
dx

= κ2
α

∫ +∞

0
‖Pαu f‖2L2(Rn)

du
u

= κ2
α

∫
Rn

∫ +∞

0

∣∣∣∣uα+1Dα
u

(
m(ξ, u)
u

)
f̂(ξ)

∣∣∣∣2 du
u

dξ

6 κ2
α

∫
Rn
c2α |f̂(ξ)|2 dξ = κ2

αc
2
α‖f‖2L2(Rn) . �

Remark 6.16. — If |a(t)| 6 c(t0) when t > t0 > 0 and if b(t) = a(t)/t,
then we have (1+ t)|b(t)| = (t−1 +1)|a(t)| 6 c(t0)(1+ t−1

0 ) when t > t0. If we
add that |a′(t)| 6 c(t0) for t > t0, we have also (1+t)|a′(t)/t| 6 c(t0)(1+t−1

0 ),
t > t0, and

|b′(t)| 6
(
|a′(t)|
t

+ |b(t)|
t

)
6
c(t0)(1 + t−1

0 )2

1 + t
, t > t0 > 0 .

If we know that for every u0 > 0, there is c(u0) such that

|m(ξ, u)|+
∣∣∣∣ d
dum(ξ, u)

∣∣∣∣ 6 c(u0)(1 + |ξ|)N , ξ ∈ Rn, u > u0 ,

it follows that (6.26) is true, with κ(u0) 6 2c(u0)(1 + t−1
0 )2.

Proof of Proposition 6.14. — We apply Lemma 6.15 to the family Kt =
K(t) of dilates of K, t > 0. Under the assumptions of Proposition 6.14, we
first have that |m(tξ)|+ |(d/dt)m(tξ)| 6 κ(1+ |ξ|). Remark 6.16 implies then
that the family of functions gξ : t 7→ m(tξ)/t satisfies (6.26). We thus obtain
by Lemma 6.15 the L2-maximal inequality when f ∈ S(Rn), and we may
extend it to all functions in L2(Rn) by the density of S(Rn) in L2(Rn), as
explained in Section 3.3.

Let us pass to the proof of (2), the Lp case. We use the notation of
the proof of Lemma 6.15, adapted to m(ξ, t) = m(tξ). Denote by q the
conjugate exponent of p, and observe that q−2 > −1 because p < +∞. When
α ∈ (1/p, 1) and t > 1, by applying Hölder to (6.27) and since α−1 > −1/q,
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Γ(α) > 1, we obtain

|(K(t) ∗ f)(x)|

6 Γ(α)−1
(∫ +∞

t

(t/u)q(1− t/u)q(α−1) du
)1/q(∫ +∞

t

|(Pαu f)(x)|p du
up

)1/p

6 t1/q
(∫ +∞

t

(t/u)q(1− t/u)q(α−1) du
t

)1/q(∫ +∞

t

|(Pαu f)(x)|p du
up

)1/p

6 t1/q
(∫ +∞

1
v−qα(v − 1)q(α−1) dv

)1/q(∫ +∞

1
|(Pαu f)(x)|p du

up

)1/p

6

(∫ 2

1
(v − 1)qα−q dv+

∫ +∞

2
(v − 1)−q dv

)1/q

× t1/q
(∫ +∞

1
|(Pαu f)(x)|p du

up

)1/p
.

With cqα,p = 1/(qα− q+ 1) + 1/(q− 1) = α(p− 1)/(α− 1/p), it follows that∥∥∥∥ sup
16t62

|K(t) ∗ f |
∥∥∥∥p
Lp(Rn)

6 cpα,p2p/q
∫ +∞

1

(∫
Rn
|(Pαu f)(x)|p dx

)
du
up

= cpα,p2p/q
∫ +∞

1
‖Pαu f‖pp

du
up

6
cpα,p2p/q

p− 1 sup
u>1
‖Pαu f‖pp ,

and we shall see that ‖Pαu ‖p→p 6 2‖m‖p→p+‖(ξ ·∇)αm(ξ)‖p→p. The multi-
pliers pαu are dilates of one another, indeed, for every λ > 0, we have by (6.22)
that

pαu(λξ) = uα+1Dα
v

(
m(vλξ)

v

)∣∣
v=u

= uα+1λα+1Dα
v

(
m(vξ)
v

)∣∣
v=λu

= pαλu(ξ) .

It suffices therefore to consider pα1 . According to (6.23), one has

pα1 (ξ) = Dα
t

(
m(tξ)
t

)∣∣
t=1

= αDα−1
t

(
m(tξ)
t

)∣∣
t=1

+Dα
t m(tξ)

∣∣
t=1

.

The multiplier Dα
t m(tξ)

∣∣
t=1

is precisely equal to (ξ · ∇)αm(ξ). The other
term, since α− 1 < 0, can be written by (6.9) as

U(ξ) = αDα−1
t

(
m(tξ)
t

)∣∣
t=1

= α

Γ(1− α)

∫ +∞

1
(v − 1)−α

(
m(vξ)
v

)
dv .
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By Lemma 2.1, we have ‖U‖p→p 6 2‖m‖p→p because
α

Γ(1− α)

∫ +∞

1
(v − 1)−α dv

v
6

α

Γ(1− α)

(
1

1− α + 1
α

)
= 1

Γ(2− α) 6 2 ,

cutting
∫ +∞

1 at v = 2, and using (3.7). �

6.4. Proofs of Theorems 6.1 and 6.2, and Proposition 6.3

We need only show Proposition 6.3, and we can limit ourselves to 1 <
p 6 2. As in Bourgain’s proof of the L2 theorem for MC at the end of
Section 5.3.1, the kernel K to which we shall apply Proposition 6.6 is given
by K = Kg − P , where P is the Poisson kernel P1 from (1.32), and Kg is
a probability density on Rn satisfying (6.1.H) with two constants δ0,g > 1
and δ1,g controlling the Fourier transform mg and its gradient. We know
by (1.31.P ∗) that the maximal operator associated to the Poisson kernel acts
on Lr(Rn), 1 < r 6 +∞, with constants independent of the dimension n.
Letting B denote the Euclidean ball normalized by variance in Rn, we could
replace P by KB and invoke Stein’s Theorem 4.1 instead.

We shall apply Proposition 6.6 in the two cases corresponding to Theo-
rems 6.1 and 6.2, in order to show that the maximal function (or the dyadic
maximal function) associated to the kernel K is bounded on Lp for p > 3/2
(or for p > 1). We shall get by difference that the maximal function for Kg
(or Klc, KC) is bounded as well. In the “dyadic” case of Theorem 6.1, the
operator Tj , for j ∈ Z, is the convolution with the dilate K(2j) of K. For
Theorem 6.2, Tj,v is the convolution with K(v2j), 1 6 v 6 2, and Tj is given
by

Tjf = sup
16v62

|Tj,vf | = sup
2j6t62j+1

|K(t) ∗ f | .

One has to check that the assumptions of Proposition 6.6, namely, (A0),
(A1), (A2) and (A3), are satisfied in these two cases. If the (Qj) are those
of Littlewood–Paley, defined by

Q̂j(ξ) = e−2π2j |ξ|− e−2π2j+1|ξ| , ξ ∈ Rn ,
then the assumption (A0) is satisfied according to (2.4), with Cp = qp.

For (A1), we write Tj,v = Uj,v − Sj,v, where the Uj,v = (Kg)(v2j) are
related to Kg and the Sj,v = P(v2j) to the Poisson kernel. The operators
Uj,v and Sj,v are positive, as convolutions with probability densities. As
mentioned before, this is the only place where we need Kg to be a probability
density rather than a general integrable kernel. We know by (1.31.P ∗) that
the maximal operator S∗ associated to the Poisson kernel is bounded on
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Lp(Rn), 1 < p < +∞, by a constant C ′p independent of the dimension n.
Consequently, the property (A1) is satisfied.

Let us consider (A2). The first case is when Tj = K(2j) and in this case,
according to (2.13), the operator Tj is bounded on all the spaces Lp(Rn),
1 6 p 6 +∞, by the L1 norm of K and we get that

‖Tj‖p→p 6 ‖K‖L1(Rn) 6 2 . (6.28)

In the second case, we have to use the part (2) of Proposition 6.14. This will
be discussed below.

Finally, we must show (A3), i.e., prove that T ∗ satisfies the property
(S2). For k fixed in Z, we shall bound the maximal operator of the kernel
Nk := K ∗ Qk using the conclusion (1) of Proposition 6.14. We show in
Section 6.5 that for every value α ∈ (1/2, 1), the norm bk := Cα(N̂k) decays
exponentially with |k|, with constants depending on α and (linearly) on
δ0,g + δ1,g. In the “dyadic case”, the bound obtained in this way by (1) for
the maximal function of Nk implies that∥∥sup

j∈Z
|TjQj+kf |

∥∥
2 =

∥∥sup
j∈Z
|K(2j) ∗ (P(2j+k) − P(2j+1+k)) ∗ f |

∥∥
2

=
∥∥sup
j∈Z
|(Nk)(2j) ∗ f |

∥∥
2 6

∥∥sup
t>0
|(Nk)(t) ∗ f |

∥∥
2 6 καbk ,

which proves (S2) in this case. The case of the global maximal function
requires a small adaptation, Carbery says: “This is not exactly what being
strongly bounded on L2 means, but a slight modification of this argument
will give precisely what we require”. Indeed, there is now a gap between
what we get from Proposition 6.14 and the assumption we need for applying
Proposition 6.6. We shall discuss it in the subsection 6.4.1 and resolve this
“gap question” in the subsection 6.5.1. We obtain at last by Lemma 6.19
and by Lemma 6.15 that there exist universal coefficients (ak)k∈Z such that∑
k∈Z a

s
k < +∞ for every s > 0, and such that∥∥sup

j∈Z
|TjQj+kf |

∥∥
2 6 (δ0,g + δ1,g)ak , k ∈ Z . (6.29)

For (A2) in the “global” case, we study the operators (Wt)t>0 defined by

Wtf = sup
t6u62t

|K(u) ∗ f | , t > 0 ,

and we want to prove (A2) for the family of Tj = W2j from (6.2), with j ∈ Z.
Using the invariance by dilation (2.11) of multiplier norms, we see that the
operators Wt have the same norm when t varies, hence we need to find a
bound for T0 = W1 only. For this, we want to apply the conclusion (2) of
Proposition 6.14, so we must show that the multipliers m and (ξ · ∇)αm(ξ)
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are bounded on Lp(Rn) for some α ∈ (1/p, 1). For m it is clear by the
elementary fact (2.13).

For (ξ·∇)αm(ξ) we shall use complex interpolation between (ξ·∇)0m(ξ) =
m(ξ) that acts on L1(Rn), and (ξ · ∇)m(ξ) that acts on L2(Rn) since it is
a bounded function on Rn by (6.20) and (6.1.H). We get by interpolation
that the multiplier (ξ · ∇)αm(ξ) is bounded on Lp(Rn), with p given by

1
p

= 1− α
1 + α

2 = 1− α

2 ,

and we need 1− α/2 = 1/p < α for applying (2), thus 1 < 3α/2 = 3− 3/p.
We must therefore have p > 3/2 in order to conclude. We see that the reason
for the restriction on the values of p in Theorem 6.2 is to be found precisely
here.

This sketch is not fully accurate. For being able to interpolate, one must
control in L2 the values α = 1+iτ , for every τ real, which causes no difficulty,
but also the values α = 0 + iτ in L1, and this is more technical. The precise
work, involving a slight modification of the strategy described here, is done
in Section 7.3 when we are well embedded by Müller [59] in the mood for
interpolation. For every p ∈ (3/2, 2], we shall then obtain for some α > 1/p,
function of p, a bound of the form ‖(ξ ·∇)αm(ξ)‖p→p 6 κp(δ0,g + δ1,g)2−2/p.
By Proposition 6.14, we deduce∥∥T0f

∥∥
Lp(Rn) =

∥∥ sup
16t62

|K(t) ∗ f |
∥∥
Lp(Rn) 6 κ

′
p(δ0,g + δ1,g)2−2/p‖f‖Lp(Rn)

for every function f ∈ Lp(Rn). We get (A2) with pmin = 3/2, since

‖Tj‖p→p = ‖T0‖p→p 6 κ′p(δ0,g + δ1,g)2−2/p, j ∈ Z, 3/2 < p 6 2 . (6.30)

Applying Proposition 6.6, we finish the proof of Proposition 6.3. For
p ∈ (3/2, 2], we shall bound T ∗ = MK in Lp(Rn), thus also MKg . We choose
a value p0, function of p, such that 3/2 < p0 < p, and we let δ = δ0,g + δ1,g.
We have by (6.30) that C ′′p0

6 κ′′p δ
2−2/p0 . Then, applying (6.4), (6.29), (6.30)

and δ0,g > 1, we obtain

‖MKg‖p→p 6 ‖T ∗‖p→p + κp,0 6 κp,1(C ′′p0
)γ
(∑
k∈Z

(δak)(1−γ)p/2
)2/p

+ κp,2

6 κpδ
2−2/p

as announced, observing that 1− γ = [1/p0 − 1/p]/[1/p0 − 1/2] is the inter-
polation parameter for Lp and the pair (Lp0 , L2), and that the powers of δ
under the exponents γ and 1− γ are of the form 2− 2/r, r = p0 or 2. In the
dyadic case, we may replace (6.30) by (6.28) and obtain the result for M(d)

Kg

when p ∈ (1, 2].
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Remark 6.17. — Bringing back the question to the Poisson kernel
leads to some complications, because the function ϕθ(s) associated to the
Poisson kernel, i.e., the Cauchy kernel (1.33.C), does not have decay prop-
erties as good as that of the function ϕθ,C of a convex set. This approach
however does not depend on the Lp result of Stein for the Euclidean ball.

Why not employ the Gaussian semi-group instead? In some non Eu-
clidean situations, like Heisenberg groups or Grushin operators for in-
stance, and especially for the weak type (1, 1) property of associated max-
imal functions, the Poisson kernel is preferable. Indeed, some asymptotic
estimates, uniform in the dimension, are required on the kernel and are
easier to obtain for the Poisson kernel. But in the Euclidean case, we can-
not see a compelling obstacle to the use of the Gaussian kernel. We would
get an excellent decay, both in the space variable and in the Fourier vari-
able. We have chosen to stick to the original proofs, but we urge the reader
to rewrite them with Gaussian kernels instead. We shall see in Section 8
that Bourgain uses Gaussian kernels.

6.4.1. Where is the gap?

As was said above, we will arrive for Nk = K ∗Qk at

Cα(Nk) := sup
θ∈Sn−1

∥∥t 7→ Nk(tθ)
∥∥
L2
α
6 κα2−γ|k| , k ∈ Z ,

for some γ > 0. This implies by Proposition 6.14(1), that∥∥sup
t>0
|(Nk)(t) ∗ f |

∥∥
2 6 κα2−γ|k| .

Translating the definition of Nk gives∥∥sup
t>0
|(K ∗Qk)(t) ∗ f |

∥∥
2 6 κα2−γ|k|

where K = Kg − P , or∥∥ sup
v∈[1,2]

sup
j∈Z
|(K(v2j) ∗ (P(v2j+k) − P(v2j+k+1)) ∗ f |

∥∥
2 6 κα2−γ|k| .

This must be compared to bounding the expression∥∥ sup
v∈[1,2]

sup
j∈Z
|(K(v2j) ∗ (P(2j+k) − P(2j+k+1)) ∗ f |

∥∥
2 ,

which is what we are waiting for, in the definition of Property (S2) for the
family of operators (Tj,v), j ∈ Z, v ∈ [1, 2].
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6.5. A proof for the property (S2)

In what follows, m = mg − P̂ is the Fourier transform of the kernel
K = Kg − P that appears in the proof of Proposition 6.3, where Kg is a
probability density on Rn satisfying (6.1.H). We have

P̂ (ξ) = e−2π|ξ| and we let ρ(ξ) = P̂ (ξ)− P̂ (2ξ) , ξ ∈ Rn .

For every k ∈ Z, every ξ ∈ Rn and u > 0, we set

mk(ξ) = N̂k(ξ) = m(ξ)
(
e−2k+1π|ξ|− e−2k+2π|ξ|) = m(ξ)ρ(2kξ) ,

hξk(u) = mk(uξ)
u

.

One must show that for any given α ∈ (1/2, 1), the quantity

Cα(mk)2 = sup
θ∈Sn−1

∥∥u 7→ mk(uθ)
∥∥2
L2
α

= sup
θ∈Sn−1

∫ +∞

0

(
uα+1(Dαhθk)(u)

)2 du
u

introduced in (6.24) decays exponentially to 0 when |k| tends to infinity. We
fix therefore θ ∈ Sn−1 and for u ∈ R, we set

φ(u) = m(uθ) , χ(u) = e−2π|u|− e−4π|u| = P̂ (uθ)− P̂ (2uθ) = ρ(uθ) .

Let δ = δ0,g + δ1,g > 1, where δ0,g, δ1,g are the constants in (6.1.H). We
know that

|u| |mg(uθ)| 6 δ0,g 6 δ , |θ · ∇mg(uθ)| 6 δ1,g 6 δ ,
|uθ · ∇mg(uθ)| 6 δ , u ∈ R .

On the other hand, the derivative with respect to u > 0 of P̂ (uθ) = e−2π|u|

is bounded by 2π, and according to (5.21a), (5.21b), we have

|uP̂ (uθ)| 6 (2π e)−1 < 1 6 δ ,
∣∣∣∣u d

duP̂ (uθ)
∣∣∣∣ 6 e−1 < δ .

For φ(u) = m(uθ) = mg(uθ) − P̂ (uθ) we get |φ′(u)| 6 δ + 2π. Using again
δ > 1, we simplify this bound as |φ′(u)| < 8δ. It follows first that |φ(u)| 6
8δ|u|, and

|φ(u)| 6 8δ
(
|u| ∧ |u|−1) , |φ′(u)| 6 8δ

(
1 ∧ |u|−1) . (6.31a)

For χ(u), we see when u > 0 that 0 6 χ(u) 6 e−2πu and

−2π e−2πu 6 χ′(u) = −2π e−2πu +4π e−4πu 6 2π e−2πu ,

implying that |χ′(u)| 6 2π for u 6= 0 and

|χ(u)| 6 (2π|u|) ∧ |2π e u|−1 , |χ′(u)| 6 (2π) ∧ | eu|−1 . (6.31b)
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We obtain a symmetric treatment of the two functions χ and φδ := δ−1φ
since, up to some universal multiple κ (we express this by the sign .), we
have

|φδ(u)|, |χ(u)| . |u| ∧ |u|−1 , |φ′δ(u)|, |χ′(u)| . 1 ∧ |u|−1 . (6.32)

We set pk(u) = mk(uθ) = φ(u)χ(2ku), hk(u) = pk(u)/u and we want to
estimate ‖pk‖L2

α
for every k ∈ Z. Notice that

p−k(2kv) = χ(v)φ(2kv) .

The L2
α norm is invariant by dilation and the assumptions on φδ and χ are

identical, we may therefore restrict the verification to the case k > 0. Let
us fix an integer k > 0. We have the following table, divided into the three
regions where the chosen bounds (6.32) for the functions hk and h′k keep
the same analytical expression, namely, the intervals (0, 2−k), (2−k, 1) and
(1,+∞). We consider that h′k is the derivative of the product of u−1φ(u)
and χ(2ku), we bound therefore |h′k| by the sum of

∣∣(u−1φ(u))′
∣∣ |χ(2ku)| and

|u−1φ(u)|2k|χ′(2ku)
∣∣.

u : 0 2−k 1

u−1|φδ(u)| . 1 1 u−2

|χ(2ku)| . 2ku 2−ku−1 2−ku−1

u−1|φ′δ(u)|+u−2|φδ(u)| . u−1 + u−1 u−1 + u−1 u−2 + u−3 . u−2

2k|χ′(2ku)| . 2k u−1 u−1

δ−1|hk(u)| . 2ku 6 2−ku−1 2−ku−1 2−ku−3

δ−1|h′k(u)| . 2k+2k . u−1 2−ku−2 +u−1 .u−1 2−ku−3 +u−3 . u−3

We see that δ−1|h′k(u)| . H1(u) := u−1 ∧ u−3. This function H1 is non-
increasing on (0,+∞) and independent of k, and δ−1|hk(u)| . H0,k(u) =
2−kH1(u). It follows from Lemma 6.9 that for t > 0, we have

δ−1|(Dαhk)(t)| . H0,k(t)1−αH1(t)α . 2−(1−α)kH1(t) ,

and the conclusion is reached since we obtain then

‖φχ[2k]‖2L2
α

= ‖pk‖2L2
α

=
∫ +∞

0

∣∣tα+1(Dαhk)(t)
∣∣2 dt

t

. δ22−2(1−α)k
(∫ 1

0
(tα+1t−1)2 dt

t
+
∫ ∞

1
(tα+1t−3)2 dt

t

)
and∫ 1

0
t2α−1 dt+

∫ ∞
1

t2α−5 dt = 1
2α + 1

4− 2α = 1
α(2− α) <

1
α
< +∞ ,
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thus ‖pk‖L2
α
. δα−1/22−(1−α)k when k> 0, and ‖pk‖L2

α
6κα−1/2δ2−(1−α)|k|

when k ∈ Z. This implies by Proposition 6.14(1) that∥∥sup
r>0

(
[(mk)[r]f̂ ]∨

)∥∥
L2(Rn) 6 κδ2−(1−α)|k|‖f‖L2(Rn) (6.33)

for every α ∈ (1/2, 1), giving the property (S2) (see Definition 6.4) in the
dyadic case.

It would be just as simple to work with the ΓB(K) criterion of Bourgain
given in Section 5.3. We prove a general Lemma that will be invoked again
in Section 8 for the cube problem.

Lemma 6.18. — Suppose that two integrable kernels K1 and K2 on Rn
satisfy, for a certain κ and every θ ∈ Sn−1, that

|K̂j(uθ)| 6 κ(|u| ∧ |u|−1) , |θ · ∇K̂j(uθ)| 6 κ(1 ∧ |u|−1) , j = 1, 2 , u ∈ R .

It follows that ΓB
(
K1 ∗ (K2)(2k)

)
6 C(κ)2−|k|/2 for k ∈ Z.

Proof. — We fix θ ∈ Sn−1, and in order to remind us about the preceding
case, we let m be the Fourier transform of K1 and ρ that of K2. We will
modify the table above, in order to emphasize now φ(u) := m(uθ) and
uθ · ∇m(uθ) = uφ′(u) that appear in the components αj(m) and βj(m) of
ΓB(K), and we proceed similarly for χ(u) := ρ(uθ).

Let mk be the Fourier transform of the kernel K1 ∗ (K2)(2k). We have
that mk(uθ) = m(uθ)ρ(2kuθ) and we may again restrict ourselves to k > 0,
since a dilation by 2i on a multiplier g(ξ) produces a shift of i places on the
indices j of the sequences (αj(g))j∈Z, (βj(g))j∈Z, leaving

∑
j∈Z unchanged.

The bounds below do not depend on θ ∈ Sn−1, so we will be able to estimate
Ak(u) := sup

θ∈Sn−1
|mk(uθ)| and Bk(u) := sup

θ∈Sn−1
|uθ · ∇mk(uθ)| .

Note that Bk(u) is controlled by φ(u)2kuχ′(2ku) and uφ′(u)χ(2ku). We have
αj(mk) ∼ Ak(2j), βj(mk) ∼ Bk(2j), for every j ∈ Z. The new table is
divided into the same three regions as before.

u : 0 2−k 1

|φ(u)| . u u u−1

|χ(2ku)| . 2ku 2−ku−1 2−ku−1

u|φ′(u)| . u u 1
2ku|χ′(2ku)| . 2ku 1 1

Ak(u) . 2ku2 2−k 2−ku−2

Bk(u) . 2ku2 + 2ku2 u+ 2−k . u u−1 + 2−ku−1 . u−1√
Ak(u)Bk(u) . 2ku2 2−k/2u1/2 2−k/2u−3/2
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It follows that for every j ∈ Z, we have

αj(mk) .


2k+2j if j 6 −k ,
2−k if − k 6 j 6 0 ,
2−k−2j if 0 6 j ,

so
∑
j∈Z

αj(mk) . (k + 1)2−k ,

and

√
αj(mk)βj(mk) .


2k+2j if j 6 −k ,
2−k/2+j/2 if − k 6 j 6 0 ,
2−k/2−3j/2 if 0 6 j ,

so
∑
j∈Z

√
αj(mk)βj(mk) . 2−k/2 .

Taking the supremum, we obtain ΓB
(
K1 ∗ (K2)(2k)

)
6 C(κ)2−|k|/2, for

k ∈ Z. �

Coming back to Carbery’s situation, we obtain in this way by Lemma 5.14
that

‖mk‖2→2 6 κδ2−|k|/2, k ∈ Z,
slightly better than what we got with Cα(mk). Indeed, we must choose
α > 1/2 with Carbery, and we have obtained for Cα(mk) a bound of or-
der δ2−(1−α)|k|.

6.5.1. A solution to the gap question

The gap question has been exposed in Section 6.4.1. Instead of the func-
tion studied precedently, equal to

N̂k(ξ) : t 7→ m[t](ξ)(P̂[t2k] − P̂[t2k+1])(ξ) , t > 0, ξ ∈ Rn ,

we need to study the family of multipliers defined by

n̂k(ξ, t) = m[t](ξ)(P̂[2j+k] − P̂[2j+k+1])(ξ) , j ∈ Z and 2j 6 t 6 2j+1 ,

which are the Fourier transforms of the kernels K(t)∗(P(2j(t)+k)−P(2j(t)+k+1))
with j(t) = blog2 tc. They do not fit into the setting of Proposition 6.14, but
can be treated using Lemma 6.15. We do the following: for every j ∈ Z, let
xj = 2j + 2j−1 be the midpoint of the interval Ij = [2j , 2j+1]. Let the “new”
function be

t 7→ m[2j+2(t−2j)](ξ)(P̂[2j+k] − P̂[2j+k+1])(ξ)
for t in the first half [2j , xj ] of the interval Ij , and

t 7→ m[2j+1](ξ)(P̂[2k(2j+2(t−xj))] − P̂[2k+1(2j+2(t−xj))])(ξ)
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in the second half. The first half “contains” the family n̂k(ξ, t) that we have
to study, and adjoining the second half will allow us to exploit easily what
has been done in Section 6.5 for the regular setting. We can describe more
compactly the new setting if we define two motions going along (0,+∞)
according to

X(t) =
{

2j + 2(t− 2j) , 2j 6 t 6 xj ,
2j+1 , xj 6 t 6 2j+1 ,

and

Y (t) =
{

2j , 2j 6 t 6 xj ,
2j + 2(t− xj) , xj 6 t 6 2j+1 .

Then, the new function can be written as

m̃k(ξ, t) := m[X(t)](ξ)(P̂[2kY (t)] − P̂[2k+1Y (t)])(ξ) , (6.34)

corresponding to the family of kernelsKt = K(X(t))∗(P(2kY (t))−P(2k+1Y (t))).
The two functions X,Y are non-decreasing, continuous, piecewise linear,
and we have X(2j) = Y (2j) = 2j for j in Z. Notice that X(2t) = 2X(t)
and Y (2t) = 2Y (t) (make use of 2xj = xj+1). Also, 0 6 X ′(t), Y ′(t) 6 2.
Applying Remark 6.16, one sees easily that the functions gξ(t) = m̃k(ξ, t)/t
satisfy (6.26).

In the “dilation case” where m0(ξ, t) = m(tξ), we have that m0(sξ, t) =
m0(ξ, st) for every s > 0, and it allowed us to restrict the study of the
functions t 7→ m0(ξ, t), ξ ∈ Rn, to the case |ξ| = 1. This is not true anymore,
but we still have that m(2ξ, t) = m(ξ, 2t) for the two components Φ and Ψ
of m̃k(ξ, t), defined by

Φ(ξ, t) = m[X(t)](ξ), Ψ(ξ, t) =
(
P̂[Y (t)] − P̂[Y (2t)]

)
(ξ) ,

and this permits us to restrict to the case 1 6 |ξ| < 2. Indeed,
Φ(2ξ, t) = m[X(t)](2ξ) = m

(
2X(t)ξ

)
= m

(
X(2t)ξ

)
= Φ(ξ, 2t) .

The same property holds true for Ψ(ξ, t), with Y replacing X.

Let us fix ξ such that 1 6 |ξ| < 2, and consider now

φ1(u) = Φ(ξ, u) = m(X(u)ξ) , χ1(u) = Ψ(ξ, u) = e−2πY (u)|ξ|− e−4πY (u)|ξ| .

Letting ξ = |ξ|θ, we compare φ(u) = m(uθ) with φ1(u) = φ(X(u)|ξ|). For
every u > 0, we have u 6 X(u) 6 2u and u/2 6 Y (u) 6 u. We have therefore
that u 6 X(u)|ξ| 6 4u and u/2 6 Y (u)|ξ| 6 2u. Recall that m, difference of
mg and P̂ , satisfies (6.31a). It follows that

δ−1|φ1(u)| = |φδ(X(u)|ξ|)| 6 8
[
(X(u)|ξ|) ∧ (X(u)−1 |ξ|−1)

]
6 32

(
|u| ∧ |u|−1) . |u| ∧ |u|−1 .

– 123 –



L. Deleaval, O. Guédon and B. Maurey

We also have φ′1(u) = X ′(u)φ′(X(u)|ξ|), and since X ′(u) 6 2,
δ−1|φ′1(u)| 6 2|φ′δ(X(u)|ξ|)| 6 16

[
1 ∧ (X(u)−1 |ξ|−1)

]
6 16

(
1 ∧ |u|−1) ,

which can be written as δ−1|φ′1(u)| . 1 ∧ |u|−1. Using (6.31b), we have the
same kind of inequalities for χ1. The proof in Section 6.5 depended only on
these two bounds, so the result in (6.33) is also valid in the modified setting
and gives the following lemma.

Lemma 6.19. — Suppose that Kg is a probability density on Rn sat-
isfying (6.1.H), that m = mg − P̂ and that m̃k is defined by (6.34). For
α ∈ (1/2, 1), one has

sup
ξ∈Rn

∥∥t 7→ m̃k(ξ, t)
∥∥
L2
α
6 κ(δ0,g + δ1,g)2−(1−α)|k| , k ∈ Z .

6.6. Appendix: proof of Bourgain’s L2 theorem by Carbery’s cri-
terion

Proof. — This section is intended to illustrate the Fourier definition (6.7)
of Dα, and we shall have to perform some contortions in order to enter into
the suitable setting. The kernel K on Rn to which we want to apply the
conclusion (1) of Carbery’s Proposition 6.14 is again K = Klc − P , as in
Section 6.4, where Klc is a symmetric log-concave probability density on
Rn normalized by variance. Let us fix a norm one vector θ ∈ Rn; here, the
function ϕθ(s) =

∫
θ⊥
K(y + sθ) dn−1y, for s ∈ R, is the difference of two

symmetric probability densities φj , associated respectively to Klc and to the
Poisson kernel P . The function φ1 of integrals of Klc on affine hyperplanes
parallel to θ⊥ satisfies, according to Lemma 5.6, an estimate of exponential
decay φ1(s) 6 κ e−|s|/κ, for s ∈ R and for a certain κ > 0 universal. On the
other hand, φ2(s) is the Cauchy kernel (1.33.C) equal to π−1(1 + s2)−1, for
which one has only φ2(s) 6 1∧s−2, where a∧ b denotes the minimum of two
real numbers a and b. This estimate is valid also for φ1, up to some universal
factor κ, and we shall remember for the absolute value of ϕθ that

∀ s ∈ R , |ϕθ(s)| 6 κ
(

1 ∧ 1
s2

)
. (6.35)

The Fourier transform m of K is given by

m(tθ) =
∫
R
ϕθ(s) e−2iπst ds .

Denote by Φ the antiderivative of ϕθ vanishing at 0. The function Φ is odd,
it vanishes also at infinity because ϕθ is even with integral zero. We deduce
from (6.35), for some κ > 0 and every s ∈ R, that

|Φ(s)| 6 κ(|s| ∧ |s|−1) . (6.36)
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For t 6= 0, we could, performing an integration by parts, express m(tθ) by a
simply converging integral

m(tθ) = 2iπt
∫ +∞

−∞
Φ(s) e−2iπst ds ,

but we prefer to work with absolutely converging integrals, for example
in this way: let us denote by P̃0 the L1-normalized truncation P̃0 =
‖1BP‖−1

L1(Rn) 1BP of the Poisson kernel P at a sufficiently large Euclidean
ball B in Rn, so that ‖1BP‖1 > 1/2. We can see according to (1.35) that
the radius of B must be at least of order κ

√
n. Another possibility is to

introduce a modified Poisson kernel

P̃ (x) = 2P (x) e−ε0|x|
2/2 ,

where ε0 > 0 is chosen so that the integral of P̃ is equal to 1. With both
choices, one has P̃0, P̃ 6 2P , and the estimates of the maximal function for
the kernel P are thus clearly true for P̃ , with a bound simply doubled. For
the same fixed θ of norm one, the modified function φ2 defined by

φ2(s) = 2
∫
θ⊥
P (y + sθ) e−ε0(|y|2+s2)/2 dn−1y 6 C(n) e−ε0s

2/2

decays exponentially at infinity, and since φ2(s) 6 2π−1(1+s2)−1, the mod-
ified function φ2 satisfies (6.35) and (6.36). The modified antiderivative Φ
inherits now at infinity of the exponential decay of φ1 and of φ2, and this
makes the integrals that follow absolutely convergent. However, the “univer-
sal” estimates remain given by (6.35) and (6.36).

The situation would be simpler using a Gaussian kernel, letting

K(x) = KC(x)−G(x) , x ∈ Rn ,

with G being the N(0, In) density (1.17) on Rn.

We apply here the Fourier definition (6.7) for Dα. For every t > 0 we
write

m(tθ)
t

= 2iπ
∫
R

Φ(s) e−2iπst ds ,

where |Φ| decays exponentially at infinity. This ensures that t 7→ m(tθ)/t
is C∞ on the line, with bounded derivatives. By (6.7), we can express the
fractional derivative appearing in Carbery’s criterion as

Dα
t

(
m(tθ)
t

)
= 2iπ(2π)α

∫
R

(is)αΦ(s) e−2iπst ds .
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For 0 < α < 1, we write∫ ∞
0

sαΦ(s) e−2iπst ds = 1
2iπt

∫ ∞
0

(
sαΦ(s)

)′ e−2iπst ds ,

and because
(
sαΦ(s)

)′ vanishes at 0, we see that∫ ∞
0

sαΦ(s) e−2iπst ds = − 1
4πt2

∫ ∞
0

(
sαΦ(s)

)′′ e−2iπst ds .

The integrals on the side of negative s ask for an analogous treatment, es-
sentially already seen in Section 5.2, Lemma 5.8. We estimate the various
parts (five parts) issued from the differentiations of sαΦ(s) to the first and
second order, by applying the upper bounds (6.35) and (6.36) and the fact
that 0 < α < 1. Notice that∫ ∞

0
(sα−1 + sα−2)(s ∧ s−1) ds = 1

1 + α
+ 1
α

+ 1
1− α + 1

2− α =: κα .

Grouping two of the terms issued from (sαΦ)′, (sαΦ)′′ and using (6.36), we
have ∣∣∣∣ ∫ ∞

0
sα−1Φ(s) e−2iπst ds

∣∣∣∣+
∣∣∣∣ ∫ ∞

0
sα−2Φ(s) e−2iπst ds

∣∣∣∣ 6 κκα ,
we also have

∫∞
0 (sα + sα−1)|ϕθ(s)|ds 6 κκα for two other terms by (6.35),

and finally for each φ = φj , j = 1, 2, decreasing on the positive side of the
real line, we know by Lemma 5.9 that∫ ∞

0
sα|φ′(s)|ds = α

∫ +∞

0
sα−1φ(s) ds < +∞ ,

which permits us to close this list of estimates for ϕθ = φ1 − φ2. It follows
that for every t > 0, we have∣∣∣∣Dα

t

(
m(tθ)
t

)∣∣∣∣ 6 κ′α(t−1∧ t−2) ,

with κ′α 6 κ′(2π)ακα independent of the direction θ. Recalling the defini-
tion (6.24) and since 0 < α < 1, we get

Cα(m)2 = sup
θ∈Sn−1

∥∥t 7→ m(tθ)
∥∥2
L2
α

= sup
θ∈Sn−1

∫ +∞

0

∣∣∣∣tα+1Dα
t

(
m(tθ)
t

)∣∣∣∣2 dt
t

6 (κ′α)2
(∫ 1

0
(tα+1t−1)2 dt

t
+
∫ +∞

1
(tα+1t−2)2 dt

t

)
= (κ′α)2

(∫ 1

0
t2α−1 dt+

∫ +∞

1
t2α−3 dt

)
= (κ′α)2

(
1

2α + 1
2− 2α

)
< +∞ .
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One thus chooses α ∈ (1/2, 1) arbitrary and applies Carbery’s Proposi-
tion 6.14(1), which gives the boundedness on L2(Rn) of the maximal op-
erator associated to the difference kernel K = Klc − P̃ . We get in this way
that the maximal operator MKlc is bounded on L2(Rn) by a constant inde-
pendent of the dimension n. �

7. The Detlef Müller article

Müller [59] introduces a geometrical parameter Q(C) associated to every
symmetric convex body C in Rn. When C is isotropic of volume 1, this
parameter Q(C) is equal to the maximum of (n− 1)-dimensional volumes of
hyperplane projections of C. Müller shows that in the class C(λ) consisting
of Cs for which Q(C) and the isotropy constant L(C) are bounded by a
given λ, the existence for the maximal operator MC associated to C of an
Lp(Rn) bound, uniform in n, can be pushed to every value p > 1 with a
constant κ(p, λ) depending on p and λ only. This removes — in a way —
the restriction p > 3/2 imposed by Bourgain and Carbery.

We have seen in (5.1) and (5.3) that when C0 is isotropic of volume 1 in
Rn, then the dilate C1 = r0C0 with r0 = L(C0)−1 is isotropic and normalized
by variance. The proof of Müller will actually make use of a parameter q(C1)
equal to the supremum in θ ∈ Sn−1 of the masses of the signed measures θ ·
∇KC1 . We shall see that for θ of norm one, the mass of the measure θ ·∇KC1 ,
the directional derivative in the sense of distributions of the probability
measure µC1 , is given by

2|PθC1|n−1

|C1|n
= 2r−n0 rn−1

0 |PθC0|n−1 6
2
r0
Q(C0) = 2L(C0)Q(C0) ,

where Pθ is the orthogonal projection onto the hyperplane θ⊥. For every
symmetric convex set C, we let C0 be an isotropic position of volume 1 for
C and we set

q(C) = 2L(C0)Q(C0) . (7.1)
Müller [59, Section 3] proves that q(C) is uniformly bounded for the family
of unit balls Bqn of `qn, 1 6 q < +∞ fixed and n ∈ N∗. This is easy when
q = 2. By (5.4), we know that the Euclidean ball Bn,V in Rn normalized by
variance has a radius rn,V equal to

√
n+ 2, hence by the log-convexity of

the Gamma function we get

q(B2
n) = sup

θ∈Sn−1

2|PθBn,V |n−1

|Bn,V |n
= 2ωn−1

rn,V ωn
= 2Γ(n/2 + 1)√

π(n+ 2) Γ(n/2 + 1/2)

6
2Γ(n/2 + 1/2)1/2 Γ(n/2 + 3/2)1/2√

π(n+ 2) Γ(n/2 + 1/2)
= 2

√
n+ 1

2π(n+ 2) <
√

2
π
.
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Given a kernel K integrable on Rn and having partial derivatives ∂jK in
the sense of distributions that are (signed) measures µj , for j = 1, . . . , n, we
define the directional variation V (K) of K by

V (K) := sup
θ∈Sn−1

∥∥θ · ∇K∥∥1 = sup
θ∈Sn−1

∥∥ n∑
j=1

θjµj
∥∥

1 . (7.2)

We will show at Lemma 7.10 that V (KC) = q(C) when C is an isotropic
symmetric convex body normalized by variance. For the N(0, In) Gaussian
density γn, we see that V (γn) =

∫
Rn |x · e1|dγn(x) =

∫
R |u|dγ1(u) =

√
2/π.

Notice that

V (K(t)) = t−1V (K), t > 0, and V (K ∗ µ) 6 V (K) (7.3)

for any probability measure µ on Rn. Since V (γn) is independent of n, it
follows from the subordination formula (1.30) that the same is true for the
Poisson kernel P (n)

1 on Rn expressed in (1.32). Precisely, because Gs in (1.30)
is a N(0, sIn) Gaussian measure, we have V (Gs) = s−1/2V (γn) by (7.3) and
we first get

V (P (n)
1 ) 6

∫ +∞

0
V (Gs)

s−3/2
√

2π
e−1/(2s) ds =

∫ +∞

0

e−1/(2s)

π

ds
s2 = 2

π
, (7.4)

but actually V (P (n)
1 ) = 2/π since for each x ∈ Rn, all gradients ∇Gs(x),

s > 0, are nonnegative multiples of the same vector −x. This equality is of
course also easy to derive by a direct calculation on the Poisson density.

Besides the appearance of the parameter q(C), Müller’s proof draws on
estimates such as (6.1.H), but extended to more derivatives of the Fourier
transform mC of KC . That bounding more derivatives leads to improved
results was already seen in Bourgain [11], who obtained a dimension free
bound in Lp(Rn) for all p > 1 in the case of the maximal operator MC of
`qn balls when q is an even integer. We shall consider a probability density Kg
on Rn or more generally an integrable kernel Kg, with a Fourier transform
mg satisfying that for every integer j > 0, there exists a constant δj,g such
that ∣∣∣∣ dj

dtjmg(tθ)
∣∣∣∣ 6 δj,g

1 + t
, θ ∈ Sn−1 , t > 0 . (7.5.H∞)

Actually, for each specific value p ∈ (1, 3/2], bounding MC in Lp(Rn), know-
ing that q(C) 6 λ, requires a certain finite number of estimates from the
infinite list (7.5.H∞), and this number increases to infinity when p tends to
1. We let

∆k =
k∑
j=0

δj,g . (7.6)
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The “radial” estimate (7.5.H∞) implies |dj/(dtj)mg(tξ)| 6 δj,g|ξ|j/(1+ |tξ|)
for ξ 6= 0. It is natural to disregard ξ = 0 in a radial method, but when
j > 0, we can extend continuously ξ 7→ dj/(dtj)mg(tξ) by giving the value
0 at ξ = 0.

Theorem 7.1 (Müller [59]). — For every p ∈ (1,+∞] and λ > 0, there
exists a constant κ(p, λ) independent of n such that

‖MKlcf‖Lp(Rn) 6 κ(p, λ)‖f‖Lp(Rn)

if Klc is an isotropic symmetric log-concave probability density on Rn, nor-
malized by variance and with V (Klc) 6 λ. In particular, for every sym-
metric convex body C in Rn such that q(C) 6 λ, one has ‖MCf‖Lp(Rn) 6
κ(p, λ)‖f‖Lp(Rn). When p ∈ (1, 2], we can write more precisely

‖MKlcf‖Lp(Rn) 6 κ(p)(1 + λ2/p−1) .
If a probability density Kg satisfies (7.5.H∞) and if p ∈ (1, 2], then we have

‖MKgf‖Lp(Rn) 6 κp∆1−1/p
k0(p) ∆1−1/p

1 (1+V (Kg)2/p−1) , with k0(p) < p/(p−1) .

The subsequent proof furnishes for the constant κp in the line above an
order exponential in q = p/(p−1) that is certainly not right, see Remarks 7.13
and 7.14. The case p > 3/2 is already known, with κ(p, λ) independent of λ,
see Theorem 6.2 and Proposition 6.3. We know by Lemma 5.11 that isotropic
symmetric log-concave probability densities satisfy (7.5.H∞) with absolute
constants (δj,c)∞j=0. We shall thus concentrate on the Kg case and on values
p ∈ (1, 3/2]. Taking Carbery’s results into account, the following proposition
will be (essentially) enough for proving Müller’s theorem.

Proposition 7.2 ([59, Proposition 1]). — Let Kg be an integrable kernel
on Rn satisfying (7.5.H∞) and let mg be its Fourier transform. For every
α ∈ (0, 1) and every p ∈ (1,+∞), the multiplier (ξ · ∇)αmg(ξ) in (6.18.∇α)
admits on Lp(Rn) a bound that depends upon p, α, d = (δj,g)∞j=0 and V (Kg),
but not on the dimension n. When p ∈ (1, 2] and if ‖Kg‖L1(Rn) 6 1, we can
write
‖(ξ ·∇)αmg(ξ)‖p→p 6 1+κ(α, p)∆(4/3)(1−1/p)

k(p)
(
1+δ

(2/3)(1−1/p)
0,g V (Kg)2/p−1) ,

with k(p) = d3p/(4p− 4)e.

The case p = 2 follows easily from Parseval (2.12.P) by (6.1.H) and (6.20).
The result for p > 2 can be obtained by duality from the case 1 < p 6 2.

Proof of Theorem 7.1. — Let p ∈ (1, 2) be given. We then choose p0 ∈
(1, p) and α ∈ (1/p0, 1) as being functions of p, for example p0 = (2p +
2)/(5 − p) and α = (p + 7)/(4p + 4). We apply in Lp0(Rn) the part (2) of
Proposition 6.14 to the kernel K = Kg − P . We know by Proposition 7.2
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that (ξ · ∇)αmg(ξ) is bounded on Lp0(Rn) by a function of V (Kg) and we
will check in Section 7.2 that (ξ · ∇)αP̂ (ξ) is also bounded on Lp0(Rn) by
some πα,p0 = π(p). It follows for m = mg − P̂ that

‖(ξ · ∇)αm(ξ)‖p0→p0 6 κ0(p,d)(1 + V (Kg)2/p0−1) 6 κ0(p,d)(1 + λ2/p0−1) ,

with κ0(p,d) 6 κ(p)∆(4/3)(1−1/p0)
k(p0) δ

(2/3)(1−1/p0)
0,g , where ∆j > δ0,g > 1 be-

cause Kg here is a probability density. We obtain in this way that

f 7→W1f := sup
16u62

|K(u) ∗ f |

is bounded on Lp0(Rn). This was the only missing information for deducing
from Proposition 6.6 that MK is bounded on Lp(Rn) when 1 < p 6 3/2.
Indeed, with the notation of Section 6.1, let Tj,v be the convolution with
K(2jv), v ∈ [1, 2] and let Tj be as in (6.2). By Proposition 6.14(2), we have
for every j ∈ Z that

‖Tj‖p0→p0 = ‖T0‖p0→p0 = ‖W1‖p0→p0

6 κα,p0

(
2 + ‖(ξ · ∇)αm(ξ)‖p0→p0

)
,

(7.7)

with κα,p0 from (6.25). We bound it by C ′′p0
(λ) := κα,p0

(
2 + κ0(p,d)(1 +

λ2/p0−1)
)
. By (6.4), with p0 already set and r0 = 2p/(p + 2 − p0) function

of p and p0, we get

‖MK‖p→p 6 (Cr0)2γ/p0C ′′p0
(λ)γ

(∑
k∈Z

a
(1−γ)p/2
k

)2/p
+ 2C ′p , (7.8)

where γ = [1/p−1/2]/[1/p0−1/2] = (p+1)/(2p). The constants Cr0 in (A0),
C ′p in (A1) depend only on p, p0 and r0, hence on p alone, and they exist
regardless of p > 3/2 or not. By Section 6.5, we know that under (6.1.H),
the (ak)k∈Z in (A3) satisfy ak 6 (δ0,g + δ1,g)aα,k with (aα,k)k∈Z universal.
We obtain

‖MKg‖p→p 6 ‖MK‖p→p + κp

6 κ(p,d)(1 + λ2(1/p0−1/2)γ) = κ(p,d)(1 + λ2/p−1) ,

with 1 − 1/p0 = (3p − 3)/(2p + 2), k(p0) = d(p + 1)/(2p − 2)e < p/(p − 1),
and

κ(p,d) 6 κ(p)
(
∆(4/3)(1−1/p0)
k(p0) δ

(2/3)(1−1/p0)
0,g

)γ∆1−γ
1

6 κ(p)∆1−1/p
k0(p) ∆1−1/p

1 . �
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7.1. The Müller strategy

Müller prefers to work with another version iw of the fractional integral
Iw from (6.9). This version is defined when Rew > 0, beginning this time
with f ∈ C∞(R), by the formula

(iwf)(t) = 1
Γ(w)

∫ 2

t

(u− t)w−1f(u) du , t 6 2 .

The chosen limit 2 is rather arbitrary, but will be quite convenient for the
computations that follow, in particular because (2 − 1)w = 1 for every w.
Integrating by parts as we did for Iw in Section 6.2, we get

(iwf)(t) = (2− t)wf(2)
Γ(w + 1) − 1

Γ(w + 1)

∫ 2

t

(u− t)wf ′(u) du .

This new formula makes sense for Rew > −1 and defines a fractional deriv-
ative dz if z = −w and Re z < 1, by setting

(dzf)(t) = (2− t)−zf(2)
Γ(1− z) − 1

Γ(1− z)

∫ 2

t

(u− t)−zf ′(u) du , t 6 2 . (7.9)

Notice that (d0f)(t) = f(2) −
∫ 2
t
f ′(u) du = f(t). Continuing integration

by parts as in Section 6.2, we get successive formulas defining dzf , for each
integer k, which make sense for Re z < k and extend each other. Gluing them
together, we can define entire functions of z for every t fixed and every given
function f ∈ C∞(R), for example (dz1)(1) = 1/Γ(1 − z) if f = 1. Suppose
that Re z < 0. From

(dzf)(t) = 1
Γ(−z)

∫ 2

t

(u− t)−z−1f(u) du ,

we get for every integer k > 1 that

(dzf)(t) = Ek(z, t) + (−1)k 1
Γ(k − z)

∫ 2

t

(u− t)−z+k−1 f (k)(u) du , (7.10)

a formula to be compared with (6.16), and where Ek(z, t) is equal to

Ek(z, t) =
k−1∑
j=0

(−1)j (2− t)−z+j f (j)(2)
Γ(j + 1− z) .

If z is in C, t 6 2 and Re z < k, we can take (7.10) as definition for (dzf)(t).

When −1 < Re z < 0, f ∈ S(Rn) and t < 2, we see that
(Dzf)(t)− (dzf)(t) = ([I−z − i−z]f)(t)

= 1
Γ(−z)

∫ +∞

2
(u− t)−z−1f(u) du .

(7.11)
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This equality can be extended by analytic continuation to every z ∈ C
with Re z > −1, or it can be proved by successive integrations by parts. In
particular, one has (dNf)(t) = (DNf)(t) = (−1)Nf (N)(t) for every integer
N > 0 because Γ(−N)−1 = 0. As we did for Dα, when the function of t does
not have an explicit name, we use the notation dαt f(2t), and dαt f(2t)

∣∣
t=1

for
the value at t = 1.

Lemma 7.3 (Müller [59]). — Let m denote the Fourier transform of a
kernel K integrable on Rn. For every α ∈ (0, 1), the difference

(ξ · ∇)αm(ξ)− dαt m(tξ)
∣∣
t=1

, ξ ∈ Rn ,

is a multiplier on Lp(Rn), 1 6 p 6 +∞, with a norm bounded by ‖K‖L1(Rn).

Proof. — By (6.18.∇α) we have (ξ ·∇)αm(ξ)=Dα
t m(tξ)

∣∣
t=1

. From (7.11),
we get

(ξ · ∇)αm(ξ)− dαt m(tξ)
∣∣
t=1

= 1
Γ(−α)

∫ +∞

2
(u− 1)−α−1m(uξ) du .

The result follows by Lemma 2.1, since

1
|Γ(−α)|

∫ +∞

2
(u− 1)−α−1 du = 1

|−αΓ(−α)| = 1
Γ(1− α) < 1 . �

Thanks to the reduction from (ξ · ∇)αm(ξ) to dαt m(tξ)
∣∣
t=1

given by
Lemma 7.3, one can transform the condition (2) of Proposition 6.14. The ob-
jective now is to control the action on Lp(Rn) of the multiplier dαt mg(tξ)

∣∣
t=1

,
for some fixed α ∈ (1/p, 1) denoted by α = 1−ε, where ε > 0 gets arbitrarily
small when p tends to 1. Müller embeds the “objective” into the holomorphic
family of multipliers

mε
z(ξ) = (1 + |ξ|)1−ε−z dztmg(tξ)

∣∣
t=1

, Re z > −1 , (7.12)

and applies the complex interpolation scheme described in Section 3.2. For
the value z = α = 1− ε, one has

mε
α(ξ) = mε

1−ε(ξ) = d1−ε
t mg(tξ)

∣∣
t=1

= dαt mg(tξ)
∣∣
t=1

,

which is the objective to be controlled. Müller studies this holomorphic fam-
ily for z ∈ C varying in a strip of the form −ε 6 Re z 6 ν, with ν > 0 real.
He shows by rather long and delicate calculations that the multipliers mε

z(ξ)
are bounded functions of ξ ∈ Rn, for all z in this strip, not uniformly in z,
but with a L∞(Rn) norm of order Γ(z)−1. This allows him to control the
action on L2(Rn), which is used for one end of the interpolation scale, the
one corresponding to Re z = ν.
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The other end of the scale is Re z = −ε, where the operator associated
to

mε
−ε+iτ = (1 + |ξ|)1− iτ d−ε+iτ

t mg(tξ)
∣∣
t=1

= (1 + |ξ|)− iτ (1 + |ξ|) d−ε+iτ
t mg(tξ)

∣∣
t=1

involves a “small” fractional integration d−ε+iτ of order ε, and a multipli-
cation on the Fourier side by 1 + |ξ|. We will show that these multipliers
mε
−ε+iτ are bounded on all the spaces Lr(Rn), 1 < r < +∞. In order to

do it, we shall have to work mainly on the multiplier |ξ|mg(ξ). The param-
eter V (Kg) appears when bounding the action of this multiplier on Lr(Rn),
and the proof will use the dimensionless estimates for the Riesz transforms
given in (2.22). Next, given p in (1, 2], we choose p0 ∈ (1, p), α ∈ (1/p0, 1),
and ν > α which is a function of p, p0, α. By interpolation between L2(Rn)
(when Re z = ν) and Lp0(Rn) (when Re z = −ε), we shall obtain for the
value α = 1− ε the boundedness on Lp(Rn) of the multiplier mε

α(ξ) that is
our “objective”, thus proving Proposition 7.2.

Let us comment on the formulas for the Müller multipliers. We know
by (5.19) in Corollary 5.13 that differentiating N times the function t 7→
mg(tξ) introduces a factor of order (1+ |ξ|)N−1, which must be compensated
for being in a position to apply Parseval for the L2 bound, using (2.12.P)
as usual. This is done by multiplying by (1 + |ξ|)1−ε−ν when z = ν. On the
other hand, we do not want a compensating factor when z = α, where we
want to precisely recover our objective. The compensation will thus be of
the form (1 + |ξ|)az+b, with aν + b = 1 − ε − ν and aα + b = 0. We then
get a “compensating factor” with a positive power of |ξ| for Re z < α, which
becomes an additional problem and requires more work.

The interpolation strip technique has been often employed by Stein. For ex-
ample, in [73, Chap. III, §3], for studying the maximal function supt>0 |Ptf |
of general semi-groups, Stein works on a strip S of the form −1 6 Re z 6
N . If z = −1, he considers that the maximal inequality of Hopf concerns
the derivative of order −1 of the semi-group, that is to say, its antideriva-
tive (multiplied by tz = t−1)

t−1D−1
t (Ptf) = 1

t

∫ t

0
(Psf) ds .

By Hopf, this operator is known to be Lp bounded, 1 < p < +∞. Stein
must check in addition that the extension to complex values in the vertical
line z = −1 + iτ also gives bounded operators on Lp(Rn).

Stein’s objective is to study the maximal function of the semi-group
itself, which corresponds to the derivative of order z = 0. In order to
do this, he interpolates between Hopf in Lp0 , p0 < p < 2, for Re z =
−1, and an L2 estimate of derivatives of the semi-group, for Re z = N .
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For each integer k, the quantity tkDk
t (Ptf) appears in the Littlewood–

Paley function gk(f), so one can control in L2 its maximal function, see
Section 2.1.1. The holomorphic family is then defined by z 7→ tzDz

t (Ptf),
z ∈ S, for a suitable version Dz of fractional differentiation.

The general strategy above was already applied in [71] to the discrete
case.

7.2. Model of proof: the Poisson case

For proving Theorem 7.1, we have to apply Carbery’s Proposition 6.14(2)
to the difference K = Kg − P . Müller shows that (ξ · ∇)αmg(ξ) acts on
Lp(Rn) when 0 < α < 1 and 1 < p < +∞, and we need to verify that the
corresponding multiplier (ξ · ∇)αP̂ (ξ) for the Poisson kernel P also acts on
Lp(Rn), 1 < p < +∞, with bounds independent of the dimension n. This
could be covered by Proposition 7.2, by observing that the Poisson kernel
P

(n)
1 in (1.32), with Fourier transform e−2π|ξ|, clearly satisfies (7.5.H∞) and

has V (P (n)
1 ) bounded independently of n according to (7.4). We actually

prefer to take an opportunity to examine the structure of Müller’s proof in
a simple case. When α ∈ (0, 1), we could find a shorter specific proof, but
the longer one that is given below provides a better introduction to what
follows in this Section 7.

One sees that (ξ · ∇)αP̂ (ξ) = (2π|ξ|)α e−2π|ξ|, either by applying (6.13)
that gives Dα

t e−λ|t| = λα e−λ|t| for λ, t > 0, or by making use of the residue
theorem.

Indeed, according to (6.18.∇α) with ξ = |ξ|θ, one has

(ξ ·∇)αP̂ (ξ) =
∫
R
(2iπs|ξ|)αϕθ(s) e−2iπs|ξ| ds =

∫
R
(2iπs|ξ|)α e−2iπs|ξ|

π(1 + s2) ds ,

that can be computed using a contour formed of [−R,R] with R > 1, and
of a half-circle of radius R centered at 0, located in the lower complex
half-plane.

We are going to bound the action on Lp(Rn) of the multiplier |ξ|α e−|ξ|
by the interpolation scheme of Section 3.2. Consider the holomorphic family
of multipliers

Pz(ξ) = |ξ|z e−|ξ|, Re z > 0 , ξ ∈ Rn .

We will interpolate between L2(Rn) and Lp0(Rn), p0 > 1 close to 1. For
proving the boundedness on L2(Rn), it is enough by (2.12.P) to see that
the function ξ 7→ |ξ|z e−|ξ| is bounded when ξ varies in Rn, and since this
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function is radial, its supremum is independent of n. If we write z = a+ ib,
a > 0, we have

sup
ξ∈Rn

sup
Re z=a

|Pz(ξ)| = sup
ξ∈Rn,b∈R

{∣∣|ξ|a+ib∣∣ e−|ξ|}
= sup

r>0
{ra e−r} = aa e−a .

(7.13)

We work on a line Re z = ν, with ν “large”, for dealing with the L2

boundedness, and the other line is Re z = 0. For the values z = 0 + ib,
b real, we know by (2.18) when 1 < r < +∞ that the norm on Lr(Rn)
of the multiplier |ξ| ib is bounded by λr eπ|b|/2, with λr independent of the
dimension n. The multiplier e−|ξ| corresponds to the convolution with a
Poisson probability measure, so it is bounded by 1 on Lr(Rn) when 1 6 r 6
+∞ by (2.13).

Let α ∈ (0, 1) be given. Consider p ∈ (1, 2), introduce p0 = 2p/(p+ 1) ∈
(1, p), making 1/p0 the midpoint between 1 and 1/p. Then with θ = p− 1 ∈
(0, 1) we can check that 1/p = (1 − θ)/p0 + θ/2, and we define ν by the
condition α = (1 − θ).0 + θν, namely, we set ν = α/(p − 1). Let Tz be the
operator associated to the multiplier Pz. We have to estimate the norm of
Tα on Lp by bounding 〈Tαf, g〉 uniformly for f in the unit ball of Lp(Rn)
and g in the unit ball of the dual Lq(Rn), where 1/q+ 1/p = 1. Consider the
holomorphic function

H : z 7→ 〈Tzfz, gz〉
where fz, gz are as in (3.23). The bounds obtained for the family Tz do not
allow us to apply directly the three lines Lemma 3.1, but Corollary 3.4 will
do the job. We got at the boundary of the strip, for the norms ‖Tz‖p0→p0

when Re z = 0, a bound of the form O(eκ| Im z|). For every real number τ ,
the function H satisfies

|H(0 + iτ)| 6 λp0 eπ|τ |/2 and also |H(ν + iτ)| 6 νν e−ν .
By Corollary 3.4, the value H(α) is bounded uniformly by a quantity η
depending on p0, θ and on the width w = ν of the strip, hence on α, p only.
As explained in (3.26), this gives then for the action of Tα on Lp(Rn) a
bound ‖Tα‖p→p 6 η.

For applying Corollary 3.4, it remains to check that H has an admissible
growth in S = {z : 0 < Re z < ν}. We may actually reduce the discussion to
a function H bounded in the strip (but without universal estimate). Indeed,
one can observe that all operators Tz, z ∈ S, are uniformly bounded on
L2(Rn), since |Pz(ξ)| is bounded by νν for all ξ ∈ Rn and z in S by (7.13).
We may limit ourselves to f , g continuous with compact support, so that
fz, gz, z ∈ S, stay in a bounded subset of L2, according to (3.24), implying
that H = Hf,g is bounded in the strip.
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7.3. The interpolation part of Carbery’s proof for Theorem 6.2

Proof. — In order to complete the proof of Theorem 6.2 and Proposi-
tion 6.3, it remains to show that the multiplier (ξ · ∇)αm(ξ), where m is
the Fourier transform of K = Kg − P , is bounded on Lp(Rn) for at least
one value α > 1/p when p > 3/2. We have seen in the preceding Sec-
tion 7.2 that (ξ · ∇)αP̂ (ξ) is bounded on Lp(Rn), we need only consider
now (ξ · ∇)αmg(ξ). We will obtain the result by interpolating between the
boundedness on L1(Rn), for α0 = −ε, and the boundedness on L2(Rn), for
α1 = 1− ε, of a certain holomorphic family Nz(ξ) such that Nα(ξ) controls
(ξ · ∇)αmg(ξ). If p > 3/2 is fixed, its conjugate q is < 3. We write

2
3 >

1
p

= 1− θ
1 + θ

2 = 1− θ

2 , thus θ

2 = 1− 1
p

= 1
q

and θ = 2/q > 2/3 > 1 − θ/2. One can then find ε ∈ (0, 1) small enough,
and independent of the dimension n, so that

α := (1− θ)(−ε) + θ(1− ε) = θ − ε > 1− θ

2 = 1
p
.

We need 0 < ε < 3θ/2 − 1, we can set for example ε = 3θ/4 − 1/2 =
(p−3/2)/p. By Lemma 7.3, it is enough to show that dαt mg(tξ)

∣∣
t=1

is bounded
on Lp. Consider the holomorphic family of multipliers (Nz), simpler than
that of Müller, namely, Nz(ξ) := dztmg(tξ)

∣∣
t=1

in the strip −ε 6 Re z 6 1−ε.
When Re z < 0, we have

Nz(ξ) = 1
Γ(−z)

∫ 2

1
(u− 1)−z−1mg(uξ) du , (7.14)

and in particular

N−ε+iτ (ξ) = 1
Γ(ε− iτ)

∫ 2

1
(u− 1)ε− iτ−1mg(uξ) du .

We see that∫ 2

1

∣∣(u− 1)ε− iτ−1∣∣du =
∫ 2

1
(u− 1)ε−1 du = ε−1 < +∞ ,

thus N−ε+iτ acts on L1, with norm 6 2ε−1(1 + τ2)1/4−ε/2 eπ|τ |/2, according
to Lemma 2.1, to the inequality (3.12.Γ) for the Gamma function and since
the L1 norm of the kernel Kg is equal to 1. When Re z = 1 − ε, we have
by (7.9) that

N1−ε+iτ (ξ) = mg(2ξ)
Γ(ε− iτ) −

1
Γ(ε− iτ)

∫ 2

1
(u− 1)ε− iτ−1ξ · ∇mg(uξ) du .
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The kernel N1−ε+iτ is a bounded function of ξ, because we have |mg(2ξ)| 6
δ0,g and

∣∣uξ · ∇mg(uξ)
∣∣ 6 δ1,g by (6.1.H). Using (3.12.Γ) we obtain∣∣N1−ε+iτ (ξ)

∣∣ 6 1
|Γ(ε− iτ)|

(
δ0,g +

∫ 2

1

∣∣(u− 1)ε− iτ−1∣∣ δ1,g
u

du
)

6 2(δ0,g + δ1,g)ε−1(1 + τ2)1/4−ε/2 eπ|τ |/2 .

This shows that the operator associated to N1−ε+iτ (ξ) is bounded on L2(Rn)
with a bound O(eκ|τ |). We deal with this estimate as in the preceding Sec-
tion 7.2, and we obtain by interpolation that Nα(ξ) is a Lp(Rn)-multiplier.
Remark 3.6 takes care of the polynomial factor (1+τ2)1/4−ε/2 6 (1+τ2)1/4.
By Lemma 7.3 and (3.22) with w = 1, cj = 1/4, uj = π/2, and since δ0,g > 1
we get

‖(ξ · ∇)αmg(ξ)‖p→p 6 1 + 2p
p− 3/2

(
3
2

)1/2
eπ/4(δ0,g + δ1,g)2−2/p

6 κp∆2−2/p
1 .

We now check that the function H(z) = 〈Nzfz, gz〉 of (3.25) has an
admissible growth in S = {−ε 6 Re z 6 1− ε}. We may again observe that
all kernels Nz(ξ) are bounded functions of ξ. Indeed, Nz(ξ) can be expressed
in the whole strip by

Nz(ξ) = mg(2ξ)
Γ(−z + 1) −

1
Γ(−z + 1)

∫ 2

1
(u− 1)−zξ · ∇mg(uξ) du , ξ ∈ Rn ,

so that |Nz(ξ)| 6 κε,δ(1 + τ2)1/4 eπ|τ |/2. Next, we can assume that the two
functions f, g appearing in the definition of H are bounded with bounded
support, and argue with (3.24) as at the end of Section 7.2, obtaining that
|H(z)| 6 κ‖Nz‖2→2 6 κ′ε(1+τ2)1/4 eπ|τ |/2, a growth admissible for applying
Corollary 3.4. �

We see pretty well why Müller finds a better result than the one given by
the preceding argument, which suffices for Carbery’s theorem. It is because
Müller is able to make use of multipliers more difficult to handle, which
contain an extra factor |ξ| on the line Re z = −ε, for example mε

−ε(ξ) =
(1 + |ξ|)N−ε(ξ) when z = −ε. This factor |ξ| is precisely the one that will
be treated by the geometrical parameter q(C). On the other hand, Müller’s
approach is not better when p > 3/2, since the result is known in this case
without assumption on q(C).

Remark. — The factor 1/Γ(−z) in (7.14) is not purely decorative. With-
out it, Nz(ξ) would have a “pole” at z = 0, which is compensated by the zero
of 1/Γ(z) at 0. One could perhaps get away here with a less sophisticated
factor such as z/(a− z), with a real and > 1. See also Remark 7.13.
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7.4. Upper bounds for the functions ξ 7→ mε
z(ξ)

We present a version of Müller’s upper bounds for the functions mε
z de-

fined in (7.12). Müller’s bounds in [59] are not fully explicit since they use
asymptotic estimates, but they do not contain the annoying factor ε−1 that
our somewhat shorter proof introduces below.

Lemma 7.4 ([59, Lemma 2]). — Assume that the kernel Kg integrable
on Rn satisfies (7.5.H∞), let ε ∈ (0, 1), let ν > 1 − ε and set ` = dν + εe.
For every z ∈ C such that −ε 6 Re z 6 ν, one has that

∀ ξ ∈ Rn , |mε
z(ξ)| 6 κν ε−1∆` (1 + (Im z)2)ν/2−1/4 eπ| Im z|/2 ,

where κν = 4Γ
(
max(ν, 2)

)
(3/2)ν−1/2 eπ/4 and where ∆` is defined at (7.6).

One of the difficulties in Müller’s article is the following: with the operator
Dα, we have been able to compute certain integrals by the residue theorem,
on entire half-lines. The corresponding values for dα are less pleasant, because
they involve bounded segments, and quarters of circle at finite distance whose
contribution is not zero. Let us mention another difficulty, somewhat related
to the latter. If we know that |Dz

tm(tθ)| 6 κ(1 + |t|)−1 for every t real
and θ ∈ Sn−1, then by the homogeneity relation (6.8) we get |Dz

tm(tξ)| 6
κ|ξ|Re z(1+|tξ|)−1 for ξ ∈ Rn, but this kind of behavior is not clear for dz. The
more delicate analysis of [59] will not be given here, but some special cases
are rather easy. Indeed, the computation is not difficult when Re z = k − ε,
for every integer k > 0. We will however be able to deduce Lemma 7.4 from
the easy cases that are treated in the next lemma.

Lemma 7.5. — Assume that Kg is integrable on Rn and satisfies
(7.5.H∞). For every ε ∈ (0, 1), every integer k > 0 and z ∈ C such that
Re z = k − ε, one has
∀ ξ ∈ Rn , |mε

z(ξ)| 6 2κ′k ε−1∆k (1 + (Im z)2)k
∗/2−ε/2−1/4 eπ| Im z|/2 ,

where k∗ = max(k, 1), κ′k 6 Γ(k − ε) for k > 3 and κ′0, κ′1, κ′2 6 1.

Proof. — We first give the proof for k = 0, when z = −ε+ iτ . We have

mε
−ε+iτ (ξ) = (1 + |ξ|)1−ε−(−ε+iτ) 1

Γ(ε− iτ)

∫ 2

1
(u− 1)ε− iτ−1mg(uξ) du

and it follows that

|mε
−ε+iτ (ξ)| 6

∣∣∣∣ 1
Γ(ε− iτ)

∣∣∣∣ ∫ 2

1
(u− 1)ε−1(1 + |ξ|) |mg(uξ)|du .

By (7.5.H∞), we know that |mg(uξ)| 6 δ0,g(1 + |ξ|)−1 when u > 1, thus

|Γ(ε− iτ)mε
−ε+iτ (ξ)| 6 δ0,g

∫ 2

1
(u− 1)ε−1 du = δ0,g

ε
.
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Using also (3.12.Γ), this simplest case reads as

‖mε
−ε+iτ‖∞ 6 2δ0,gε−1(1 + τ2)1/4−ε/2 eπ|τ |/2 , τ ∈ R ,

and 1/4 = k∗/2−1/4 here. For k > 0, we have by (7.10) with z = k− ε+ iτ
that

dk−ε+iτ
t mg(tξ)

∣∣
t=1

= Ek + (−1)k 1
Γ(ε− iτ)

∫ 2

1
(u−1)ε− iτ−1 dk

dukmg(uξ) du ,

where

Ek =
k−1∑
j=0

(−1)j
dj
dujmg(uξ)

∣∣
u=2

Γ(j + 1− k + ε− iτ) .

By our assumption (7.5.H∞), the function u 7→ mg(uξ) satisfies

∀ u > 1 ,
∣∣∣∣ dj

dujmg(uξ)
∣∣∣∣ =

∣∣∣∣ dj

dujmg
(
u|ξ|θ

)∣∣∣∣ 6 δj,g |ξ|j1 + |ξ| (7.15)

for each integer j > 0, if ξ 6= 0 and θ = |ξ|−1ξ. This yields∣∣∣∣ ∫ 2

1
(u− 1)ε− iτ−1 dk

dukmg(uξ) du
∣∣∣∣ 6 δk,g ∫ 2

1
(u− 1)ε−1 |ξ|k

1 + |ξ| du

= δk,g
ε

|ξ|k

1 + |ξ| .

For the terms in the expression Ek, we have by (7.15) that∣∣∣∣ dj

dujmg(uξ)
∣∣
u=2

∣∣∣∣ 6 δj,g |ξ|j1 + |ξ| 6 δj,g
(1 + |ξ|)j

1 + |ξ| 6 δj,g (1 + |ξ|)k−1 ,

j = 0, . . . , k − 1 .

Recalling ∆k =
∑k
j=0 δj,g and (3.12.Γ) with a = −k + 1 + ε, we get

|mε
k−ε+iτ (ξ)| = (1 + |ξ|)1−ε−(k−ε) ∣∣dk−ε+iτ

t mg(tξ)
∣∣
t=1

∣∣
6 ∆k ε

−1(1 + |ξ|)1−k (1 + |ξ|)k−1

×max{|Γ(ε− iτ − j1)|−1 : 0 6 j1 6 k − 1}

6 βa∆k ε
−1(1 + τ2)1/4+(k−1−ε)/2 eπ|τ |/2 .

(7.16)

We may take βa = 2 when k 6 2 and βa = 2Γ(k − ε) otherwise. �

Remark. — One could not make the same simple computation for k−ε′
when ε′ > ε. Indeed, we have then

mε
k−ε′(ξ) = (1 + |ξ|)1−(k−ε′)−εdk−ε

′+iτ
t mg(tξ)

∣∣
t=1

,
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so |mε
k−ε′(ξ)| contains the factor (1 + |ξ|)1−k+ε′−ε, that is not controllable

by the preceding proof when ε′ > ε. With one more integration by parts in
the log-concave case we obtain

dj

dujmlc(uξ) = (−2iπ|ξ|)j−2

u2

∫
R

(
sjϕθ(s)

)′′ e−2iπsu|ξ| ds

that seems to give an additional improvement, able to swallow the bad factor
|ξ|ε′−ε above. However, we would need now for

∫
R |s|

j |ϕ′′θ (s)|ds a universal
bound that does not exist, and actually, this integral does not make sense in
general.

When k > 1, the kernel m̃ε
k−ε+iτ := (1 + |ξ|)1−k− iτDk−ε+iτ

u mg(uξ)
∣∣
u=1

is even easier to bound since we can write directly∣∣∣∣ ∫ +∞

1
(u− 1)ε− iτ−1 dk

dukmg(uξ) du
∣∣∣∣ 6 δk,g(∫ +∞

1
(u− 1)ε−1 du

u

)
|ξ|k−1 ,

but D−ε+iτ
u mg(uξ)

∣∣
u=1

is not a bounded function of ξ in the neighborhood
of ξ = 0. For example, we have D−εu e−u|ξ|

∣∣
u=1

= |ξ|−ε e−|ξ|. Thus m̃ε
−ε is

not an L2 multiplier, nor an Lp multiplier for any p 6= 2, and this justifies
working with dzt instead.

Proof of Lemma 7.4. — Let ν > 1 − ε and ` = dν + εe > 2, so that
ν 6 `− ε. If Re z < `, we have by (7.10) that

dztmg(tξ)
∣∣
t=1

= E`(z) + (−1)` 1
Γ(`− z)

∫ 2

1
(u− 1)−z+`−1 d`

du`mg(uξ) du ,

with E`(z) =
∑`−1
i=0(−1)iΓ(i + 1 − z)−1 di

duimg(uξ)
∣∣
u=2

. We fix ξ ∈ Rn and
consider the holomorphic function

Hξ : z 7→ mε
z(ξ) = (1 + |ξ|)1−ε−zdztmg(tξ)

∣∣
t=1

in the strip −ε < Re z < ` − ε. We have
∣∣(di/dui)mg(uξ)

∣∣ 6 δi,g|ξ|i
by (7.5.H∞), and it follows from (3.12.Γ) that |Hξ(z)| 6 κ eκ|τ | in the strip,
with κ depending on |ξ|. Consider an arbitrary z0 such that 1 − ε < ν0 :=
Re z0 6 ν. Let k integer be such that k− ε < ν0 6 k+ 1− ε, thus 1 6 k < `.
By Lemma 7.5, when Re z = k − ε or Re z = k + 1 − ε, we have for Hξ(z)
the good bound

|Hξ(z)| 6 2κ′Re z+ε∆Re z+ε ε
−1(1 + (Im z)2)Re z/2−1/4 eπ| Im z|/2 . (7.17)
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We write ∆k < ∆k+1 6 ∆` and ν0 + ε = (1 − θ)k + θ(k + 1). When k > 3,
we have

κ′
1−θ
k κ′

θ
k+1 6 Γ(k−ε)1−θΓ(k+1−ε)θ = Γ(k+1−ε)

(k − ε)1−θ

6
Γ(ν0)θΓ(ν0 + 1)1−θ

(k − ε)1−θ = ν1−θ
0

(k − ε)1−θ Γ(ν0) < 2Γ(ν) ,

and κ′
1−θ
1 κ′

θ
2 6 1, κ′1−θ2 κ′

θ
3 6 2. By Corollary 3.4 and Remark 3.6, (3.22)

with w = 1 and cj = (k + j − ε)/2 − 1/4, j = 0, 1, we get for |Hξ(z0)| a
bound

4Γ(max(ν, 2))(3/2)Re z0−1/2 eπ/4 ε−1∆`(1 + (Im z0)2)Re z0/2−1/4 eπ| Im z0|/2 .

This proves Lemma 7.4 when 1− ε < Re z0 6 ν. The case −ε 6 Re z0 6 ν =
1−ε is left to the reader, one has k = 0 and the polynomial component of the
bound is then (1+τ2)ν/2−1/4 on both sides of the strip −ε < Re z < 1−ε. �

An alternative proof could go like this: divide the integral
∫ 2

1 in the def-
inition of dztmg(tξ)

∣∣
t=1

into
∫ 1+a

1 and
∫ 2

1+a, for some suitable a ∈ [0, 1].

For the first integral
∫ 1+a

1 , we modify (7.10) and get when −1 < Re z < 0
that

dz,1(a) := 1
Γ(−z)

∫ 1+a

1
(u− 1)−z−1mg(uξ) du

= Ek+2,a(z) + (−1)k+2 1
Γ(k + 2− z)

×
∫ 1+a

1
(u− 1)−z+k+1 dk+2

duk+2mg(uξ) du

for every integer k > −1, where Ek+2,a(z) is equal to

Ek+2,a(z) =
k+1∑
j=0

(−1)j
a−z+j dj

duj mg
(
uξ
)∣∣
u=1+a

Γ(j + 1− z) .

Let now −1 < Re z 6 ν and write z = k + σ + iτ with k integer and
0 < σ 6 1. Applying the preceding formulas it follows by (7.5.H∞) that

|dz,1(a)| 6
k+1∑
j=0

a−k−σ+j δj,g |ξ|j

|Γ(j + 1− z)|(1 + |ξ|) + (2− σ)−1a2−σδk+2,g |ξ|k+2

|Γ(k + 2− z)|(1 + |ξ|) .

When |ξ| 6 1, we choose a = 1 and obtain |dz,1(a)| 6 Ck(z)(1 + |ξ|)−1

where
Ck(z) = ∆k+2 max

{
|Γ(i− z)|−1 : 0 6 i 6 k + 2

}
.

When |ξ| > 1, we let a = |ξ|−1 and get |dz,1(a)| 6 Ck(z)|ξ|k+σ (1 + |ξ|)−1.
The other term dz,2(a), corresponding to

∫ 2
1+a, is zero when |ξ| 6 1 since
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a = 1 in this case. Otherwise, we have a = |ξ|−1 and assuming k + σ 6= 0,
we get

|dz,2(a)| =
∣∣∣∣ 1
Γ(−z)

∫ 2

1+|ξ|−1
(u− 1)−z−1mg(uξ) du

∣∣∣∣
6

1
|Γ(−z)|

|ξ|k+σ − 1
k + σ

δ0,g
1 + |ξ| .

There is no problem as long as Re z = k + σ is not close to 0. Otherwise,
we can apply

∣∣|ξ|k+σ − 1
∣∣ 6 |k + σ| |ξ|(k+σ)+ ln |ξ|, where t+ = max(t, 0).

Summing up and letting L(ξ) = 1 + (ln |ξ|)+, we have when −1 < Re z =:
s < ν that∣∣dztmg(tξ)

∣∣
t=1

∣∣ 6 Cν(z)
(
[1 + |s|−1] ∧ L(ξ)

)
(1 + |ξ|)s

+−1 ,

giving bounds multiple of (1+|ξ|)−1, (1+|ξ|)−1L(ξ) for s in [−1,−ε/2] and
[−ε/2, 0] respectively, (1+|ξ|)s−1L(ξ) and (1+|ξ|)s−1 in [0, ε/2] and [ε/2, ν]
respectively. For mε

z(ξ), we get bounds multiple of 1, (1+ |ξ|)−ε/2L(ξ) and
(1 + |ξ|)−ε for s in [−ε,−ε/2], [−ε/2, ε/2] and [ε/2, ν] respectively. This
shows that mε

z(ξ) is a bounded function of ξ ∈ Rn.

7.5. Lemma 4 of Müller’s article

We must control the action on Lp(Rn), p > 1 close to 1, of multipliers
mε
z when Re z = −ε. If z = −ε+ iτ , we have

Γ(ε− iτ)mε
−ε+iτ (ξ) = (1 + |ξ|)1− iτ

∫ 2

1
(s− 1)ε− iτ−1mg(sξ) ds .

Since
∫ 2

1
∣∣(s−1)ε− iτ−1

∣∣ds = ε−1, it is enough to bound uniformly in s ∈ [1, 2]
the norm of ns(ξ) := (1+ |ξ|)1− iτmg(sξ). This multiplier can be decomposed
into several parts: first (1+ |ξ|)− iτ , which is taken care of by Proposition 2.2
on multipliers of Laplace type. Indeed, replacing λ by 1 + λ in (2.17) and
integrating by parts, one finds that (1 + λ)− iτ = λ

∫ +∞
0 e−λt aτ (t) dt, with

aτ (t) = 1
Γ(1 + iτ)

(
t iτ e−t +

∫ t

0
s iτ e−s ds

)
(7.18)

and |aτ (t)| 6
∣∣Γ(1+ iτ)

∣∣−1
6 (1+τ2)−1/4 eπ|τ |/2 according to (3.4). Next, in

ns(ξ), we have (1+|ξ|)mg(sξ), which is formed ofmg(sξ), multiplier bounded
by ‖Kg‖L1(Rn) on all Lp(Rn) spaces, and of s−1 |sξ|mg(sξ), s > 1, with a
multiplier norm less than that of |ξ|mg(ξ), according to (2.10).

Given an integrable kernel K on Rn and its Fourier transform m, the
question boils down to handling the crucial multiplier

m#(ξ) := |ξ|m(ξ) . (7.19)
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We summarize the latter discussion in the lemma that follows, where we
include the bound 2(1+τ2)1/4 eπ|τ |/2 from (3.12.Γ) for the factor |Γ(ε− iτ)|−1

that was left apart above. So far, the kernel K can be arbitrary in L1(Rn).

Lemma 7.6. — Let p belong to (1, 2]. One has that

‖mε
−ε+iτ‖p→p 6 2ε−1λp eπ|τ | (‖Kg‖L1(Rn) + ‖m#‖p→p) , τ ∈ R ,

where λp is the constant appearing in Proposition 2.2.

The serious work will be done in the proof of the following essential
lemma.

Lemma 7.7. — Let Kg be a kernel integrable on Rn satisfying (6.1.H),
and mg its Fourier transform. Let m#

g be defined by (7.19) and p ∈ (1, 2].
One has that

‖m#
g ‖p→p 6 (2π)1−2/pρp δ

2−2/p
0,g V (Kg)−1+2/p ,

where ρp is the constant from (2.22) and where V (Kg) is defined at (7.2).

The proof of Lemma 7.7 will be broken into several easy statements. Some
of them are used again in Section 8. To begin with, we merely assume that
K is an integrable kernel on Rn having partial derivatives ∂jK in the sense
of distributions that are (signed) measures µj , and we let m = K̂. We can
express m#(ξ) with the help of the Riesz transforms (Rj)nj=1 introduced in
Section 2.3, writing

2πm#(ξ) =
n∑
j=1

−iξj
|ξ|

(2iπξj)m(ξ) .

The functions (2iπξj)m(ξ), j = 1, . . . , n, are the Fourier transforms of the
measures µj = ∂jK. When K is the uniform probability density KC on a
symmetric convex set C, the µj s are supported on the boundary of C, and
we shall see below that V (KC) = q(C) if C is isotropic and normalized by
variance.

The convolution operator Tm# can thus be written under the form

Tm# : f 7→ Tm#f = (2π)−1
n∑
j=1

Rjµj ∗ f .
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Riesz transforms commute with convolutions. If g is in the dual Lq of Lp,
we have

2π |〈Tm#f, g〉|=
∣∣∣∣ n∑
j=1
〈Rjµj ∗f, g〉

∣∣∣∣=
∣∣∣∣ n∑
j=1
〈(Rjf)∗µj , g〉

∣∣∣∣=
∣∣∣∣ n∑
j=1
〈Rjf, µ̃j ∗g〉

∣∣∣∣
6
∫
Rn

( n∑
j=1
|Rjf |2

)1/2( n∑
j=1
|µ̃j ∗ g|2

)1/2
,

where µ̃j denotes the image of µj under the symmetry x 7→ −x of Rn.
By (2.22), the Riesz transforms are “collectively bounded” in Lp(Rn) by a
constant ρp independent of the dimension n, and we obtain therefore that

2π |〈Tm#f, g〉| 6 ρp‖f‖p
∥∥∥∥( n∑

j=1
|µ̃j ∗ g|2

)1/2∥∥∥∥
q

.

Noticing that µ̃j ∗ g = (µj ∗ g̃)˜ and
(∑n

j=1 |µj ∗ g|2
)1/2 = |∇K ∗ g|, we are

led to study the operator
UK : g ∈ Lq(Rn) 7→ ∇K ∗ g ∈ Lq(Rn,Rn) (7.20)

given by the vector-valued convolution with ∇K. Let us state what we have
got.

Lemma 7.8. — Let K be an integrable kernel on Rn, m its Fourier trans-
form and let m# be defined by (7.19). For every p ∈ (1, 2] and q = p/(p−1),
one has
‖Tm#‖p→p 6 (2π)−1ρp sup

‖g‖q61
‖∇K ∗ g‖Lq(Rn) = (2π)−1ρp ‖UK‖q→q .

When K = Kg satisfies (6.1.H), we shall estimate ‖UKg‖q→q by interpo-
lation between L2 and L∞. Contrary to the L2 estimate which will make use
of (6.1.H), the L∞ estimate is a straightforward observation following from
the definition of V (K). In the special case Kg = KC of a convex body C,
this L∞ case will bring in the geometrical parameter q(C) = 2Q(C0)L(C0),
equal to V (KC).

Lemma 7.9. — Let K be an integrable kernel on Rn having a finite di-
rectional variation V (K), and let UK be defined by (7.20). One has that

‖UK‖∞→∞ 6 V (K) . (7.21)
Proof. — For each x ∈ Rn, the Euclidean norm of the vector (∇K ∗

g)(x) ∈ Rn is given by the supremum over θ ∈ Sn−1 of∣∣∣∣θ · (∫
Rn
g(x− y) d(∇K)(y)

)∣∣∣∣ =
∣∣∣∣ ∫

Rn
g(x− y) d(θ · ∇K)(y)

∣∣∣∣
6 ‖g‖∞ ‖θ · ∇K‖1 6 V (K)‖g‖∞ .
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Lemma 7.10. — For every symmetric convex body C, isotropic and nor-
malized by variance, one has that V (KC) = q(C).

Proof. — Let θ belong to Sn−1 and let y be in θ⊥. For each line y + Rθ
that meets the set C, the jumps of the density KC = |C|−11C of µC , when
traveling on the line in the direction of increasing real numbers, are equal to
|C|−1 when we enter C, and to −|C|−1 when leaving C, implying that the
mass of the directional derivative is equal to 2/|C| times the measure of the
projection of C onto θ⊥. More precisely, suppose without loss of generality
that θ is the first basis vector e1 of Rn and let π1 be the orthogonal projection
onto e⊥1 . Let ψ ∈ S(Rn) be given, and write each x ∈ Rn as x = (s, y) with
s ∈ R and y ∈ Rn−1. Using Fubini, we get

−〈e1 · ∇µC , ψ〉 = −〈∂µC
∂x1

, ψ〉 = 〈µC ,
∂ψ

∂x1
〉

=
∫
Rn−1

(∫
R
|C|−11C(s, y) ∂ψ

∂x1
(s, y) ds

)
dy .

The inside integral is 0 if Ly = y + Re1 does not meet the convex set C.
Otherwise, the line Ly cuts C along a segment [y + s1(y)e1, y + s2(y)e1],
s1(y) 6 s2(y), and

−〈e1 ·∇µC , ψ〉=
1
|C|n

∫
π1C

(
ψ(s2(y), y)−ψ(s1(y), y)

)
dy6 2|π1C|n−1

|C|n
‖ψ‖∞ .

Going back to a general θ ∈ Sn−1 and according to (7.1), we conclude that

‖θ · ∇µC‖1 6
2
|C|n

|PθC|n−1 6 2Q(C0)L(C0) = q(C) .

We get V (KC) 6 q(C), which suffices for our purpose. Müller [59, Lemma 3]
shows that this inequality is actually an equality. �

When Kg = KC , we have ‖UKC‖∞→∞ 6 q(C), specifying the esti-
mate (7.21) obtained in the general case. We complete now the interpolation
for UKg . We formulate the next Lemma so that we can apply it again in
Section 8.

Lemma 7.11. — Let K be an isotropic log-concave probability density
on Rn with variance σ2. For 2 6 q 6 +∞, one has that

‖UKf‖q = ‖∇K ∗ f‖q 6 21/q σ−2/q V (K)1−2/q‖f‖q , f ∈ Lq(Rn) .

If Kg is an integrable kernel on Rn satisfying (6.1.H), then

‖UKg‖q→q 6 (2πδ0,g)2/q V (Kg)1−2/q .
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Proof. — Let m = K̂ and consider first q = 2. By Parseval (2.12.P) we
have

‖∇K ∗ f‖22 =
∥∥∥∥( n∑

j=1
|∂jK ∗ f |2

)1/2∥∥∥∥2

2
=
∫
Rn

n∑
j=1

4π2ξ2
j |m(ξ)|2 |f̂(ξ)|2 dξ ,

and
∑n
j=1 4π2ξ2

j |m(ξ)|2 = 4π2 |ξ|2 |m(ξ)|2 6 2σ−2 by (5.17.B) (or by (6.1.H),
it is 6 4π2δ2

0,g), hence ‖UK‖2→2 6
√

2σ−1 (or 6 2πδ0,g). If q ∈ (2,+∞), we
write 1/q = (1 − θ)/2 + θ/∞ with θ = 1 − 2/q. We get that ‖UK‖q→q 6
(
√

2σ−1)2/q V (K)1−2/q (or we get 6 (2πδ0,g)2/q V (K)1−2/q) by Lemma 7.9
and interpolation (L2, L∞). �

End of the proof of Lemma 7.7. — We use Lemma 7.8, then apply
Lemma 7.11 to Kg with 1/q = 1− 1/p and obtain that

‖Tm#
g
‖p→p 6 (2π)−1ρp‖UKg‖q→q 6 (2π)1−2/pρp δ

2−2/p
0,g V (Kg)−1+2/p . �

7.5.1. Conclusion

We finish the proof of Proposition 7.2. We first run over half of the way
in the following lemma, which we shall refer to again in Section 8.

Lemma 7.12. — Let Kg be an integrable kernel on Rn satisfying
(7.5.H∞), and let m#

g be defined by (7.19). Let α ∈ (0, 1) and suppose that
1 < p0 < p < 2. There exists a constant κ(p, p0), independent of n, such that

‖(ξ · ∇)αmg(ξ)‖p→p

6 ‖Kg‖L1(Rn)+ κ(p, p0)
1− α

(
‖Kg‖L1(Rn) + ‖m#

g ‖p0→p0

)1−θ∆θ
k(θ) ,

where θ ∈ (0, 1) is defined by 1/p = (1− θ)/p0 + θ/2 and k(θ) = d1/θe.

Proof. — Lemma 7.3 gives

‖(ξ · ∇)αmg(ξ)‖p→p 6 ‖Kg‖L1(Rn) + ‖dαt mg(tξ)
∣∣
t=1
‖p→p .

Let ε = 1 − α > 0. We apply complex interpolation to the Müller family
(mε

z) in the strip S = {z ∈ C : −ε 6 z 6 ν} of width w := ν + ε. We
bound mε

α(ξ) = dαt mg(tξ)
∣∣
t=1

on Lp(Rn), using Lp0 estimates of mε
z for

Re z = −ε and L2 estimates when Re z = ν. The value ν must satisfy
α = (1 − θ)(−ε) + θν, hence ν = 1/θ − ε > 1 − ε and w = 1/θ. It follows
from Lemma 7.6 that

‖mε
−ε+iτ‖p0→p0 6 2ε−1λp0 eπ|τ |

(
‖Kg‖L1(Rn) + ‖m#

g ‖p0→p0

)
.
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By Lemma 7.4, each operator mε
ν+iτ is bounded by

κν ε
−1∆`(1 + τ2)ν/2−1/4 eπ|τ |/2

on L2(Rn), with κν 6 κw = 4Γ(max(w, 2))(3/2)w−1/2 eπ/4 =: cθ, a function
of θ alone, and ` = dν+εe = dwe. If we check the admissible growth condition
in S, we can rely on Corollary 3.4, Remark 3.6 and (3.22) in order to get a
bound

‖mε
α(ξ)‖p→p 6 κ(p, p0)ε−1(‖Kg‖L1(Rn) + ‖m#

g ‖p0→p0)1−θ∆θ
k(θ) ,

with k(θ) = ` = d1/θe and κ(p, p0) 6 (1 + w/2)θ(ν−1/2) eπw/2(2λp0)1−θcθθ.
Observing that θν < 1, w > 1 and λp0 > 1, we may simplify this bound as

κ(p, p0) 6 κw eπw/2 λp0 Γ(max(w, 2))1/w 6 κw2 eπw/2 λp0 . (7.22)
We now verify that the holomorphic function H(z) = 〈mε

zfz, gz〉 has an
admissible growth in S. Since the kernels are bounded functions of ξ by
Lemma 7.4, all multipliers mε

z, z ∈ S, are L2-bounded with a bound of the
form κ eκ| Im z|. If we restrict to functions f and g bounded with bounded
support, we have by (3.24) that fz, gz are uniformly bounded in L2(Rn),
and we can conclude as in Section 7.3. �

End of the proof of Proposition 7.2. — Given p ∈ (1, 2) and α = 1− ε ∈
(0, 1), we select p0 ∈ (1, p) and let θ ∈ (0, 1) satisfy 1/p = (1− θ)/p0 + θ/2.
Since 1 < p0 < p < 2, we have that 0 < θ < 2(1− 1/p) < 1. It follows from
Lemma 7.7 that

‖m#
g ‖p0→p0 6 (2π)1−2/p0ρp0 δ

2−2/p0
0,g V (Kg)2/p0−1 .

By Lemma 7.12, and because ‖Kg‖L1(Rn) 6 1, ρp0 > 1 (see Remark 2.3), we
get

‖(ξ ·∇)αmg(ξ)‖p→p 6 1+κ(p, p0)ε−1ρp0 ∆θ
k(θ)
(
1+δ1−θ−(2/p−1)

0,g V (Kg)2/p−1).
We still have a choice of θ ∈ (0, 2− 2/p). If θ gets small, then the power

of ∆k(θ) gets small, but the number k(θ) of constants δj,g involved increases
to infinity. In the log-concave case, the estimate (5.18) indicates a growth
of order ∆k,c ∼ k! yielding ∆θ

k(θ) ∼ 1/θ. Furthermore, the width w = 1/θ
of the strip and the associated interpolation constants also tend to +∞ in
this case, and we should thus keep θ away from 0, as much as possible. If θ
approaches its upper limit 2(1− 1/p), then p0 tends to 1 and the constants
such as λp0 , ρp0 tend to infinity. Choosing θ = (4/3)(1− 1/p) has the merit
to provide the relatively simple bound

‖(ξ · ∇)αmg(ξ)‖p→p
6 1 + κ(α, p)∆(4/3)(1−1/p)

k(p)
(
1 + δ

(2/3)(1−1/p)
0,g V (Kg)2/p−1) , (7.23)
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with κ(α, p) = κ(p, p0)ε−1ρp0 6 κε−1w2 eπw/2 λp0 ρp0 by (7.22), with p0 −
1 = (p− 1)/(5− 2p) and k(p) = d1/θe = d3p/(4p− 4)e. �

Remark 7.13. — It is usual to have a factor 1/Γ(z) in fractional deriva-
tives, which led us to seeing eπ|τ |/2 in many places, ending with eπw/2 in
our estimate (7.22) of κ(p, p0), with w = 1/θ ∼ q := p/(p − 1) after the
final choice of θ = 4/(3q) above. We could avoid this exponential though.
Consider the modified Müller family

m̃ε
z(ξ) = Γ(1 + ε+ z) Γ(2ε+ z)

Γ(1 + ε) mε
z(ξ) , Re z > −ε, ξ ∈ Rn ,

which coincides with the former at z = α since ε+ α = 1 and Γ(2) = 1. For
the Lp0 bound when z = −ε+ iτ , we decompose m̃ε

−ε+iτ (ξ) as

1
Γ(1+ε)

[
Γ(1+ iτ)(1+|ξ|)− iτ ][Γ(ε+ iτ)

Γ(ε− iτ) (1+|ξ|)
∫ 2

1
(s−1)ε− iτ−1mg(sξ) ds

]
.

Introducing Γ(1 + iτ) in the Laplace type multiplier (7.18), we obtain a
new function ãτ (t) bounded by 1, and Γ(2ε + z) is used for the bound of
d−ε+iτ
t mg(tξ)

∣∣
t=1

because |Γ(ε + iτ)| = |Γ(ε − iτ)|. We get in this way for
m̃ε
z(ξ) a bound

‖m̃ε
z(ξ)‖p0→p0 6 2ε−1λp0 (‖Kg‖L1(Rn) + ‖m#‖p0→p0)

that replaces Lemma 7.6 (we use again 1/Γ(1 + ε) 6 2). The L∞ bounds
obtained in (7.16) when z = k − ε + iτ , k > 0, have now a largest factor
of ∆kε

−1 equal to Γ(k + 1 + iτ)Γ(k + ε+ iτ)/[Γ(1 + ε)Γ(−k + 1 + ε− iτ)]
(when the index j1 in (7.16) is equal to k− 1). The modulus of this factor is
the same as that of

Γ(k + 1 + iτ)Γ(k + ε+ iτ)
Γ(1 + ε)Γ(−k + 1 + ε+ iτ) = Γ(1+ iτ)

Γ(1+ε)

( k∏
j=1

(j+ iτ)
)( k−1∏

j=−k+1
(j+ε+ iτ)

)
.

This is a bounded function of τ according to (3.1), with a rough bound
given by 2

√
2π (k + |τ |)3k e−π|τ |/2 6 6.2kk3k (use x/ sinh x 6 (1 + 2x) e−x

for x > 0). One need not be too careful here since this term will be raised to
the power θ = 1/w . 1/k. We use it as in (7.17) for two values k, k+ 1 such
that k 6 ν0 + ε 6 k + 1 6 ` = dwe < w + 1. One has then for the L2 bound
of m̃ε

ν+iτ (ξ) an estimate by κ2ww3(w+1)∆` ε
−1. By interpolation we have

‖mε
α(ξ)‖p→p 6 κε−1λ1−θ

p0
(2ww3(w+1))θ(‖Kg‖L1(Rn) + ‖m#

g ‖p0→p0)1−θ∆θ
` .

We thus get for κ(p, p0) in (7.22) a new estimate κ′(p, p0) 6 κw3λp0 , lead-
ing in (7.23) to κ′(α, p) 6 κε−1q3λp0ρp0 . The final choice in the proof of
Proposition 7.2 gives p0 − 1 = (p− 1)/(5− 2p) of order p− 1 as p→ 1, and
since λp0 , ρp0 are O

(
(p0 − 1)−1) as p0 → 1 (see (2.20) and (2.24)), we end

up with κ′(α, p) 6 κε−1q5, a bound which is polynomial but has no reason
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to be accurate. After these modifications, we have for Proposition 7.2 when
1 < p 6 2 a new form

‖(ξ · ∇)αmg(ξ)‖p→p
6 1 + κε−1q5∆(4/3)(1−1/p)

k(p)
(
1 + δ

(2/3)(1−1/p)
0,g V (Kg)2/p−1) , (7.24)

with k(p) = d3p/(4p− 4)e and q = p/(p− 1).

Remark 7.14. — With the new information above, we go back to the
proof of Theorem 7.1. One has chosen there ε = 1− α = 3(p− 1)/(4p+ 4),
and p0 ∈ (1, p) such that p0−1 = 3(p−1)/(5−p). Both ε and p0−1 behave
as multiples of p − 1 when p → 1. If we consider the Poisson kernel P as
anotherKg satisfying (7.5.H∞), and with V (P ) 6 2/π by (7.4), we can apply
to it (7.24) for the value p0 and obtain that ‖(ξ · ∇)αP̂ (ξ)‖p0→p0 6 κε

−1q5.
Applying also (7.24) to mg and p0, we get for m = mg − P̂ that

‖(ξ · ∇)αm(ξ)‖p0→p0 6 κq
6∆(4/3)(1−1/p0)

k(p0) δ
(2/3)(1−1/p0)
0,g (1 + λ2/p0−1) =: B .

We have α − 1/p0 = 3(p − 1)/(4p + 4) which again is of order p − 1. The
constant κα,p0 from (6.25), seen in (7.7), behaves thus as (p − 1)−1/p0 ' q,
so C ′′p0

(λ) is bounded by κq(2 + B). Also r0 − 1 ' (p + p0 − 2)/2 in (7.8)
is of order p − 1 ' 1/q. In (7.8), the constants Cr0 and C ′p are of order q.
Indeed, we can take Cr0 = qr0 from (2.4), that was estimated by r0/(r0− 1)
in (2.5), and C ′p can be the bound for the maximal function of the Poisson
kernel, see (1.31.P ∗). Also, 1 − γ = (p − 1)/(2p), and with Lemma 6.19 we
know that∑

k∈Z
a

(1−γ)p/2
α,k 6 κ

∑
k∈Z

2−(1−α)(1−γ)p|k|/2 6
κ′

(1− α)(1− γ) 6 κ
′′q2 .

Finally, we obtain for Theorem 7.1 another bizarre polynomial estimate

‖MKg‖p→p 6 ‖MK‖p→p +O(q) 6 C2
r0C

′′
p0

(λ)(κ′′q2)2 +O(q)

6 κq13∆1−1/p
dqe ∆1−1/p

1 (1 + λ2/p−1) , 1 < p 6 2 .

8. Bourgain’s article on cubes

In this section, Q is a cube in dimension n, more precisely, the symmetric
cube

Q = Qn =
[
−1

2 ,
1
2

]n
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of volume 1 in Rn. It is isotropic, but if we look for a multiple bQ normalized
by variance, we would need that the half-side a = b/2 of bQ satisfy σ2

bQ = 1,
where

σ2
bQ = 1

|bQ|

∫
bQ

x2
1 dx = 1

2a

∫ a

−a
s2 ds = 1

a

∫ a

0
s2 ds = a2

3 ,

and where x = (x1, . . . , xn) ∈ Rn. This gives a =
√

3 in every dimension n,
but the cube [−

√
3,
√

3]n is not very pleasant to manipulate, and we shall
rather follow Bourgain [13] and keep the volume 1 cube Q. With a = 1/2,
the covariance for Q is given by (12)−1 In. Since the variance σ2

Q = 1/12
is independent of the dimension, we shall have no problem with the esti-
mates (5.17.B) or (5.19). The Fourier transform of the probability measure
µQ is given by

mQ(ξ) = µ̂Q(ξ) = K̂Q(ξ) =
n∏
j=1

sin(πξj)
πξj

, ξ = (ξ1, . . . , ξn) ∈ Rn .

Bourgain observes that a decay better than the usual (5.17.B) for a Fourier
transform mC would allow to relax the limitation p > 3/2 of Theorem 6.2,
and that this better decay is achieved by mQ is most directions. He says that
his proof proceeds therefore to diverse localizations in Fourier space.

Theorem 8.1 (Bourgain [13]). — For every p in (1,+∞], there exists a
constant κp such that ‖MQn‖p→p 6 κp for every integer n > 1.

We shall approach the maximal function problem for the cube by sum-
ming expressions such as KR −K2R, with

KR = KQ ∗G(1/R) ,

where G is a Gaussian probability kernel, G(1/R) its dilate (2.7), and where
R takes the values 1, 2, . . . , 2j , . . . with j being any integer > 0. This is a
Littlewood–Paley-type decomposition, similar to what we have seen before.
By Prékopa–Leindler, KR is a log-concave probability density. We shall set
mR = K̂R in what follows.

We will call the Carbery–Müller artillery and obtain when 1 < r < 2, for
every δ > 0 and R = 2j with j > 0, bounds of the form∥∥ sup

16t62
|KR

(t) ∗ f |
∥∥
r
6 κδ,rR

δ‖f‖r , where KR
(t) := (KR)(t) .

Why this may be a decisive step will be explained below. According to Car-
bery’s Proposition 6.14(2), this bound will be consequence of the Lr(Rn)-
boundedness of the multiplier (ξ ·∇)αmR(ξ) for a value of α ∈ (1/r, 1). Next,
following Müller, it will be enough to estimate in Ls(Rn), with 1 < s < r,
the “crucial” multiplier |ξ|mR(ξ). This is what Bourgain does along several
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pages, in a series of reductions bringing in many tools that are specific to
the product structure of the cube.

8.1. Holding on Müller and Carbery

Let us specify the preceding rough outline. The final objective is to bound
in Lp(Rn) the maximal operator MQ for p below the limit 3/2 that is known
so far, proving that∥∥∥∥ sup

t>0
|(KQ)(t) ∗ f |

∥∥∥∥
p

6 κp ‖f‖p , 1 < p < 2, f ∈ Lp(Rn) .

We fix a value p ∈ (1, 2) in all that follows. In order to obtain the prop-
erty (A2), needed for applying Carbery’s Proposition 6.6, we must show
that ∥∥∥∥ sup

16t62
|K(t) ∗ f |

∥∥∥∥
p2

6 κ‖f‖p2 , 1 < p2 < p < 2 , (A)

where K = KQ − P and P is the Poisson kernel (1.32). This is the only
missing fact for lowering the limitation p > 3/2 down to p > 1, as explained
in the proof of Müller’s Theorem 7.1. For the Poisson side it is fine, it remains
to work on KQ. We introduce the Gaussian kernel G = (γn)(

√
2/
√
π) on Rn.

The variance of G is equal to 2/π, thus independent of n, and Ĝ(ξ) = e−4π|ξ|2

for every ξ ∈ Rn. With this normalization for G, we have by (7.3) that

V (G) =
√
π/2 V (γn) = 1 . (8.1)

We decompose the Dirac probability measure δ0 at the origin, in the sense
of distributions, by means of the simple telescopic series

δ0 = G(1) + (G(1/2) −G(1)) + · · ·+ (G(2−k−1) −G(2−k)) + · · ·

and we decompose KQ accordingly, using the approximations KR = KQ ∗
G(1/R), for R = 2j > 1 and j nonnegative integer, under the form

KQ = K1 + (K2 −K1) + · · ·+ (K2j+1
−K2j ) + · · · .

By Prékopa–Leindler, each KR is a log-concave symmetric probability den-
sity on Rn. It is isotropic, with a variance σ2

R satisfying

12−1 < σ2
R = 12−1 + 2π−1R−2 < 1 , R > 1 . (8.2)

We set dµR(x) = KR(x) dx, mR = K̂R = µ̂R. It follows from (5.19) that
mR satisfies (7.5.H∞) with constants independent of n. We get∣∣∣∣ dj

dtj m
R(tθ)

∣∣∣∣ 6 δj,c

1 + π |t|/
√

3
6

δj,c
1 + |t| , θ ∈ Sn−1 , t ∈ R , j > 0 . (8.3)
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We shall obtain the desired estimate (A) for p2 by interpolating between p1
and 2, where 1 < p1 < p2 < p < 2. As we have said previously, we will show
that for every δ > 0, we have for all R = 2j > 1 that∥∥ sup

16t62
|KR

(t) ∗ f |
∥∥
p1
6 κδR

δ ‖f‖p1 , f ∈ Lp1(Rn) , (B)

and on the other hand, we prove that for every f ∈ L2(Rn) we have∥∥sup
t>0
|(KR −K2R)(t) ∗ f |

∥∥
2 6 κR

−1/2 ‖f‖2 ,
∥∥sup
t>0
|K1

(t) ∗ f |
∥∥

2

6 κ‖f‖2 .
(C)

The second inequality in (C) is the log-concave version of Bourgain’s L2 the-
orem, Theorem 5.2. One can obtain the first part of (C) by the ΓB(K)
criterion, Lemma 5.14. We have indeed, uniformly in θ ∈ Sn−1 and in the
dimension n (observe that Ĝ has a radial expression independent of n), that

|Ĝ(uθ)− Ĝ(2uθ)| . u2 ∧ e−4πu2
6 |u| ∧ |u|−1 and

|θ · ∇Ĝ(uθ)− θ · ∇Ĝ(2uθ)| . |u|(1 ∧ e−4πu2
) 6 1 ∧ |u|−1 , u ∈ R .

We apply Lemma 6.18 with K1 = KQ, K2 = G, replacing 2|k| with R and
obtaining ∑

j∈Z

(
αj(KR) +

√
αj(KR)βj(KR)

)
. R−1/2 .

If δ > 0 is sufficiently small we deduce by interpolation between (B)
and (C) that there exists δ1 > 0 such that∥∥ sup

16t62
|(KR

(t) −K
2R
(t) ) ∗ f |

∥∥
p2
6 κδR

−δ1 ‖f‖p2

and we get Property (A) by summing on the values R = 2j for all integers
j > 0. We fix thus a value δ∗ = δ∗(p, p2, p1) > 0 of δ, sufficiently small for
implying that δ1 > 0 whenever 0 < δ 6 δ∗. Precisely, if λ ∈ (0, 1) is such
that

1
p2

= 1− λ
p1

+ λ

2 ,

we need to choose δ∗ > 0 so that −δ1 = (1−λ)δ∗−λ/2 < 0, i.e., we select a
value δ∗ = δ∗(p, p2, p1) such that 0 < δ∗(p, p2, p1) < (p2 − p1)/(2p1 − p2p1).

For obtaining (B) we shall use the conclusion (2) of Carbery’s Proposi-
tion 6.14 and also apply Müller’s analysis. We need to show that for some
α ∈ (1/p1, 1) and 0 < δ 6 δ∗, we have

2‖mR‖p1→p1 + ‖(ξ · ∇)αmR(ξ)‖p1→p1 6 κR
δ (8.4)

for all R = 2j , j ∈ N. There is no problem for mR, which corresponds to
convolution with a probability density, and for the other term we shall apply
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Lemma 7.12 with 1 < p0 < p1 < 2. For technical reasons, the value p0, close
to 1, is chosen in a way that its conjugate q0 is an integer of the form 2ν ,
with ν integer > 0. If we can prove that for a fixed δ > 0 and for every
R = 2j , we have ∥∥|ξ|mR(ξ)

∥∥
p0→p0

6 κδR
δ , (8.5)

it follows from Lemma 7.12 that ‖(ξ·∇)αmR(ξ)‖p1→p1 6 κ
′
δ (1+Rδβ) 6 κ′′δRδ

for some β ∈ (0, 1), uniformly in the dimension n according to (8.3). The
conclusion (8.4) is then obtained.

By exploiting the inequality (2.22) on Riesz transforms, Müller’s plan
went on with a reduction to estimating the expression

∥∥∇µR ∗ g∥∥
q0

when
g ∈ Lq0(Rn) and 1/q0 + 1/p0 = 1. We must show that for every R = 2j we
have ∥∥∇µR ∗ g∥∥

q0
6 κp0,δR

δ‖g‖q0 ,

yielding (8.5) by Lemma 7.8. We use (8.1) and (7.3), which give

V (KR) = V (µQ ∗G(1/R)) 6 V (G(1/R)) = R . (8.6)

By Lemma 7.9, this bound for the mass of θ · ∇µR when θ ∈ Sn−1 implies
that ‖∇µR ∗ g‖L∞(Rn) 6 R‖g‖L∞(Rn). Then, by interpolation with the L2

case given by (C), we can find when 2 < q < +∞ a bound in Lq(Rn) of the
form

‖∇(µR − µ2R) ∗ g‖Lq(Rn) 6 κ(R−1/2)2/qR1−2/q‖g‖Lq(Rn)

= κR1−3/q‖g‖Lq(Rn) .

This interpolation (L∞, L2) does not give the desired bound Rδ in Lq0(Rn),
with δ small, when q0 > 3. However, it does give the right ingredient for the
Bourgain–Carbery Theorem 6.2 when 3/2 < p 6 2, since 1− 3/q < 0 in this
case.

For going farther than Müller, one has to prove inequalities that allow
one to work in Lr(Rn), 2 < r < +∞, instead of L∞(Rn). This is done with
the help of certain analytic semi-groups (Section 8.2), as well as a ad hoc
method a la Bourgain, which he says inspired from martingale techniques
(Section 8.3). Theorem 8.1 will be obtained once we have the following propo-
sition, which we can apply with a value δ 6 δ∗(p, p2, p1). We then conclude
by the preceding discussion.

Proposition 8.2. — For every δ > 0 and q0 = 2ν , with ν an integer
> 1, there exists a constant κ(q0, δ) such that for every n > 1 and R = 2k,
k = 0, 1, . . . , one has

‖∇µR ∗ g‖Lq0 (Rn) 6 κ(q0, δ)Rδ‖g‖Lq0 (Rn) , g ∈ Lq0(Rn) .
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We shall keep δ > 0, p0 = q0/(q0 − 1) and R = 2k0 fixed in the rest of
Section 8.

8.1.1. A priori estimate

The proof will play with an a priori estimate∥∥∇µR ∗ g∥∥
Lq0 (Rn) 6 B(q0, R, n)‖g‖Lq0 (Rn) , g ∈ Lq0(Rn) , (8.7)

and will aim to find a relation of the form B(q0, R, n) 6 c(q0, δ)Rδ +
εB(q0, R, n) for some ε < 1 and for R larger than some R1, for example
with ε = 1/2, thus reaching the conclusion that B(q0, R, n) 6 2c(q0, δ)Rδ
when R > R1. We know that B(q0, R, n) is finite for every dimension n, for
instance as a consequence of the trivial bound ‖∇µR‖1 6 ‖∇GR‖1 6 κ

√
nR.

We must notice that the a priori estimate in Rn yields the same estimate
for the dimensions ` 6 n, with a smaller or equal constant, precisely, we must
know that B(q0, R, `) 6 B(q0, R, n) when 1 6 ` 6 n. Indeed, the forthcoming
proof in dimension n will bring the question down to dimensions ` 6 n, where
we shall use the a priori bound by B(q0, R, `). For justifying the validity of
the same bound when ` 6 n, apply the case n to a function g of the form
g1 ⊗ ϕ, namely

g(x1, x2) = g1(x1)ϕ(x2) ,
where x1 is in R`, g1 ∈ Lq0(R`), x2 ∈ Rn−` and where ϕ is a fixed C∞

function with compact support in Rn−`, not identically zero. The indicator
of the cube and the Gaussian density have a product structure, which allows
us to write
KR(x1, x2) = KR

1 (x1)ψ(x2) , dµR(x1, x2) = dµR1 (x1)⊗ (ψ(x2) dx2) ,
where K1, KR

1 and dµR1 (x1) = KR
1 (x1) dx1 correspond to the cube in R`,

and ψ is a probability density on Rn−` corresponding to the cube in Rn−`.
We also have

µR ∗ g = (µR1 ∗ g1)⊗ (ψ ∗ ϕ) .
The gradient of µR ∗g contains (∇µR1 ∗g1)⊗ (ψ ∗ϕ) in its first ` coordinates,
thus∥∥∇µR1 ∗ g1

∥∥
Lq0 (R`)

∥∥ψ ∗ ϕ∥∥
Lq0 (Rn−`) =

∥∥(∇µR1 ∗ g1)⊗ (ψ ∗ ϕ)
∥∥
Lq0 (Rn)

6
∥∥∇µR ∗ g∥∥

Lq0 (Rn) 6 B(q0, R, n)‖g‖Lq0 (Rn)

= B(q0, R, n)‖g1‖Lq0 (R`)‖ϕ‖Lq0 (Rn−`) .

This yields B(q0, R, `) 6 B(q0, R, n)‖ϕ‖Lq0 (Rn−`)
/∥∥ψ ∗ ϕ∥∥

Lq0 (Rn−`) and by
spreading ϕ, replacing it with ϕk : x 7→ ϕ(x/k), k → +∞, one makes the
quotient of norms tend to 1, thus proving that B(q0, R, `) 6 B(q0, R, n).
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8.2. First reduction

One applies a result of Pisier [62] about holomorphic semi-groups. If T =
(Tj)nj=1 is a family of bounded linear operators on Lq(X,Σ, µ), 1 6 q 6 +∞,
we introduce for every subset J ⊂ N = {1, . . . , n} the operators

TJ =
∏
j∈J

Tj , T∼J = TN\J =
∏
j /∈J

Tj ,

and T∼j will be a short form for T∼{j}, 1 6 j 6 n. We found the nota-
tion T∼J convenient, but it might be ambiguous, since it depends on the
ambient set N .

Given commuting projectors (Ej)nj=1, one can consider the semi-group

Tt =
n∏
j=1

(
Ej + e−t(I − Ej)

)
, t > 0 ,

where I denotes the identity operator. If we set z = e−t and expand the
product, we can arrange it according to powers of z, displaying in this way
homogeneous parts zkHk of degree k. We see that

Tt =
n∑
k=0

zk
( ∑
|J|=k

E∼J(I−E)J
)

=
n∑
k=0

zkHk =
n∑
k=0

e−kt Hk .

Letting Σk denote the family of subsets J ⊂ N of cardinality k, we have

Hk =
∑
J∈Σk

E∼J(I−E)J , k = 0, . . . , n , and
n∑
k=0

Hk = T0 = I . (8.8)

Proposition 8.3 (after Pisier [62]). — Let (Ej)nj=1 be a family of com-
muting conditional expectation projectors on Lq(X,Σ, µ), 1 < q < +∞, and
consider the semi-group

Pt =
n∏
j=1

(
e−t I + (1− e−t)Ej

)
=

n∏
j=1

(
Ej + e−t(I − Ej)

)
, t > 0 .

This semi-group is analytic on Lq(X,Σ, µ), 1 < q < +∞, with an extension
(Pz)z∈Ωϕq to a sector Ωϕq = {z = r e iθ : r > 0, |θ| < ϕq} in C, where
ϕq > 0 depends on q only. The extension is bounded uniformly in q on
every compact subset of Ωϕq . There exists hq > 1 independent of n such
that whenever 0 6 k 6 n, the homogeneous part Hk in (8.8) is bounded on
Lq(X,Σ, µ) by (hq)k.

That hq > 1 can be seen on any example Ptf = E1f + e−t(f − E1f)
with n = 1 and E1 6= I. Then H1 is the projector I − E1 6= 0, hence
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hq > ‖H1‖q→q > 1. If (Ej,s)nj=1, s ∈ [0, 1], is a family of such conditional
expectations, where Ej,s and Ek,t commute for all j 6= k and all s, t ∈ [0, 1],
and if we set for example

Uj =
∫ 1

0
Ej,s ds , j = 1, . . . , n ,

then we see that

Qt =
n∏
j=1

(
e−t I + (1− e−t)Uj

)
=
∫

[0,1]n
Pt,s1,...,sn ds1 . . . dsn ,

where each Pt,s1,...,sn =
∏n
j=1
(
e−t I+(1−e−t)Ej,sj

)
is of “Pisier type”. Also,

the corresponding homogeneous parts are of the form

H̃k =
∑
J∈Σk

U∼J(I−U)J

=
∫

[0,1]n

∑
J∈Σk

(∏
i/∈J

Ei,si

)(∏
j∈J

(I − Ej,sj )
)

ds1ds2 . . . dsn

that are averages of terms Hk(s1, . . . , sn) bounded by hkq according to Propo-
sition 8.3. The result of Proposition 8.3 generalizes thus to families such as
(Uj)nj=1.

We shall apply Proposition 8.3 to operators (Ej)nj=1 of conditional expec-
tation on Lq(Rn), where each Ej is acting in the xj variable and 1 6 j 6 n.
For one variable and s0 ∈ R fixed, we associate to a locally integrable func-
tion f on R its averages on length one intervals Ir = [s0 + r, s0 + r + 1),
r ∈ Z, defining Es0 by

(Es0f)(v) =
∑
r∈Z

(∫
Ir

f(s) ds
)

1Ir (v) , v ∈ R .

This operator is a conditional expectation, as considered in Remark 1.2. We
define operators Ej,s0 , j = 1, . . . , n, on L1

loc(Rn) by the analogous formula,
acting on the xj variable. When j = 1 for example, we let

(E1,s0f)(x1, x2, . . . , xn) =
∑
r∈Z

(∫
Ir

f(s, x2, . . . , xn) ds
)

1Ir (x1) .

Averaging on values of s0, one can replace the Ej s by convolution operators
with probability densities χ on R of the form

χ(x) =
∫
R

1[s,s+1](x) dν(s) , x ∈ R , (8.9)

where ν is a probability measure on the line. We see that χ(x) = F (x) −
F (x − 1), with F (x) = ν[(−∞, x)] non-decreasing, F (−∞) = 0 and
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F (+∞) = 1. One can also proceed to changes of scale. Summarizing, we
have the lemma that follows.

Lemma 8.4 (Bourgain [13], Lemma 5). — Let χ be a compactly supported
probability density on R of the form (8.9). Denote by Tj the convolution
operator with χ(tj) in the xj variable, tj > 0, j = 1, . . . , n. For 0 6 k 6 n,
the norm of the operator

Hk :=
∑
S∈Σk

T∼S(I−T)S

on Lq(Rn) is bounded by hkq , with 1 < q < +∞ and hq from Proposition 8.3.

In what follows, we denote by Tj , j = 1, . . . , n, the convolution in the
xj variable on Lq(Rn) by η(w0)(xj), where w0 = R−δ/2 will stay fixed and
where

η(x) = (1−|x|)+ =
∫ 1/2

−1/2
1[−1/2+s,1/2+s](x) ds = (1[−1/2,1/2]∗1[−1/2,1/2])(x) .

Since η is a convolution square, η̂ is real and nonnegative. We have

η̂(t) =
(

sin(πt)
πt

)2
, and η̂ ′′(t) = −4π2

∫
R
s2(1− |s|)+ cos(2πst) ds

for every t ∈ R, thus

|η̂ ′′(t)| 6 8π2
∫ 1

0
s2(1− s) ds = 8π2

12 < 8 .

By the Taylor formula we get

0 6 1− η̂(t) 6 (4t2) ∧ 1 . (8.10)

For every subset S ⊂ N := {1, . . . , n} let us set

ΓS = T∼S (I−T)S . (8.11)

The homogeneous parts (Hk) in Qt =
∏n
j=1
(
e−t I + (1 − e−t)Tj

)
have the

form

Hk =
∑
S∈Σk

ΓS , 0 6 k 6 n , and
n∑
k=0

Hk = I .

In particular, H0 = Γ∅ = TN =
∏n
j=1 Tj has norm 6 1 on every space

Lq(Rn), for 1 6 q 6 +∞, since H0 is the convolution with the product
probability density

∏n
j=1 η(w0)(xj). When 1 < q < +∞ and 1 6 k 6 n, we

have ‖Hk‖q→q 6 hkq by Proposition 8.3. It is convenient to set Hk = 0 below
when k > n.
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To every given function g in Lq(Rn), we shall apply a decomposition
of the form g = H0g + · · · + HM−1g + h, and consider the corresponding
expression

∇µR ∗ g = ∇µR ∗H0g + · · ·+∇µR ∗HM−1g +∇µR ∗ h , (8.12)

where M > 1 will be chosen as a function of the already fixed p0 and δ > 0.
We have to estimate in Lq0(Rn) the successive terms in (8.12). The func-
tion h is considered as a small rest, the mapping g 7→ ∇µR∗h will be handled
in L2(Rn) by a Fourier estimate, and in some Lq1(Rn), q1 > q0, as a con-
sequence of Proposition 8.3. We choose M large enough for deducing from
‖∇µR ∗ h‖2 6 κR1−δM/2 ‖g‖2 and ‖∇µR ∗ h‖q1 6 κR‖g‖q1 that one has by
interpolation

‖∇µR ∗ h‖q0 6 κ(q0, δ)‖g‖q0 , (8.13)

which is just perfect in the direction of (8.7). Recall that µRj denotes the
jth partial derivative ∂jµR = (∂jµQ) ∗ GR of µR, so that |∇µR ∗ h|2 =∑n
j=1 |µRj ∗ h|2.

We factor the mapping g 7→ ∇µR ∗ h into U
KR

: h 7→ ∇µR ∗ h and
A : g 7→ h, i.e., A = I − H0 − · · · − HM−1 =

∑
k>M Hk. We look for

estimates in L2 and Lq, q0 < q < +∞. For U
KR

we use Lemma 7.11 and get
by (8.2) and (8.6) that

‖U
KR
‖q→q 6 21/q σ

−2/q
R V (KR)1−2/q 6 (24)1/qR1−2/q < 5R

since q > 2. On the other hand, by Lemma 8.4, the mapping A : g 7→ h is
bounded in Lq(Rn) by 1 +

∑M−1
k=0 hkq 6 (M + 1)hM−1

q . It follows that

‖∇µR ∗ h‖q = ‖U
KR

h‖q 6 5R‖h‖q 6 5R (M + 1)hM−1
q ‖g‖q . (8.14)

This is also valid when q = 2, but the point is that we will then get
a much better bound by factoring now g 7→ ∇µR ∗ h as U

GR
◦ B, with

U
GR

: f 7→ ∇GR ∗ f and B : g 7→ µQ ∗Ag = µQ ∗ h. We begin by estimating

‖µQ ∗ h‖2 =
∥∥∥∥µQ ∗ ( ∑

k>M

Hk

)
g

∥∥∥∥
2

=
∥∥∥∥µQ ∗ ( ∑

|S|>M

ΓS
)
g

∥∥∥∥
2
.

One needs to control the L∞(Rn) norm of the function ξ 7→ L(ξ), where L is
the multiplier associated to the mapping B. It is the aim of the next lemma.
One sees that

L(ξ) :=
( n∏
j=1

sin(πξj)
πξj

)( ∑
|S|>M

∏
j /∈S

η̂(w0ξj)
∏
j∈S

(
1− η̂(w0ξj)

))
.
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Lemma 8.5 (see [13, Equations (2.9), (2.11)]). — For 0 6 u 6 1/4 and
every ξ ∈ Rn, one has that∣∣∣∣( n∏

j=1

sin(πξj)
πξj

)( ∑
|S|>M

∏
j /∈S

η̂(uξj)
∏
j∈S

(
1− η̂(uξj)

))∣∣∣∣ 6 uM .

Proof. — We know from (8.10) that 0 6 η̂(t) 6 1 and 1− η̂(t) 6 (4t2)∧1.
We introduce v = 1/u > 4 and begin by checking that for every t > 0, we
have

X(t) :=
∣∣∣∣ sin(πt)

πt

∣∣∣∣(1 + v [(4u2t2) ∧ 1]
)
6 1 .

Consider first the case 0 6 t 6 1/(2u). One has then 4u2t2 6 1 and it follows
that 1 + v[(4u2t2)∧ 1] = 1 + 4ut2. If in addition 0 6 t 6 1, then, for example
by the Euler product formula (3.2.E), we have

∣∣sin(πt)
/
πt
∣∣ 6 1 − t2, and

since 4u 6 1 by assumption, we get

X(t) 6 (1− t2)(1 + 4ut2) 6 (1− t2)(1 + t2) 6 1 .

When 1 < t 6 1/(2u), we have∣∣∣∣ sin(πt)
πt

∣∣∣∣(1 + 4ut2
)
6

1 + 4ut2

πt
= 1
π

(
1/t+ 4ut

)
6

3
π
< 1 .

In the second case, when 2ut > 1, we can write

X(t) 6 1 + v

πt
6

2u(1 + v)
π

6
1/2 + 2

π
< 1 .

Expanding the product
∏n
j=1X(ξj) and since X is even, one sees that

1 >
n∏
j=1

X(ξj) =
n∏
j=1

∣∣∣∣ sin(πξj)
πξj

∣∣∣∣(1 + v[(4u2ξ2
j ) ∧ 1]

)
>

n∏
j=1

∣∣∣∣ sin(πξj)
πξj

∣∣∣∣(η̂(uξj) + v
(
1− η̂(uξj)

))

> vM
∣∣∣∣( n∏

j=1

sin(πξj)
πξj

)( ∑
|S|>M

∏
j /∈S

η̂(uξj)
∏
j∈S

(
1− η̂(uξj)

))∣∣∣∣ . �

By Lemma 7.11, we have that ‖U
GR
‖2→2 6

√
πR < 2R, because the

variance of GR is 2π−1R−2. Let us define R0 by Rδ/20 = 4. If R > R0, then
w0 = R−δ/2 6 1/4, we obtain from Lemma 8.5 with u = w0 the final control

‖∇µR ∗ h‖2 = ‖U
GR

(µQ ∗ h)‖2 6 2R‖µQ ∗ h‖2 6 2RR−δM/2‖g‖2 .

We use now (8.14) with for example q = q1 = 2q0/p0 > q0. Letting θ = 1/p0,
we have (1−θ)/2+θ/q1 = 1/q0 and we see by interpolation for g 7→ ∇µR ∗h
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that

‖∇µR ∗ h‖q0 6
(
2R−δM/2)1/q0R(5(M + 1)hM−1

q1

)1/p0 ‖g‖q0 .

We select M = M(δ) = d2q0/δe, so that δM/(2q0) > 1. When R > R0 we
get

‖∇µR ∗ h‖q0 6 κq0,δ‖g‖q0 with κq0,δ 6 5(2 + 2q0/δ)1/p0h
2q0/(δp0)
2q0/p0

. (8.15)

In what follows we assume that R > R0, hence Rδ > 16. In the conclusion
section, we shall need the following bound for a Fourier transform.

Lemma 8.6. — For every r ∈ R, ` > 1 and all ξ = (ξ1, . . . , ξ`) ∈ R`,
one has that

(1− e−r
2|ξ|2)

∏̀
j=1

η̂(ξj) 6 r2 .

Proof. — We observe first that

η̂(t) =
(

sin(πt)
πt

)2
6

1
1 + t2

.

This is clear when |t| > 1 because η̂(t) 6 (πt)−2 and 1 + t2 < π2t2 in this
case. When |t| 6 1 we have η̂(t) 6 | sin(πt)|/|πt| 6 (1 − t2) 6 (1 + t2)−1

by (3.2.E). It suffices thus to bound for x ∈ R` the expression

F (x) = (1− e−r
2|x|2)

∏̀
j=1

1
1 + x2

j

> 0 .

The function F tends to 0 at infinity, we have at any maximum x 6= 0 that

2r2xj e−r2|x|2

1− e−r2|x|2 = 2xj
1 + x2

j

, j = 1, . . . , ` .

The nonzero coordinates of x have the same square x2
j =: y > 0, and if k

denotes their cardinality, we have 0 < k 6 ` and |x|2 = ky. It follows that

kr2y 6 ekr
2y −1 = r2(1 + y) 6 r2(1 + y)k .

Finally, we have F (x) = (1− e−kr2y)(1 + y)−k 6 kr2y(1 + y)−k 6 r2. �

8.2.1. Decoupling

We have to analyze each of the expressions ∇µR ∗ Hkg in (8.12), for
0 6 k < M . When 1 6 k < M , we handle this by a decoupling argument
that will allow us to essentially reduce to the cases where k = 0, 1, but
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in a dimension ` 6 n. Before proceeding by a Bourgainian technique of
“selectors”, we split∣∣∇µR ∗Hkg

∣∣ =
( n∑
j=1
|µRj ∗Hkg|2

)1/2
=
( n∑
j=1

∣∣∣∣µRj ∗ ( ∑
S∈Σk

ΓSg
)∣∣∣∣2)1/2

into two. For each j in {1, . . . , n}, let Σjk and Σ∼jk denote respectively the
family of subsets S of {1, . . . , n} with cardinality |S| = k containing j, resp.
such that j /∈ S. Then

∣∣∇µR ∗ Hkg
∣∣ is bounded by the sum of the two

expressions

Ek(R,n, g) :=
( n∑
j=1

∣∣∣∣µRj ∗ ( ∑
S∈Σ∼j

k

ΓSg
)∣∣∣∣2)1/2

(8.16a)

and

Fk(R,n, g) :=
( n∑
j=1

∣∣∣∣µRj ∗ ( ∑
S∈Σj

k

ΓSg
)∣∣∣∣2)1/2

. (8.16b)

Assume that 1 6 k < M = M(δ). Let (γi)16i6n be independent {0, 1}-
valued random variables with mean 1/(k + 1) on some probability space
(Ω,F , P ). For each j in {1, . . . , n} and S ∈ Σ∼jk , let σS,j = γj

∏
i∈S(1− γi).

We have that

EσS,j = 1
k + 1

(
1− 1

k + 1

)k
= kk

(k + 1)k+1 =: ek , j = 1, . . . , n ,

and e−1
k 6 e(k+ 1) 6 eM because e1/k > 1 + 1/k. By convexity, we see that

ekEk(R,n, g) =
( n∑
j=1

∣∣∣∣µRj ∗ ( ∑
S∈Σ∼j

k

[
Eω σS,j(ω)

]
ΓSg

)∣∣∣∣2)1/2

6 Eω
[( n∑

j=1

∣∣∣∣µRj ∗ ( ∑
S∈Σ∼j

k

σS,j(ω)ΓSg
)∣∣∣∣2)1/2]

.

Let q > 1 be given. It follows that for some ω0 ∈ Ω, we have∥∥Ek(R,n, g)
∥∥
Lq(Rn)

6 eM
∥∥∥∥( n∑

j=1

∣∣∣∣µRj ∗( ∑
S∈Σ∼j

k

σS,j(ω0)ΓSg
)∣∣∣∣2)1/2∥∥∥∥

Lq(Rn)
. (8.17)

Let J0 = {j : γj(ω0) = 1}. Then σS,j(ω0) = 0 whenever S meets J0 or
j /∈ J0. The Lq(Rn) norm at the right-hand side of (8.17) is therefore the
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norm of

E(J0, g) :=
(∑
j∈J0

∣∣∣∣µRj ∗ ( ∑
S∈Σ∼J0

k

ΓSg
)∣∣∣∣2)1/2

,

where Σ∼J0
k denotes the family of subsets S of {1, . . . , n} such that |S| = k

and that are disjoint from J0. Let us introduce the operator

U =
∑

S∈Σ∼J0
k

T∼(J0∪S) (I−T)S and the function Ψ = Ug

on Rn. We see that TJ0U =
∑
S∈Σ∼J0

k

ΓS , and the operator U acts on
the variables not in J0 as does the kth homogeneous part Hk relative to
R{1,...,n}\J0 . Consequently, applying Proposition 8.3 in the variables x∼J0 =
(xi)i/∈J0 , we get

‖Ψ
xJ0
‖
Lq(R∼J0 )

6 hkq ‖gxJ0
‖
Lq(R∼J0 )

(8.18)

for every fixed xJ0 = (xi)i∈J0 , where fxJ
(x∼J) := f(xJ ,x∼J) = f(x), and

we see that E(J0, g) =
(∑

j∈J0

∣∣µRj ∗ TJ0Ψ
∣∣2)1/2. Assume that there exists

b0(q0, R, n) such that for every subset J of {1, . . . , n} and f ∈ Lq0(RJ) we
have∥∥∥∥(∑

j∈J

∣∣∣∣(µQJ )Rj ∗
(∏
i∈J

Ti

)
f

∣∣∣∣2)1/2∥∥∥∥
Lq0 (RJ )

6 b0(q0, R, n)‖f‖Lq0 (RJ ) , (8.19)

with µQJ uniform on QJ := [−1/2, 1/2]J in RJ . It follows from (8.18), by
integrating in the J0 variables, that

‖E(J0, g)‖Lq0 (Rn) 6 b0(q0, R, n)hkq ‖g‖Lq0 (Rn) .

For Fk(R,n, g) we proceed similarly, writing each S ∈ Σjk as S = {j}∪S1,
with |S1| = k− 1, and using now σS1,j = γj

∏
i∈S1

(1− γi) for which we have
EσS1,j = kk−1(k + 1)−k > 1/(e k) > 1/(eM). We obtain for some ω0 ∈ Ω
that∥∥Fk(R,n, g)

∥∥
Lq(Rn)6 eM

∥∥∥∥( n∑
j=1

∣∣∣∣µRj ∗( ∑
S∈Σj

k

σS1,j(ω0)ΓSg
)∣∣∣∣2)1/2∥∥∥∥

Lq(Rn)
.

Considering again J0 = {j : γj(ω0) = 1}, we get instead of E(J0, g) the
expression

F (J0, g) =
(∑
j∈J0

∣∣∣∣µRj ∗ ( ∑
S1∈Σ∼J0

k−1

Γ{j}∪S1g

)∣∣∣∣2)1/2
.
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When k = 1, we have S1 = ∅, S = {j} and σS1,j = γj , the argument remains
correct but becomes “inactive”. Let now Ψ =

∑
S1∈Σ∼J0

k−1
T∼(J0∪S1)(I−T)S1g,

satisfying by Proposition 8.3 applied to Lq(R∼J0) the inequality
‖Ψ

xJ0
‖
Lq(R∼J0 )

6 hk−1
q ‖g

xJ0
‖
Lq(R∼J0 )

.

For each j ∈ J0, let Bj = (I − Tj)TJ0\{j}. Then F (J0, g) =
(∑

j∈J0
|µRj ∗

BjΨ|2
)1/2. If there exists b1(q0,R,n) such that for every subset J of {1, . . . , n}

and every function f ∈ Lq0(RJ) we have an inequality∥∥∥∥(∑
j∈J
|µRj ∗ (I − Tj)

( ∏
i∈J,i 6=j

Ti

)
f |2
)1/2∥∥∥∥

Lq0 (RJ )

6 b1(q0, R, n)‖f‖Lq0 (RJ ) , (8.20)

it implies that F (J0, g) may be bounded by b1(q0, R, n)hk−1
q ‖g‖Lq0 (Rn) in

Lq0(Rn).

In view of (8.19) and (8.20), all we need to do in order to control in
Lq0(Rn) the expressions ∇µR ∗Hkg, when 1 6 k < M , is to establish in all
lower dimensions ` 6 n and for every function f ∈ Lq0(R`) the inequalities

∥∥∇µR ∗H0f
∥∥
Lq0 (R`) =

∥∥∥∥(∑̀
j=1
|µRj ∗H0f |2

)1/2∥∥∥∥
Lq0 (R`)

6 b0(q0, R, n)‖f‖Lq0 (R`) (8.21)
and∥∥F(R, `, f)

∥∥
Lq0 (R`) :=

∥∥∥∥(∑̀
j=1
|µRj ∗Γjf |2

)1/2∥∥∥∥
Lq0 (R`)

6 b1(q0, R, n)‖f‖Lq0 (R`) (8.22)

for suitable b0(q0,R,n) and b1(q0,R,n), with Γj :=Γ{j}=(I−Tj)T{1,...,`}\{j}.
Note that (8.21) controls the so far neglected term k = 0 in (8.12). From
(8.13) and the preceding, this will permit us to estimate∥∥∇µR ∗ g∥∥

Lq0 (Rn) =
∥∥∥∥( n∑

j=1
|µRj ∗ g|2

)1/2∥∥∥∥
Lq0 (Rn)

6 C(q0, R, n)‖g‖Lq0 (Rn) .

Recalling (8.15), (8.17) and that M = M(δ) depends on the fixed value
δ > 0, we have when R > R0 that

C(q0, R, n) 6 κq0,δ + eM(δ)2hM(δ)
q0

(
b0(q0, R, n) + b1(q0, R, n)

)
, (8.23)

where the three terms correspond to the decompositions (8.12) and (8.16).
By definition, it will follow that the a priori bound B(q0, R, n) is less than
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C(q0, R, n). Bounds on b0(q0, R, n) and b1(q0, R, n) will be obtained below,
and will use the other quantities B(q0, R, `) 6 B(q0, R, n), with ` 6 n. We
shall get a relation

B(q0, R, n) 6 c(q0, δ)R4δ +B(q0, R, n)/2 , n > 1 ,

for R larger than some R1 > R0, and we shall be able to conclude.

8.3. Second reduction

Let τ > 0 be given. We say that a nonnegative function f defined on R
is τ -stable with constant C if whenever |t| 6 τ , we have

f(s+ t) 6 Cf(s) , s ∈ R .

One sees that C > 1. Evident properties are to be observed about products,
integrals, translations, convolutions. . . For example, if f1, . . . , fk are τ -stable
with respective constants Ci, then clearly the product f1 . . . fk is τ -stable
with constant C1 . . . Ck. If f is τ -stable with constant C and if g > 0, then
for |t| 6 τ we have

(f ∗ g)(s+ t) =
∫
R
f(s+ t− v)g(v) dv (8.24)

6 C
∫
R
f(s− v)g(v) dv = C (f ∗ g)(s) ,

hence f ∗ g is also τ -stable with constant C. Suppose that f, g, h are non-
negative on R, and that f is τ -stable with constant C. If |t| 6 τ then∫

R
f(s)g(s− t)h(t) ds > C−1

∫
R
f(s− t)g(s− t)h(t) ds

= C−1h(t)
(∫

R
f(v)g(v) dv

)
,

therefore∫
R
f(s)(g ∗ h)(s) ds > C−1

(∫
|t|6τ

h(t) dt
)(∫

R
f(v)g(v) dv

)
. (8.25)

We shall now move to R` with ` > 1. Let Φ be a probability density on R
that is τ -stable with constant C, for some τ > 0. This implies that Φ(s) > 0
for every s ∈ R. Let us define β > 1 by

β−1 =
∫
|t|6τ

Φ(t) dt ∈ (0, 1) . (8.26)
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We denote by Φj the operator on Lq(R`) of convolution with Φ in the variable
xj , for each j ∈ L = {1, . . . , `}. For instance, when j = 1 we let

(Φ1f)(x1, x2, . . . , x`) =
∫
R
f(x1 − s, x2, . . . , x`)Φ(s) ds .

For j = 2, . . . , ` we let the transposition τj = (1j) act on x = (x1, . . . , x`) in
R` by τj x = (xτj(i))`i=1 and on functions by τj(g) = g ◦ τj . Letting τ1 = I,
we have

Φjf = τj
(
Φ1(f ◦ τj)

)
, j = 1, . . . , n . (8.27)

For every subset J ⊂ L we set ΦJ =
∏
k∈J Φk, and Φ∼j = ΦL\{j} =∏

k 6=j Φk. We understand that Φ∅ = I. Each ΦJ is an operator acting on
Lq(R`) with norm equal to 1, when 1 6 q 6 +∞. The next Bourgain’s
lemma is not too difficult, but the details are long and painful to write down
precisely. We have chosen to break it into two parts, the first one containing
the serious work.

Lemma 8.7 (a first part of Bourgain’s [13, Lemma 7]). — Let Φ be a
probability density on R that is τ -stable with constant C, let β > 1 be defined
by (8.26). Let ` be an integer > 1, L = {1, . . . , `} and define Φj by (8.27), for
j = 1, . . . , `. For all integers q > 1, for all nonnegative integrable functions
(fj)`j=1 on R`, one has∥∥∑

j∈L
Φ∼jfj

∥∥
q
6 βCq−1∥∥∑

j∈L
ΦLfj

∥∥
q

+
√
q − 1

∥∥∑
j∈L

Φ∼jf2
j

∥∥1/2
q/2 .

Proof. — The fundamental remark compares∫
R

(Φ1g1)(s)(Φ1g2)(s) . . . (Φ1gk−1)(s)gk(s) ds

and ∫
R
(Φ1g1)(s)(Φ1g2)(s) . . . (Φ1gk−1)(s)(Φ1gk)(s) ds ,

when k > 2 and when the functions gj s are nonnegative on R. We know
by (8.24) that Φ1g = Φ∗g is τ -stable with constant C for every g nonnegative,
so the product f = (Φ1g1)(Φ1g2) . . . (Φ1gk−1) is τ -stable with constant Ck−1.
Applying (8.25) and the definition of β with f , g = gk, h = Φ and g ∗ h =
Φ1gk, we get∫

R
(Φ1g1)(s)(Φ1g2)(s) . . . (Φ1gk−1)(s)gk(s) ds

6 Ck−1β

∫
R

(Φ1g1)(s)(Φ1g2)(s) . . . (Φ1gk−1)(s)(Φ1gk)(s) ds . (8.28)
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The case q = 1 of the lemma follows from β > 1 and
∫
R` g ∗ f =

∫
R` f for

every probability density g. For the simplest non-trivial case, when q = 2,
we write (∑

j∈L
Φ∼jfj

)2
=
∑
i 6=j

(Φ∼ifi)(Φ∼jfj) +
∑
j∈L

(Φ∼jfj)2 .

When j 6= i, the function Φ∼ifi = ΦL\{i}fi = ΦjΦL\{i,j}fi is of the form
Φjg1, and letting g2 = Φ∼jfj we get by (8.28) for the xj variable that∫

R
(Φ∼ifi)(Φ∼jfj) dxj =

∫
R

(Φjg1)g2 dxj

6 Cβ
∫
R

(Φjg1)(Φjg2) dxj = Cβ

∫
R
(Φ∼ifi)(ΦLfj) dxj

because ΦjΦ∼j = ΦL. Integrating in the remaining variables, and since the
functions are nonnegative, we obtain∫

R`

∑
i 6=j

(Φ∼ifi)(Φ∼jfj) dx 6 Cβ
∫
R`

∑
i 6=j

(Φ∼ifi)(ΦLfj) dx

6 Cβ
∫
R`

(∑
i∈L

Φ∼ifi
)(∑

j∈L
ΦLfj

)
dx 6 Cβ

∥∥∥∥∑
j∈L

Φ∼jfj
∥∥∥∥

2

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥

2
.

When j = i, we use (Φ∼j ∗ g)2 6 Φ∼j ∗ g2 and get∫
R`

∑
j∈L

(Φ∼jfj)2 dx 6
∫
R`

∑
j∈L

Φ∼jf2
j dx =: B .

It follows that E :=
∥∥∑

j∈L Φ∼jfj
∥∥

2 satisfies an inequality E2 6 AE + B,
where we let A := Cβ

∥∥∑
j∈L ΦLfj

∥∥
2. This yields E 6 A+B1/2 and we have∥∥∥∥∑

j∈L
Φ∼jfj

∥∥∥∥
2
6 Cβ

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥

2
+
∥∥∥∥∑
j∈L

Φ∼jf2
j

∥∥∥∥1/2

1
.

This is Lemma 8.7 when q = 2. In general, when q > 3, we expand∫
R`

(∑
j∈L

Φ∼jfj
)q

dx =
∑

j1,j2,...,jq∈L

∫
R`

(Φ∼j1fj1) . . . (Φ∼jqfjq ) dx . (8.29)

Consider a multi-index (j1, j2, . . . , jq) ∈ {1, . . . , `}q = Lq and suppose that
jq is not equal to any of j1, . . . , jq−1. Then we can write Φ∼jkfjk = Φjqgk for
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each k < q, so as before, by (8.28) applied in the xjq variable, we get that∫
R`

(Φ∼j1fj1) . . . (Φ∼jqfjq ) dx

6 Cq−1β

∫
R`

(Φ∼j1fj1) . . . (Φ∼jq−1fjq−1)(ΦLfjq ) dx .

Let us denote by
∑

1 the part of the summation at the right-hand side
of (8.29) that is extended to all j1, . . . , jq such that jq /∈ {j1, . . . , jq−1}. We
obtain that∑

1

∫
R`

(Φ∼j1fj1) . . . (Φ∼jqfjq ) dx

6 Cq−1β

∫
R`

(∑
j∈L

Φ∼jfj
)q−1(∑

j∈L
ΦLfj

)
dx

6 Cq−1β

∥∥∥∥∑
j∈L

Φ∼jfj
∥∥∥∥q−1

q

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥
q

.

The remaining sum
∑

2 is less than the sum of q− 1 terms corresponding to
which index jk, k = 1, . . . , q − 1 is equal to jq. Each of these q − 1 terms is
similar to ∑

j1,j2,...,jq−1∈L

∫
R`

(Φ∼j1fj1) . . . (Φ∼jq−2fjq−2)(Φ∼jq−1fjq−1)2 dx ,

which is bounded by∫
R`

(∑
j∈L

Φ∼jfj
)q−2(∑

j∈L
Φ∼jf2

j

)
6

∥∥∥∥∑
j∈L

Φ∼jfj
∥∥∥∥q−2

q

∥∥∥∥∑
j∈L

Φ∼jf2
j

∥∥∥∥
q/2

.

We obtain for Eq =
∥∥∥∥∑j∈L Φ∼jfj

∥∥∥∥q
q

a bound by Σ1 + Σ2 of the form

Eq 6 C
q−1β

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥
q

E1−1/q
q + (q − 1)

∥∥∥∥∑
j∈L

Φ∼jf2
j

∥∥∥∥
q/2
E1−2/q
q ,

which can be written also as

E2/q
q 6 Cq−1β

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥
q

E1/q
q + (q − 1)

∥∥∥∥∑
j∈L

Φ∼jf2
j

∥∥∥∥
q/2

.

This implies as before that∥∥∥∥∑
j∈L

Φ∼jfj
∥∥∥∥
q

= E1/q
q 6 Cq−1β

∥∥∥∥∑
j∈L

ΦLfj
∥∥∥∥
q

+
√
q − 1

∥∥∥∥∑
j∈L

Φ∼jf2
j

∥∥∥∥1/2

q/2
. �
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Lemma 8.8 ([13, Lemma 7]). — Let Φ be a probability density on R that
is τ -stable with constant C, and let β > 1 be defined by (8.26). Let ` > 1
be an integer, L = {1, . . . , `} and define Φj by (8.27), for j = 1, . . . , `. For
every integer ν > 1 and for all nonnegative integrable functions (fj)`j=1 on
R`, one has

κ−1
ν

∥∥∥∥∑
j∈L

Φ∼jfj
∥∥∥∥

2ν
6

ν∑
k=0

∥∥∑
j∈L

ΦLf2k
j

∥∥2−k

2ν−k 6 (ν + 1)
∥∥∥∥∑
j∈L

fj

∥∥∥∥
2ν
, (8.30)

with κν 6 max(2ν , βC2ν ). Each term
∥∥∑

j∈L ΦLf2k
j

∥∥2−k

2ν−k , for 0 6 k 6 ν,
satisfies

∥∥∑
j∈L

ΦLf2k
j

∥∥2−k

2ν−k =
∥∥∥∥(∑

j∈L
ΦLf2k

j

)2−k∥∥∥∥
2ν
6

∥∥∥∥∑
j∈L

fj

∥∥∥∥
2ν
.

Proof. — We begin with the easy last sentence. For r = 2k and k =
0, . . . , ν, we have∥∥∥∥∑
j∈L

ΦLfrj
∥∥∥∥1/r

2ν−k
6

∥∥∥∥ΦL
(∑
j∈L

fj

)r∥∥∥∥1/r

2ν−k
6

∥∥∥∥(∑
j∈L

fj

)r∥∥∥∥1/r

2ν−k
=
∥∥∥∥∑
j∈L

fj

∥∥∥∥
2ν
.

The constant in the right-hand inequality of (8.30) is therefore bounded by
ν + 1.

We pass to the left-hand inequality. Let q = 2ν . By Lemma 8.7, we can
reduce the case q = 2ν to the case q/2. We proceed by induction, with a
number of steps bounded by ν. Using (a+ b)α 6 aα + bα when a, b > 0 and
α ∈ (0, 1], we obtain∥∥∑

j∈L
Φ∼jfj

∥∥
q
6 βCq−1∥∥∑

j∈L
ΦLfj

∥∥
q

+
√
q − 1

∥∥∑
j∈L

Φ∼jf2
j

∥∥1/2
q/2

6 βC2ν ∥∥∑
j∈L

ΦLfj
∥∥

2ν + 2ν/2β1/2C2ν−2 ∥∥∑
j∈L

ΦLf2
j

∥∥1/2
2ν−1

+ 2ν/22(ν−1)/4∥∥∑
j∈L

Φ∼jf4
j

∥∥1/4
2ν−2 6 . . .

and the successive factors in front of
∥∥∑

j∈L ΦLf2k
j

∥∥2−k

2ν−k , for 0 6 k 6 ν,
have the form q(β/q)2−k(Cq)4−k 6 q(βCq/q)2−k , leading to κν 6
max(q, βCq). �

We can try to optimize the constant κν in the following way. Suppose
that the function ln Φ is Lipschitz on R with constant λ. Then we see that
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Φ is τ -stable with constant Cτ = eλτ for every τ > 0, and

1 > β−1
τ :=

∫
|t|6τ

Φ(t) dt > 2Φ(0)
∫ τ

0
e−λt dt = 2Φ(0)1− e−λτ

λ
.

Let q = 2ν and select τ = 1/(λq). Then Cτ 6 e1/q and

βτC
q
τ 6

eλ
2Φ(0)(1− e−1/q)

6
e2 λ

2Φ(0) q 6
4λ

Φ(0) q .

Coming back to Lemma 8.8 and noticing that λ > 2Φ(0), we obtain

κν 6
4λ

Φ(0) 2ν . (8.31)

We now introduce Bourgain’s specific example ϕ of a function Φ, defined
by

∀ s ∈ R , ϕ(s) = c

1 + s4 ,

where c =
√

2/π is chosen so that ϕ is a probability density. This value c is
obtained by the residue theorem, which also gives the Fourier transform

ϕ̂(t) =
(
cos(π

√
2|t|) + sin(π

√
2|t|)

)
e−π
√

2|t| , t ∈ R .

Notice that (cosu+ sin u) e−u =
√

2 cos(u− π/4) e−u > e−u2 when 0 6 u 6
π/2, because h(u) = ln

(√
2 cos(u − π/4)

)
− u + u2 > 0 on this interval.

Indeed, we have h(0) = h′(0) = 0 and h′′(u) = 1 − tan(u − π/4)2 > 0 on
[0, π/2]. It follows that

ϕ̂(t) > e−2π2t2 when π
√

2|t| 6 π

2 ,

in particular when π |t| 6 1. We shall need later the estimate given by
Lemma 8.9.

Lemma 8.9. — For all s ∈ R, ` integer > 1 and ξ = (ξ1, . . . , ξ`) ∈ R`,
one has that (

1−
∏̀
j=1

ϕ̂(sξj)
) ∏̀
j=1

η̂(ξj) 6 2π2s2 .

Proof. — Suppose that π |sξ| 6 1. Then π |sξj | 6 1 and ϕ̂(sξj) >
e−2π2s2ξ2

j for each index j = 1, . . . , `, thus by Lemma 8.6 we have(
1−

∏̀
j=1

ϕ̂(sξj)
) ∏̀
j=1

η̂(ξj) 6
(
1− e−2π2s2|ξ|2) ∏̀

j=1
η̂(ξj) 6 2π2s2 .

Otherwise, we have π |sξ| > 1 and applying Lemma 8.6 with r → 0 we get(
1−

∏̀
j=1

ϕ̂(sξj)
) ∏̀
j=1

η̂(ξj) 6 2
∏̀
j=1

η̂(ξj) 6 2|ξ|−2 6 2π2s2 .
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We know that ϕ is 1-stable, because F (x) = lnϕ(x) is Lipschitz. Indeed,
its derivative F ′(x) = −4x3/(1 + x4) is bounded on the real line. To be
precise, the second derivative F ′′ vanishes when x4 = 3, which implies that
|F ′(x)| 6 33/4 for every x. When |t| 6 1, we have thus

ϕ(s+ t) 6 e33/4
ϕ(s) , s ∈ R ,

with e33/4
< 9, 772 < 10. This shows that ϕ is 1-stable with constant 6 10.

We shall need more than the 1-stability of the function ϕ, namely, we shall
use the polynomial character of 1/ϕ. When |t| > 1 and u ∈ R, we have

1 + (u− t)4 6 1 + 8(u4 + t4) 6 8(1 + t4)(1 + u4) 6 16 t4(1 + u4) , (8.32)

implying in this case, and with u = s+ t, that ϕ(s+ t) 6 16 t4ϕ(s).

We introduce w1 = w2
0 = R−δ < w0. The dilate ϕ(w1) of ϕ is w1-stable

with constant 10 and we shall consider from now on that Φ = ϕ(w1). We
denote as before by Φj the operator on Lq(R`) of convolution with ϕ(w1) in
the variable xj , where j ∈ L = {1, . . . , `}. For every subset J ⊂ L we define
ΦJ as before, as well as Φ∼j = ΦL\{j}. For |t| > w1 we have by (8.32) the
inequality

ϕ(w1)(s+ t) 6 16(t/w1)4ϕ(w1)(s) = 16R4δt4ϕ(w1)(s) , s ∈ R . (8.33)

Here is perhaps the crux of the matter. The boundary measures µj , partial
derivatives of µQ, will be swallowed and disappear as if by magic. The cube
Q here is the cube Q` in R`.

Lemma 8.10 ([13, Lemma 8]). — Let ν be an integer > 1, let q = 2ν ,
and let f1, . . . , f` be functions in Lq(R`). Let µj denote the partial derivative
∂jµQ of the probability measure µQ, for j = 1, . . . , `. With Φj defined as
in (8.27) from Φf = ϕ(w1) ∗ f when f ∈ Lq(R), one has that

∥∥∥∥(∑̀
j=1

∣∣µj ∗ Φ∼jfj
∣∣2)1/2∥∥∥∥

Lq(R`)
6 κ

√
q ln qR4δ

∥∥∥∥(∑̀
j=1
|fj |2

)1/2∥∥∥∥
Lq(R`)

.

Proof. — Let us write L = {1, . . . , `} and RL for R`. For each j ∈ L, let
Q∼j denote the cube

∏
i 6=j [−1/2, 1/2] in RL\{j}, let dx∼j be the Lebesgue

measure on RL\{j} and consider the probability measures τj , K∼j , K{j} on
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R` defined by

τj = 1
2
(
δ1/2(xj) + δ−1/2(xj)

)
⊗
(
⊗i 6=j δ0(xi)

)
,

K∼j = δ0(xj)⊗
(
⊗i 6=j 1[−1/2,1/2](xi) dxi

)
= δ0(xj)⊗

(
1Q∼j dx∼j

)
,

K{j} =
(

1[−1/2,1/2](xj) dxj
)
⊗
(
⊗i 6=j δ0(xi)

)
.

When convenient, we shall identify a kernel K and the convolution operator
with that kernel. Note that the signed measure µj = ∂j1Q satisfies

|∂j1Q| =
(
δ1/2(xj) + δ−1/2(xj)

)
⊗
(
1Q∼j dx∼j

)
= 2τj ∗K∼j .

Using |µ ∗ f |p 6 µ ∗ |f |p when µ is a probability measure and p > 1, we have∑̀
j=1
|∂j1Q ∗ Φ∼jfj |2 6 4

∑̀
j=1

Φ∼j(τj ∗K∼j ∗ |fj |2) .

We evaluate the Lq norm applying Lemma 8.8, obtaining that∥∥∥∥(∑̀
j=1

∣∣µj ∗ Φ∼jfj
∣∣2)1/2∥∥∥∥2

q

6 4
∥∥∥∥∑̀
j=1

Φ∼j(τj ∗K∼j ∗ |fj |2)
∥∥∥∥
q/2

6 4κν−1

ν−1∑
k=0

(Ek)2−k ,

where the expressions Ek are given by

Ek :=
∥∥∥∥∑̀
j=1

ΦL
[
τj ∗K∼j ∗ |fj |2

]2k∥∥∥∥
q/2k+1

, 1 6 2k 6 q/2 = 2ν−1 .

Using again |µ ∗ f |p 6 µ ∗ |f |p for p > 1, we get

Ek 6 Fk :=
∥∥∑̀
j=1

ΦL(τj ∗K∼j ∗ |fj |2
k+1

)
∥∥
q/2k+1 .

Next, observe that ϕ(w1)(s + t) 6 w−4
1 ϕ(w1)(s) = R4δϕ(w1)(s) for |t| 6 1/2.

Indeed, when w1 6 |t| 6 1/2 we have ϕ(w1)(s + t) 6 16(t/w1)4ϕ(w1)(s) 6
w−4

1 ϕ(w1)(s) by (8.33), and ϕ(w1)(s + t) 6 10ϕ(w1)(s) 6 R4δϕ(w1)(s) when
|t| 6 w1, because we assumed that Rδ > Rδ0 = 16. When µ is a probability
measure supported on [−1/2, 1/2], it follows that µ ∗ ϕ(w1) 6 R4δϕ(w1) and
ϕ(w1) 6 R4δµ∗ϕ(w1). We have therefore τjΦj 6 R4δΦj and Φj 6 R4δΦjK{j}.
For g nonnegative we obtain

Φjτj g 6 R4δΦj g 6 R8δΦjK{j}g .
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Consequently, observing that K{j} ∗K∼j = 1Q(x) dx, we have

ΦL(τjK∼jg) = Φ∼jΦjτjK∼jg 6 R8δΦ∼jΦjK{j}K∼jg = R8δΦL ∗ 1Q ∗ g ,

and by the last assertion of Lemma 8.8, we obtain for k = 0, . . . , ν − 1 that

Fk 6 R
8δ
∥∥∥∥(∑̀

j=1
ΦL|fj |2

k+1
)
∗ 1Q

∥∥∥∥
q/2k+1

6 R8δ
∥∥∥∥∑̀
j=1

ΦL|fj |2
k+1
∥∥∥∥
q/2k+1

6 R8δ
∥∥∥∥(∑̀
j=1
|fj |2

)1/2∥∥∥∥2k+1

q

.

Finally, assuming
∥∥(∑`

j=1 |fj |2
)1/2∥∥

q
6 1 we get∥∥∥∥(∑̀

j=1

∣∣µj ∗ Φ∼jfj
∣∣2)1/2∥∥∥∥2

q

6 4κν−1

ν−1∑
k=0

(R8δ)2−k 6 4νκν−1R
8δ .

Since lnϕ is Lipschitz on R, we can estimate κν by (8.31) and conclude. �

Recalling that GR is a probability density and µRj = µj ∗GR, we imme-
diately deduce the result that we really need.

Lemma 8.11 ([13, Lemma 9]). — Assume that q = 2ν , with ν > 1 an
integer. Let f1, . . . , f` be elements of Lq(R`). With Φj as in Lemma 8.10, we
have ∥∥∥∥(∑̀

j=1

∣∣µRj ∗ Φ∼jfj
∣∣2)1/2∥∥∥∥

Lq(R`)
6 κqR

4δ
∥∥∥∥(∑̀

j=1
|fj |2

)1/2∥∥∥∥
Lq(R`)

.

8.4. Conclusion

It remains to estimate the two terms E(R, `, f) := |∇µR ∗ H0f | and
F(R, `, f) defined in (8.22), for f ∈ Lq0(R`), q0 = 2ν and ` 6 n. Each
one will be cut into two pieces, one of order a power of Rδ and the second
bounded by a “small” multiple of B(q0, R, n). Let us start with E(R, `, f),
and cut |∇µR ∗H0f | into

E′(R, `, f) :=
∣∣∇µR∗G(w1)∗H0f

∣∣ , E′′(R, `, f) :=
∣∣∇µR∗(δ0−G(w1))∗H0f

∣∣ .
We begin with E′(R, `, f). The mapping f 7→ ∇µR ∗ G(w1) ∗H0f , equal

to UµR∗G(w1) ◦ H0 is studied by applying Lemma 7.11 to the log-concave
probability density µR ∗ G(w1). Using (7.3) and (8.1), we see that V (µR ∗
G(w1)) 6 V (G(w1)) = w−1

1 = Rδ. The variance of µR ∗G(w1) = µQ ∗G(1/R) ∗
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G(w1) is larger than that of µQ, which is equal to (12)−1. By Lemma 7.11
and q0 > 2, we get that∥∥E′(R, `, f)

∥∥
q0
6 241/q0(Rδ)1−2/q0 ‖H0f‖q0 6 5Rδ‖f‖q0 .

We study now E′′(R, `, f) with the a priori estimate that involves the
constant B(q0, R, `). By the definition (8.7), one writes∥∥E′′(R, `, f)

∥∥
q0

=
∥∥∇µR ∗ (δ0 −G(w1)) ∗H0f

∥∥
q0

6 B(q0, R, `) ‖(δ0 −G(w1)) ∗H0f‖q0 .

We continue by interpolation (L∞, L2) for f 7→ (δ0−G(w1))∗H0f . In L∞(R`)
one has simply ‖(δ0 − G(w1)) ∗ H0‖∞→∞ 6 2 by using the L1 norm of the
convolution kernel. Lemma 8.6 with r = 2

√
πw1/w0 gives for the Fourier

transform a bound

(1− e−4πw2
1|ξ|

2
)
∏̀
j=1

η̂(w0ξj) 6 4π(w1/w0)2 = 4πw2
0 = 4πR−δ , ξ ∈ R` ,

implying ‖(δ −G(w1)) ∗H0‖2→2 6 4πR−δ. We get in this way that

‖(δ0 −G(w1)) ∗H0‖q0→q0 6 21−2/q0 (4πR−δ)2/q0 6 4πR−2δ/q0 ,

thus
∥∥E′′(R, `, f)

∥∥
q0
6 κB(q0, R, `)R−2δ/q0 ‖f‖q0 and we obtain∥∥E(R, `, f)
∥∥
q0
6 κ

(
Rδ +B(q0, R, `)R−2δ/q0

)
‖f‖q0 .

Now we consider F(R, `, f) and we cut it into

F′(R, `, f) :=
(∑̀
j=1

∣∣µRj ∗ ΓjΦ∼jf
∣∣2)1/2

,

F′′(R, `, f) :=
(∑̀
j=1

∣∣µRj ∗ Γj(I − Φ∼j)f
∣∣2)1/2

.

By Lemma 8.11, we have that

∥∥F′(R, `, f)
∥∥
q0
6 κq0R

4δ
∥∥∥∥(∑̀

j=1

∣∣Γjf ∣∣2)1/2∥∥∥∥
q0

.

Using Khinchin’s (1.22.K) and (1.27) we reduce to
∥∥∑`

j=1±Γjf
∥∥
q0
, and

dividing according to the sign ±, we further reduce to
∥∥∑

j∈J1
Γjf

∥∥
q0

and∥∥∑
j /∈J1

Γjf
∥∥
q0
, where J1 ⊂ {1, . . . , `}. The first sum corresponds to the

operator H1 relative to J1, the second is the one for ∼ J1 := {1, . . . , `} \ J1.
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By Proposition 8.3 for the set J1 of variables, writing x = (xJ1 ,x∼J1) ∈ R`,
we have for 1 < q < +∞ that∥∥∥∥( ∑

j∈J1

Γjf
)

x∼J1

∥∥∥∥
Lq(RJ1 )

6 hq
∥∥f

x∼J1

∥∥
Lq(RJ1 )

, x∼J1 ∈ R∼J1 ,

and integrating in the variables in ∼ J1 we get with Aq from (1.22.K) that∥∥∥∥(∑̀
j=1

∣∣Γjf ∣∣2)1/2∥∥∥∥
q

6 2A−1
q hq‖f‖q (8.34)

for 1 < q < +∞. It follows that
∥∥F′(R, `, f)

∥∥
q0
6 κ′q0R

4δ‖f‖q0 .

For the second term F′′(R, `, f) we first obtain an L2 bound for the
nonlinear operator V : f 7→

(∑`
j=1 |Γj(I − Φ∼j)f |2

)1/2, by estimating the
Fourier transform

χ(ξ) :=
∑̀
j=1

(
1− η̂(w0ξj)

)2(∏
i 6=j

η̂(w0ξi)
)2 (

1−
∏
i 6=j

ϕ̂(w1ξi)
)2
6 4π2R−δ .

Indeed, we know that 0 6 η̂(t) 6 1 and −1 6 ϕ̂(t) 6 1, therefore

∑̀
j=1

(
1− η̂(w0ξj)

)2(∏
i 6=j

η̂(w0ξi)
)(

1−
∏
i6=j

ϕ̂(w1ξi)
)

6 2
∑̀
j=1

(
1− η̂(w0ξj)

)∏
i 6=j

η̂(w0ξi) 6 2
∏̀
j=1

(
(1− η̂(w0ξj)) + η̂(w0ξj)

)
= 2 ,

and by Lemma 8.9 applied to RL\{j} with s = w1/w0 = w0 = R−δ/2, it
follows that

χ(ξ) 6 2 max
16j6`

(∏
i6=j

η̂(w0ξi)
)(

1−
∏
i 6=j

ϕ̂(w1ξi)
)
6 4π2R−δ , ξ ∈ R` .

We get ‖V f‖22 6 4π2R−δ‖f‖22 and ‖V ‖2→2 6 2πR−δ/2. On the other hand,
given functions (gj)`j=1 and independent Bernoulli random variables (εj)`j=1,
we have

2
(∑̀
j=1
|µRj ∗ gj |2

)1/2
= 2

(∑̀
j=1
|µRj ∗ εjgj |2

)1/2

6

(∑̀
j=1

∣∣µRj ∗ (εjgj +
∑
i6=j

εigi
)∣∣2)1/2

+
(∑̀
j=1

∣∣µRj ∗ (εjgj −∑
i6=j

εigi
)∣∣2)1/2
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hence with gj = Γj(I − Φ∼j)f and Fε =
∑`
i=1 εiΓi(I − Φ∼i)f we see that

∥∥F′′(R, `, f)
∥∥
q0
6 Eε

∥∥∥∥(∑̀
j=1
|µRj ∗ Fε|2

)1/2∥∥∥∥
q0

= Eε
∥∥∇µR ∗ Fε∥∥q0 =: D .

With Khinchin (1.27) and the a priori bound (8.7) we obtain

D 6 B(q0, R, `) Eε ‖Fε‖q0 6 Bq0B(q0, R, `)
∥∥∥∥(∑̀

i=1
|Γi(I − Φ∼i)f |2

)1/2∥∥∥∥
q0

.

In Lq1(R`) with q1 = 2q0 = 2ν+1 we have by (8.34) and Lemma 8.8 that∥∥∥∥(∑̀
j=1
|Γj(I − Φ∼j)f |2

)1/2∥∥∥∥
q1

6

∥∥∥∥(∑̀
j=1
|Γjf |2

)1/2∥∥∥∥
q1

+
∥∥∥∥∑̀
j=1

Φ∼j
(
Γjf)2

∥∥∥∥1/2

q1/2
6 κq0‖f‖q1 .

Interpolating with the L2 bound, and with κq0 changing from line to line,
we get∥∥∥∥(∑̀

j=1
|Γj(I−Φ∼j)f |2

)1/2∥∥∥∥
q0

6 κq0R
−δ/(2q0−2)‖f‖q0 6 κq0R−δ/(2q0)‖f‖q0 ,

therefore
∥∥F′′(R, `, f)

∥∥
q0
6 κq0B(q0, R, `)R−δ/(2q0)‖f‖q0 and∥∥F(R, `, f)

∥∥
q0
6 κq0

(
R4δ +B(q0, R, `)R−δ/(2q0))‖f‖q0 .

The estimates are proved in every dimension ` 6 n, we have thus realized
our objectives (8.21) and (8.22). Noticing that R > 1, we have consequently

b0(q0, R, n) + b1(q0, R, n) 6 κq0
(
R4δ +B(q0, R, n)R−δ/(2q0)) .

At last, we put all parts of (8.23) together. We may assume that 4δ < 1.
We use again R > 1 in order to absorb the constant bound from (8.15), thus
obtaining∥∥∇µR ∗ g∥∥

q0
6 c(q0, δ)

(
R4δ +B(q0, R, n)R−δ/(2q0))‖g‖q0 ,

for g ∈ Lq0(Rn) and R > R0. Since B(q0, R, n) is the maximum of
∥∥∇µR ∗

g
∥∥
q0

for g of norm6 1 in Lq0(Rn), we deduce that B(q0, R, n) 6 c(q0, δ)R4δ+
B(q0, R, n)/2 for R > R1, if R1 > R0 is such that c(q0, δ)R−δ/(2q0)

1 6
1/2, thus B(q0, R, n) 6 2c(q0, δ)R4δ for R > R1. The value of R1 de-
pends on δ and q0 that are fixed. For R 6 R1, we may estimate directly
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‖∇µR ∗ g‖q0 6 κR‖g‖q0 6 κR1−4δ
1 R4δ‖g‖q0 by Lemma 7.11. It follows fi-

nally that B(q0, R, n) 6 c′(q0, δ)R4δ, and δ being arbitrarily small, we have
proved Proposition 8.2.

9. The Aldaz weak type result for cubes, and improvements

We work again in this section with the symmetric cube Qn of volume 1
in Rn, that is to say, with Q1 = [−1/2, 1/2] when n = 1 and Qn = (Q1)n.
We first present, following Aubrun [3], a rather soft argument proving the
result of Aldaz [1] that the weak type (1, 1) constant κQ,n associated to the
cubes Qn is not bounded when n tends to infinity. We shall indicate and
comment the quantitative improvement obtained by Aubrun [3], who gave
a lower bound κQ,n > κε(logn)1−ε for every ε > 0. We then give a version
of the proof of Iakovlev and Strömberg [46] who considerably improved this
lower bound, showing that κQ,n > κn1/4. All the arguments though are
based on the same initial principle that we now recall.

We begin with a few simple reflections. If we want to contradict the
uniform boundedness of the weak type (1, 1) constant κQ,n we must, in view
of Bourgain’s Theorem 8.1, look for functions fn on Rn that do not stay
bounded, as n→∞, in any Lp(Rn) with p > 1. Also, we may easily obtain
by mollifying techniques that the weak type inequality for L1 functions,
stating that
c
∣∣{x ∈ Rn : (MQf)(x) > c}

∣∣ 6 κQ,n ‖f‖L1(Rn) , c > 0, f ∈ L1(Rn) , (9.1)
where we let MQ = MQn , extends to bounded nonnegative measures µ on Rn:
if for every x ∈ Rn we define (MQµ)(x) to be the supremum over r > 0 of
all quotients µ(x+ rQ)/|x+ rQ|, then (9.1) extends with the same constant
κQ,n as

c
∣∣{x ∈ Rn : (MQµ)(x) > c}

∣∣ 6 κQ,nµ(Rn) , c > 0 .
These two remarks lead naturally to consider measures on Rn that are sums
of Dirac measures, in order to contradict the boundedness of κQ,n when
n→∞.

Let µN =
∑N
j=1(δj−1/2 + δ−j+1/2) stand for an “approximation” of the

Lebesgue measure λ on a large segment SN = [−N,N ]. The measure µN has
a unit mass at the middle of each interval (j, j+ 1), j integer and −N 6 j <
N . Every interval [u, u+ h) contained in SN , with length an integer h > 0,
has the same measure h for µN or for λ. However, if I is a segment of length
1 + α, 0 < α = 1 − ε < 1, centered at s = 0 or at any s = j, integer with
|j| < N , then I contains j ± 1/2 and

µN (I) = 2 but λ(I) = 1 + α = 2− ε < 2 ,
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so that (MQµN )(s) > µN (I)/λ(I) = 2/(2−ε). The same observation is valid
if s is not too far from an integer j in (−N,N), precisely, if |s− j| < α/2. If
we pass to Rn and to the tensor product measure µ(n)

N := ⊗nµN , we obtain
a huge magnification due to dimension, which reads as(

MQµ
(n)
N

)
(x) >

(
2

2− ε

)n
when all coordinates xi, i = 1, . . . , n, of the point x = (x1, . . . , xn) ∈ Rn
belong to the subset Cα of [−N,N ] defined by

Cα =
⋃

−N<j<N
(j − α/2, j + α/2) . (9.2)

If ` = 2h+1 > 1 is an odd integer, if J = (−h−1/2−α/2, h+1/2+α/2) =
(`+α)Q and if s+J is contained in SN , we see in the same way, when s ∈ Cα,
that the segment s + J contains ` + 1 = 2h + 2 of the unit masses forming
µN . Consequently, we have (MQµN )(s) > (` + 1)/|s + J | = (` + 1)/(` + α)
and

(MQµ
(n)
N )(x) >

(
`+ 1

`+ 1− ε

)n
when x = (x1, . . . , xn) has all coordinates xi in Cα and x + Jn ⊂ SnN =
2NQn.

This case is much too particular, since the set of such points x represents
only a tiny proportion αn of the cube SnN . One has actually to consider that
some coordinates xi of x = (x1, . . . , xn) ∈ Rn are in Cα, say m 6 n of
them. For the other coordinates xi, observe that any interval of length `+α
contained in SN contains at least ` points of the support of µN . Assuming
that x + (` + α)Q ⊂ SnN , we get for this point x with m coordinates in Cα
the lower bound

(MQµ
(n)
N )(x) >

µ
(n)
N

(
x+ (`+ α)Q

)∣∣x+ (`+ α)Q
∣∣ >

(
`+ 1
`+ α

)m(
`

`+ α

)n−m
. (9.3)

We want the cardinality m of the “good”, “centered” coordinates xi to be
as big as possible. Since they are chosen out of subsets of length α in unit
intervals (j − 1/2, j + 1/2), it is likely that the proportion of “good coor-
dinates” among n coordinates be around α, with a plausible deviation of
order

√
n from the expected number αn. We shall thus think henceforth

that m = αn+ δ
√
n for some δ > 0.

We try to make the lower bound (9.3) as large as possible, by a suitable
choice of `. Setting β = 1− α, we rewrite the right-hand side of (9.3) under
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the form(
`+ α+ β

`+ α

)m(
`+ α− α
`+ α

)n−m
=
(

1 + β

`+ α

)m(
1− α

`+ α

)n−m
.

Considering now y = (`+ α)−1 as a real parameter, we will study

V (y) := (1 + βy)m(1− αy)n−m , −1/β 6 y 6 1/α ,

and find the maximal value V (y). Equivalently, we let f denote the fraction
m/n of coordinates of x that are in Cα, and we maximize vf,α(s) = V (s)1/n

defined by

vf,α(s) = (1 + βs)f (1− αs)1−f , s ∈ [−1/β, 1/α] .

We have to remember though that the lower bound V (y) for MQµ
(n)
N (x)

given in (9.3) is only valid when 1/y−α is an odd integer `. We shall replace
y by a value y = yN > 0 close to y , such that 1/yN − α is an odd integer,
thus obtaining that MQµ

(n)
N (x) > V (yN). We must ensure that the value of

V (y) does not decrease too much when moving from y to yN. We would like
to have

V (yN) > e−c V (y) or vf,α(yN) > e−c/n vf,α(y) , for some c > 0 . (9.4)

The maximal argument y is produced from f and a choice of α < f . We
shall say that the couple (f, α) is c -allowable if the above condition (9.4) is
satisfied.

Lemma 9.1. — Let 0 < α < f < 1, σ2
α = α(1 − α) and let us define

τ > 0 by writing f = α+ σατ . The function vf,α reaches its maximum at

y = yf,α = τ

σα
= f − α

σ2
α

> 0 . (9.5)

If 0 < y, y 6 1/2 then

e(y−y)2/2 vf,α(y) > vf,α(y) =
(
f

α

)f(1− f
1− α

)1−f
. (9.6)

If 0 < y 6 1/4 and y4 6 c/n, then the couple (f, α) is c-allowable.

Proof. — Let w(s) = ln vf,α(s) = f ln(1 + βs) + (1 − f) ln(1 − αs). We
have

w′(s) = βf

1 + βs
− α(1− f)

1− αs , w′′(s) = − β2f

(1 + βs)2 −
α2(1− f)
(1− αs)2 .

The maximal argument y is found by solving w′(y) = 0, yielding

y = f − α
σ2
α

, 1 + βy = f

α
, 1− αy = 1− f

1− α .
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This gives us the maximal value vf,α(y) at the right-hand side of (9.6).
Suppose now that we have 0 < y, y 6 1/2. Using Taylor–Lagrange at y , we
get

w(y)− w(y) = w′′(ξ) (y − y)2

2 ,

for some ξ between y and y , hence 0 < ξ 6 1/2. We have 1− αξ > 1/2 and

−w′′(ξ) 6 β2f + 4α2(1− f) 6 β + 4α2(1− α) 6 β + α = 1 ,

because α(1− α) 6 1/4. This implies the left-hand side of (9.6).

Suppose that 0 < y 6 1/4. Moving around y , we can find yN > 0 satisfy-
ing

|yN − y |
yNy

=
∣∣∣∣ 1y − 1

yN

∣∣∣∣ 6 1

and such that 1/yN−α is an odd integer. From |yN−y | 6 yN y and y 6 1/4 fol-
lows that yN 6 4y/3 6 1/3 < 1/2. Also, |yN− y | 6 4y2/3 <

√
2y2. By (9.6),

we deduce that vf,α(yN) > e−y4
vf,α(y) and the conclusion is reached. �

Given f and α such that 0 < α < f < 1, let us now examine the optimal
value

Ef,α := vf,α(y) = (1 + βy)f (1− αy)1−f =
(
f

α

)f(1− f
1− α

)1−f
. (9.7)

Consider the function φα defined on (0, 1) by

φα(s) = s ln
(
s

α

)
+ (1− s) ln

(
1− s
1− α

)
, s ∈ (0, 1) . (9.8)

We see that φ′α(s) = ln(s/α)− ln
(
(1−s)/(1−α)

)
, φ′′α(s) = 1/s+1/(1−s) =

1/
(
s(1− s)

)
, and φ(3)

α (s) = −s−2 + (1− s)−2. Note that φα(α) = φ′α(α) = 0,
and that φ′′α(α) = σ−2

α .

Lemma 9.2. — If 0 < α < f = α+ σατ < 1, the maximal value vf,α(y)
satisfies

ln vf,α(y) = φα(f) > τ2

2 −
1− 2α
σα

τ3

6 . (9.9)

Proof. — By Taylor–Lagrange for φα at the point α, we have

φα(f) = φ′′α(α) (f − α)2

2 + φ(3)
α (ξ) (f − α)3

6 = τ2

2 + φ(3)
α (ξ) (σατ)3

6

for some ξ ∈ (α, f). Since φ(3)
α is increasing, we get that

φα(f)− τ2

2 > φ
(3)
α (α) (σατ)3

6 = 2α− 1
α2(1− α)2

σ3
ατ

3

6 = 2α− 1
σα

τ3

6 . �
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In all that follows, we see Ω1 := [−N,N ] as a probability space equipped
with the uniform probability measure, denoted here by P1, and we shall
consider the cube SnN = 2NQn, equipped with the product measure P =
P⊗n1 , also the uniform probability measure, as being our main probability
space (Ω,F , P ). On this space, the random variables (1Cα(xi))ni=1, where
x = (x1, . . . , xn) ∈ Ω, are independent and equal to 0 or 1 with respective
probabilities 1−α and α. Their expectation is α and their variance is equal
to σ2

α = α(1−α) 6 1/4. For every α ∈ (0, 1), we introduce the centered and
variance 1 Bernoulli variable X1,α defined on Ω1 by

X1,α = 1Cα − α
σα

=
√

1− α
α

1Cα −
√

α

1− α 1Ω1\Cα , (9.10)

and we let

Xn,α(x) =
∑n
i=1X1,α(xi)√

n
=

n∑
i=1

1Cα(xi)− α
σα
√
n

, x = (x1, . . . , xn) ∈ Ω .

We also let Nn,α(x) =
∑n
i=1 1Cα(xi) denote the number of coordinates of

x that are in Cα. We are ready for a first explicit estimate of the maximal
function MQµ

(n)
N .

Lemma 9.3. — Let 0 < α < 1 and σ2
α = α(1 − α). Let n ∈ N∗, t > 0

and 0 < θ < 1 be such that
√
n > 2tσ−2

α (1− θ)−1. We have MQµ
(n)
N > eθt2/2

on the set

A
(n)
α,t =

{
x ∈ 2(N − t−1√n)Qn : Nn,α(x) =

n∑
i=1

1Cα(xi) > αn+ tσα
√
n

}
,

where Cα is defined at (9.2). When the dimension n is large, and assuming
the size N large enough compared to n, it follows that∣∣{MQµ

(n)
N > eθt2/2

}∣∣
|SnN |

>
|A(n)
α,t |

|2NQn|
>

1
2 γ1

(
(t,+∞)

)
.

Proof. — By the central limit theorem (see [32] for instance), we know
that the distribution of Xn,α tends to the distribution of a N(0, 1) Gaussian
random variable G when n tends to infinity. This yields

P
(
Nn,α > αn+ tσα

√
n
)

= P
(
Xn,α > t

)
−→
n
P (G > t) = γ1

(
(t,+∞)

)
.

Let A(n,0)
α,t be the set of points x ∈ Ω where Nn,α(x) > αn + tσα

√
n. Fix

x ∈ A(n,0)
α,t and let m = Nn,α(x). We shall apply Lemma 9.1 with f = m/n

and τ = t/
√
n. By assumption, the optimal argument y satisfies

y = t

σα
√
n
6
σα(1− θ)

2 < 1/4 .
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At (9.3), we used a cube centered at x, with side length `+α, ` an odd integer.
We can choose `+α < 1/y+2 < 2/y < t−1√n. This cube must be contained
in Ω = SnN , so we have to give up a small part of A(n,0)

α,t , close to the boundary
of Ω. We thus introduce the subset A(n)

α,t = A
(n,0)
α,t ∩ 2(N − t−1√n)Qn. The

difference A(n,0)
α,t \ A

(n)
α,t gets negligible when the side 2N of SnN tends to

infinity since (1 − t−1√n/N)n →N 1, so the set A(n)
α,t has essentially the

same probability as A(n,0)
α,t when N = N(n) > κ(t)n3/2 is large enough.

When n tends to infinity, the probability of A(n)
α,t is therefore, say, larger

than γ1((t,+∞))/2.

We first show that the couple (f, α) is c-allowable with c = (1 − θ)t2/4.
We know that y < 1/4 and on the other hand, we have

y4 = t4

σ4
αn

2 = c

n

4t2

(1− θ)σ4
αn

<
c

n

(
2t

(1− θ)σ2
α

√
n

)2
6
c

n
.

It follows from Lemma 9.1 that MQµ
(n)
N (x) > e−(1−θ)t2/4 V (y) for every x ∈

A
(n)
α,t . It remains to estimate the optimal value V (y). For this we apply (9.9).

It implies that V (y) > et2/2 when α > 1/2, and when α 6 1/2, we see that
1− 2α
σα

τ3

6 = (1− 2α)τ
3σα

τ2

2 <
t

3σα
√
n

τ2

2 <
σα(1− θ)

6
τ2

2 <
(1− θ)τ2

4 ,

so that V (y) > et2/2−(1−θ)t2/4 and MQµ
(n)
N (x) > et2/2 e−(1−θ)t2/2 =

eθt2/2. �

Given α ∈ (0, 1), we have identified a subset A(n)
α,t of SnN where MQµ

(n)
N

is large. We shall have to use several values of α, and show that the union
of the corresponding sets provides a fair amount of the total volume of SnN .
We thus introduce 0 < α0 < α2 < . . . < αK < 1 and we will prove that the
probability of the union of sets (A(n)

αj ,t)
K
j=0 gets > 1/4, say, when K is large

but fixed and when n tends to infinity. Rather than relying, as Aubrun does,
on the law of iterated logarithm, we apply easy facts behind the proof of
that “law”. In a simple qualitative approach, we shall analyze the Gaussian
limit of the joint distribution of (Xn,αj )Kj=0, which is the distribution of a
Gaussian vector (Gj)Kj=0 whose covariance matrix C is the same as that of
(Xn,αj )Kj=0. Letting σ2

j = αj(1− αj), the entries of C are

Cj,k = E(X1,αjX1,αk) = σ−1
j σ−1

k (αj ∧ αk − 2αjαk + αjαk) , 0 6 j, k 6 K .

Note that Cj,j = 1. Assuming αj 6 αk, that is to say, assuming j 6 k, we
get

Cj,k = σ−1
j σ−1

k αj(1− αk) =
√

αj
1− αj

√
1− αk
αk

.
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We fix v ∈ (0, 1) and set w =
√

1− v2. We define αj = (1 + v2j)−1, j =
0, . . . ,K, and obtain Cj,k = v|k−j|. We can realize the distribution of (Gj)Kj=0
by considering the larger Gaussian sequence indexed by Z, which is defined
by the sums of the series Gj = w

∑
i6j v

j−iUi, for every j ∈ Z, where the
(Ui)i∈Z are independent N(0, 1) Gaussian variables. Indeed, if j 6 k we have
that

E(GjGk) = (1− v2)
∑
i6j

vj+k−2i = vk−j = v|k−j| .

We see that Gj − vGj−1 = wUj and it follows that
max

16j6J
|Uj | = w−1 max

16j6J
|Gj − vGj−1| 6 w−1(1 + v) max

06j6J
|Gj | . (9.11)

We now recall an extremely classical estimate.

Lemma 9.4. — Let J > 21 be an integer and set

sJ :=
√

2 ln J − ln(16π ln J) .
If U1, . . . , UJ are independent N(0, 1) Gaussian variables, one has that

P
(

max
16j6J

Uj > sJ
)
> 1/2 .

Proof. — We have for s > 0 that∫ +∞

s

dγ1(s) > s√
2π(1 + s2)

e−s
2/2 , (9.12)

consequence of

e−s
2/2 /s =

∫ +∞

s

(1 + u−2) e−u
2/2 du < (1 + s−2)

∫ +∞

s

e−u
2/2 du .

When J > 21, one has e−1 J2 > 16π ln J > 1, hence 1 < sJ <
√

2 ln J .
Therefore, we see by (9.12) for each j = 1, . . . , J that

P
(
Uj > sJ

)
>

sJ√
2π(1 + s2

J)

√
16π ln J
J

>
2s2
J

(1 + s2
J)J >

1
J
.

It follows that

P
(

max
16j6J

Uj 6 sJ
)
6

(
1− 1

J

)J
< e−1 <

1
2 . �

Theorem 9.5 (Aldaz [1]). — The weak type (1, 1) constant κQ,n in (9.1)
does not stay bounded when the dimension n tends to infinity.

Proof. — Given an arbitrary t > 1, we let t1 := tw−1(1 + v) > t and
choose an integerK > 21 such that sK > t1. Applying Lemma 9.4, we obtain
that the event

{
max16j6K |Uj | > t1

}
has probability > 1/2, and by (9.11),

it follows that the event {max06j6K |Gj | > t} also has probability > 1/2.
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We see that sup |Gj | is the maximum of supGj and sup(−Gj) that have
the same distribution, hence {max06j6K Gj > t} has probability > 1/4.
Consequently, given any t > 1, we obtain by the central limit theorem that
the union of sets A(n)

αj ,t, for j = 0, . . . ,K, has a probability close to that of
{max06j6K Gj > t}, hence > 1/4 when n is large. By Lemma 9.3, given
θ ∈ (0, 1) and if

√
n(1 − θ)σ2

K > 2t, the maximal function MQµ
(n)
N is larger

than eθt2/2 on the union
⋃K
j=0A

(n)
αj ,t, i.e., on a subset of Ω = SnN having

probability > 1/4, hence κQ,n > eθt2/2 /4 when n is large enough. �

Aubrun [3] gives a lower bound κQ,n > κε(lnn)1−ε for every ε > 0 by
making quantitative the proof above. He applies to this end results proved
years before (by Bretagnolle–Massart [14] in 1989 and previously, by Komlós–
Major–Tusnády [51] in 1975) on the approximation of Brownian bridges,
when n→ +∞ and with explicit bounds, by binomial processes

Z
(n)
t =

n∑
i=1

1{Yi6t} − t√
n

, t ∈ [0, 1] ,

where the (Yi)ni=1 are independent and uniform on [0, 1]. One can see that
the distribution of the process (Z(n)

t )t∈(0,1) is equal to that of (σtXn,t)t∈(0,1).

Iakovlev and Strömberg [46] begin with the same observations, in par-
ticular introducing the measure µ(n)

N , using the fundamental estimate (9.3)
and, in a less apparent manner, the value eθt2/2 from Lemma 9.3. But instead
of working in a probabilistic setting, they proceed to a finer combinatorial
analysis. Contrary to Aubrun, they do not use values α close to 1, nor close
to 0. In our exposition of their arguments, we shall work towards simplicity
rather than optimality.

Let us digress a little with some comments on the Gaussian process view-
point, and express in terms of stochastic maximal function the lower bound
for MQµ

(n)
N given in (9.3). Let x ∈ Ω and m = Nn,α(x), σ2

α = α(1−α) and
write m = αn + σαt

√
n. Notice that t = (m − αn)/(σα

√
n) = Xn,α(x).

We let f be the fraction m/n, and rewrite the preceding formula for m as
f = α+ σατ , with τ = t/

√
n. We know the optimal argument y for V (y),

given in (9.5) by

y = t

σα
√
n

= τ

σα
, and lnV (y)

n
= f ln

(
f

α

)
+ (1− f) ln

(
1− f
1− α

)
.

By Lemma 9.2 we have lnEf,α = φα(f) > τ2/2 = t2/(2n) if τ > 0 and
α > 1/2. Let 1/2 6 α 6 3/4 and assume that 0 < t = Xn,α(x) 6 n1/4/2.
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We see then that y = t/(σα
√
n) < 2n−1/4/

√
3, thus ny4 6 16/9, y 6 1/4

for n > 455 and by Lemma 9.1 we are then in the allowable case with
c 6 16/9. This yields

MQµ
(n)
N (x) > κ−1Enf,α > κ

−1 exp
(
t2

2

)
,

with κ < e16/9< 6, n > 455 . (9.13)

Let us define a maximal function X∗(x) = sup1/26α63/4 X
(1)
n,α(x), where

X
(1)
n,α(x) = Xn,α(x) when 0 6 2Xn,α(x) 6 n1/4 andX(1)

n,α(x) = 0 otherwise.
We get

6MQµ
(n)
N (x) > exp

(
X∗(x)2

2

)
and the weak type (1, 1) constant κQ,n must satisfy the condition

P
(
{X∗ > s}

)
6 P

(
{MQµ

(n)
N > es

2/2 /6}
)
6 6κQ,n e−s

2/2 , s > 0 .
This explains how delicate the question can be. Indeed, given a subgaus-
sian process (Yt)t∈T satisfying tail estimates of the form P (Y > s) 6
κ e−s

2/(2d2) for every s > 0, for each difference Y = Yt2 − Yt1 and with
d = d(t1, t2) = ‖Yt1 − Yt2‖2, the well known chaining technique of Dud-
ley [28] does not allow one to prove for the maximal process supt∈T Yt a
subgaussian inequality with the same bounding function e−s

2/2, but rather
with e−Cs

2/2 for some C < 1, which is inoperative here.

Theorem 9.6 (Iakovlev and Strömberg [46]). — One has that

κQ,n > κn
1/4 .

Rather than exploiting the exponential asymptotics (9.13) of Enf,α, we
shall observe some more nice features of the expression Ef,α defined in (9.7),
where f = m/n = α + tσα/

√
n = α + σατ . We replace the value eθt2/2

seen in Lemma 9.3 by a fixed large value V > 1 and we try to keep the
(conditional on allowability) lower bound Enf,α for MQµ

(n)
N constantly equal

to V . Equivalently, we keep
Ef,α = eφα(f) = V 1/n > 1 (9.14)

for all values of f (or of m) that will be handled. The possibility of finding
α satisfying (9.14) comes from the fact that for every given f ∈ (0, 1), the
function

ψf : s 7→
(
f

s

)f(1− f
1− s

)1−f
= eφs(f) , s ∈ (0, 1) , (9.15)

is convex on (0, 1) (actually, log-convex), tends to infinity at 0 and at 1,
and assumes its minimal value ψf (f) = 1 at s = f . Consequently, there
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are exactly two values α0 < f < α1 of α ∈ (0, 1) solving (9.14), we shall
consider the smallest one and set α(f) = α0. Notice that (lnψf )′(s) =
−f/s+ (1− f)/(1− s) vanishes at s = f , and

(lnψf )′′(s) = f

s2 + 1− f
(1− s)2 > f + (1− f) = 1 . (9.16)

We have therefore for every s ∈ (0, 1) that

lnψf (s) > (s− f)2/2 ,
thus (f − α(f))2/2 6 lnψf (α(f)) = (lnV )/n . (9.17)

From now on, we fix two values 0 < f∗ < f∗ 6 1/2, independent of the
dimension n. For every integer m in the range [f∗n, f∗n], we shall consider
the set

Fm = {x ∈ Ω : Nn,α(f)(x) = m} , with f = m/n .

Let us write α = α(f) for brevity. We have that Ef,α = V 1/n and if we
assume c-allowability for (f, α) we get MQµ

(n)
N (x) > e−c V for every x ∈ Fm,

by (9.4). The probability of Fm is αm(1− α)n−m
(
n
m

)
and we see that

V P (Fm) =
(
f

α

)m(1− f
1− α

)n−m
αm(1− α)n−m

(
n

m

)
= mm(n−m)n−m

nn

(
n

m

)
.

Stirling’s formula in the form e−1/(12p) p! 6 pp e−p
√

2πp 6 p! (see [66]) gives

e−1/(12n) V P (Fm) 6
√
n√

2πm(n−m)
6 en/(12m(n−m)) V P (Fm) . (9.18)

With s∗ =
√
f∗(1− f∗) and s∗ =

√
f∗(1− f∗), it follows that

V P (Fm) > e−1/(12f(1−f)n)√
2πf(1− f)n

>
e−1/(12s2∗n)

s∗
√

2π
1√
n
. (9.19)

If the sets Fm were disjoint (and the couples (f, α(f)) c-allowable) we would
get immediately, by summing on m between f∗n and f∗n, a lower bound of

κQ,n > e−c V P
(
{MQµ

(n)
N > e−c V }

)
by κ

[
e−c(f∗ − f∗)/(s∗

√
2π)
]√

n ,

but this disjointness property is clearly not true. We shall specify a suitable
large V such that the probability of the intersection of two events Fm1 and
Fm2 will be small compared to the probability of Fm1 , when m1 < m2 are
not too close. We shall find a subset M ⊂ [f∗n, f∗n], as large as possible,
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consisting of “well spaced” values mj giving rise to c-allowable couples. The
final estimate has the form

κQ,n > e−c V P
( ⋃
m∈M

Fm
)
, (9.20)

where the probability of the union will be larger than half of the sum of
probabilities. The seemingly harmless allowability restriction that y−1−α =
σα/τ − α must be an odd integer ` will actually cause a heavy loss at the
end.

We fix ε ∈ (0, f∗] and introduce η :=
√

1− ε/f∗. We define the “big”
value V as V = eε2n/2. By (9.17), we have that

0 < f − α(f) 6 ε . (9.21)

Lemma 9.7. — Suppose that 0 < α < ξ 6 f 6 α+ ε and f∗ 6 f 6 1/2.
One has

η2 6
α

ξ
<
α(1− α)
ξ(1− ξ) < 1 , in particular ησf = η

√
f(1− f) < σα . (9.22)

Assuming V = eε2n/2, α = α(f) and writing σατ = f − α, one has that
η τ 6 ε 6 τ . (9.23)

Proof. — We see that α(1 − α) < ξ(1 − ξ) because 0 < α < ξ 6 1/2.
Next, we get

α(1− α)
ξ(1− ξ) >

α

ξ
>
f − ε
f
> 1− ε

f∗
= η2 .

By Taylor–Lagrange at α for the function φα defined in (9.8), we have

φα(f) = φ′′α(ξ0) (f − α)2

2 = σ2
α

ξ0(1− ξ0)
τ2

2 = α(1− α)
ξ0(1− ξ0)

τ2

2
for some ξ0 ∈ (α, f), and φα(f) = φα(f)(f) = (lnV )/n = ε2/2 by assump-
tion. The inequalities in (9.23) follow then from (9.21) and (9.22). �

We have to understand how the values α(f) are distributed when f varies
in [f∗, f∗]. To this end, we estimate the derivative α′(f).

Lemma 9.8. — Let 0 < ε 6 f∗ and V = eε2n/2. The mapping (0, 1) 3
f 7→ α(f) implicitly defined at (9.14) is increasing, and when f ∈ [f∗, f∗] we
have that

η2 < α′(f) < 1 .

Proof. — We express the derivative α′(f) by differentiating with respect
to f the equality φα(f)(f) = (lnV )/n. Writing φα for φα(f), we obtain

φ′α(f) +
(
∂

∂α
φα(f)

)
α′(f) = φ′α(f)− f − α

α(1− α) α
′(f) = 0 .
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By Taylor–Lagrange at α for s 7→ φ′α(s), there is ξ ∈ (α, f) such that

φ′′α(ξ)(f − α) = φ′α(f) = f − α
α(1− α) α

′(f), hence α′(f) = α(1− α)
ξ(1− ξ) > 0

because φ′′α(ξ) = σ−2
ξ . We have that α < ξ < f 6 α+ ε by (9.21), and when

we further assume f∗ 6 f 6 f∗ 6 1/2 the conclusion follows by (9.22). �

We need to study the intersections Fm1 ∩Fm2 , when m1,m2 ∈ [f∗n, f∗n].

Lemma 9.9. — Suppose that f∗n 6 m1 < m2 6 f∗n. One has that

e−1/(6n) P
(
Fm1 ∩ Fm2

)
/P (Fm1) < λ e−δ

2ε2(m2−m1)/2 /
√

2π(m2 −m1) ,
with δ = η3s∗/(1− f∗) and λ =

√
1− f∗/

√
1− f∗.

Proof. — Let fj = mj/n, f∗ 6 fj 6 f∗, and αj = α(fj), for j = 1, 2. By
Lemma 9.8, we have that α1 < α2 since f1 < f2. Let J be an arbitrary subset
of {1, . . . , n} satisfying |J | = m1, and let A(J) be the subset of Ω = SnN
defined by

A = A(J) =
{
x = (x1, . . . , xn) ∈ Ω : J = {i : xi ∈ Cα1}

}
.

One has thus Nn,α1(x) = m1 when x ∈ A. The conditional probability
p
A
that Nn,α2(x) = m2 knowing that x ∈ A is equal to the probability that

m
A

:= m2−m1 of the remaining n
A

:= n−m1 = (1−f1)n > n/2 coordinates
of x (those coordinates that are in Ω1\Cα1) fall in Cα2 \Cα1 . This is given by
the binomial distribution corresponding to n

A
and to α

A
= (α2−α1)/(1−α1),

and we know therefore that

p
A

:=
P
(
{Nn,α2 = m2} ∩A

)
P (A) = P

(
{Nn

A
,α
A

= m
A
}
)

= α
m
A

A (1− α
A

)nA−mA
(
n
A

m
A

)
.

Let f
A

= m
A
/n

A
= (f2 − f1)/(1− f1). Since α′(f) < 1 on [f∗, f∗], we get

f
A

= f2 − f1

1− f1
= f2 − f1

1− α1

(
1 + f1 − α1

1− f1

)
>
α2 − α1

1− α1
+ (f1 − α1)(f2 − f1)

(1− α1)(1− f1) = α
A

+ f1 − α1

(1− α1)(1− f1) (f2 − f1) .

Let f1 − α1 = σα1τ1. We have τ1 > ε by (9.23), σf1 > σα1 > ησf1 > ηs∗
by (9.21) and (9.22), and f∗ 6 f1 6 1/2. By the leftmost inequality in (9.22),
we obtain

1
1− α1

>
α1

f1(1− f1) >
η2

1− f1
>

η2

1− f∗
,

therefore

f
A
− α

A
>

η3s∗ε

(1− f∗)(1− f1) (f2 − f1) = δε

1− f1
(f2 − f1) . (9.24)
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Recalling the function ψf from (9.15), we see that

p
A

= ψf
A

(α
A

)−nA fmAA (1− f
A

)nA−mA
(
n
A

m
A

)
.

Applying Stirling as before in (9.18), and because we have that n
A
/(n

A
−

m
A

) = (1− f1)/(1− f2) 6 (1− f∗)/(1− f∗), we obtain

e−1/(12n
A

) p
A
< ψf

A
(α

A
)−nA

√
n
A

2πmA(n
A
−m

A
)

6 ψf
A

(α
A

)−nA
√

1− f∗
2π(1− f∗)mA

.

For some ξ ∈ (α
A
, f
A

), and since (lnψf
A

)′′(ξ) > f
A
/ξ2 > 1/f

A
by (9.16), we

get

lnψf
A

(α
A

) = (lnψf
A

)′′(ξ) (f
A
− α

A
)2

2 >
(fA − αA)2

2fA
.

Consequently, we can write

p
A
< e1/(12n

A
) exp

(
− n

A

(f
A
− α

A
)2

2f
A

)
λ√

2πmA
, with λ =

√
1− f∗√
1− f∗

.

We see that n
A
/f
A

= n2
A
/(m2 −m1). By (9.24) we have

n
A

f
A

(f
A
− α

A
)2 >

n2(1− f1)2

m2 −m1

δ2ε2(f2 − f1)2

(1− f1)2 = δ2ε2(m2 −m1).

Using also n < 2n
A
and the definition of p

A
, we obtain for A = A(J) that

P
(
A(J) ∩ {Nn,α2 = m2}

)
<

(
e1/(6n)λ e−δ

2ε2(m2−m1)/2 /
√

2π(m2 −m1)
)
P (A(J)) .

Summing on all subsets J of {1, . . . , n} with |J | = m1, and because⋃
|J|=m1

A(J) is equal to {Nn,α1 = m1} = Fm1 , we get

P
(
Fm1 ∩ Fm2

)
<

(
e1/(6n)λ e−δ

2ε2(m2−m1)/2 /
√

2π(m2 −m1)
)
P (Fm1). �

End of proof of Theorem 9.6. — LetH be a sufficiently large integer, and
let us now define M = {jH : j ∈ N} ∩ [f∗n, f∗n] to be the set of multiples
of H located in the segment [f∗n, f∗n]. We fix m1 ∈M and let m2 > m1 be
any other element of M . Then m2−m1 = kH with k integer > 1. Summing
on k > 1 we see that

+∞∑
k=1

e−δ2ε2kH/2
√
kH

<

∫ +∞

0
e−δ

2ε2Hs/2 ds√
Hs

=
√

2Γ(1/2)
εHδ

=
√

2π
εHδ

.
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By Lemma 9.9, we get
∑
m2∈M,m2>m1

P
(
Fm1 ∩ Fm2

)
< P (Fm1)/2 when

εH is larger than 2λ e1/(6n) /δ. It follows then that at least one half of the
set Fm1 is not covered by the other sets Fm2 for m2 > m1 and m2 ∈ M ,
therefore P (

⋃
m∈M,m>m1

Fm) > P (
⋃
m∈M,m>m1

Fm) + P (Fm1)/2 for m1 ∈
M . The probability of

⋃
m∈M Fm is thus at least equal to half of the sum of

probabilities. By (9.19) and (9.20) we get

κQ,n > e−c V P
( ⋃
m∈M

Fm
)
>

e−c

2
∑
m∈M

V P (Fm) > e−c

2
e−1/(12s2∗n)

s∗
√

2π
|M |√
n
.

(9.25)

So far we could hope for a lower bound of order
√
n for the weak type

constant. But we have to comply with the allowability restriction, and we
must estimate the number of couples (f, α(f)) that are c-allowable. We let

ε = s∗n
−1/4

1 + s∗n−1/4/f∗
, so that ε

η2 = ε

1− ε/f∗
= s∗n

−1/4

and ε < f∗. We choose a spacing H ∼ n1/4. For every m ∈M , for f = m/n,
α = α(f) and f = α+ σατ we have by (9.5), (9.22) and (9.23) that

y = τ

σα
6
ε

η

1
ησf

6
ε

η2s∗
= n−1/4 .

For n > 256 we see that y < 1/4 and y4 < 1/n, thus (f, α(f)) is allowable
with constant c = 1 according to Lemma 9.1. We choose the spacing integer
H such that H > 2λ e1/(6n) /(δε). Since ε = η2s∗n

−1/4, we arrive to the
condition

H > (2λ/δη2s∗) e1/(6n) n1/4 .

We obtain a set M ⊂ [f∗n, f∗n] of multiples of H with cardinality at least
equal to b(f∗n − f∗n)/Hc >

[
η2δs∗(f∗ − f∗)/(2λ)

]
e−1/(6n) n3/4 − 1 where

each element m produces a 1-allowable couple (f, α(f)). By (9.25), we get
that

κQ,n >
1

2 e
e−1/(12s2∗n)

s∗
√

2π
|M |√
n
>
η2δs∗(f∗ − f∗)

4 e
√

2πλs∗
n1/4 −O(n−1/2) .

Our version of the Iakovlev–Strömberg proof is not optimal, we shall
however try to figure out a numerical value for the constant that we get in
front of n1/4. We have for n large that ε = o(1), thus η ' 1. Let us introduce

z := δs∗(f∗ − f∗)
η3λs∗

= s2
∗

1− f∗
f∗ − f∗√
f∗(1− f∗)

= f∗(f∗ − f∗)√
f∗(1− f∗)

.

This expression increases with f∗, so we set f∗ = 1/2, the maximal possibil-
ity. Then, the resulting value of z is maximal for f∗ = 3/4−

√
11/48 ∼ 0.271,
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yielding z > 0.102. When n is large, we have

κQ,n >
z

4 e
√

2π
n1/4 − o(n1/4) > 0.0037n1/4 >

n1/4

271 .

Notice that we have set the constant value V as V = Vn ∼ eκ
√
n in di-

mension n. The corresponding sequence of values tn =
√

2 lnVn ∼ n1/4 for
the “test sets” {Xn,α > tn} is “invisible” to the Gaussian limit argument of
Theorem 9.5. �
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