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Tangents to subsolutions: existence and uniqueness,
Part I (∗)

F. Reese Harvey (1) and H. Blaine Lawson (2)

ABSTRACT. — There is an interesting potential theory associated to each degen-
erate elliptic, fully nonlinear equation f(D2u) = 0. These include all the potential
theories attached to calibrated geometries. This paper begins the study of tangents
to the subsolutions in these theories, a topic inspired by the results of Kiselman in
the classical plurisubharmonic case. Fundamental to this study is a new invariant of
the equation, called the Riesz characteristic, which governs asymptotic structures.
The existence of tangents to subsolutions is established in general, as is the exis-
tence of an upper semi-continuous density function. Two theorems establishing the
strong uniqueness of tangents (which means tangents are always unique and are
Riesz kernels) are proved. They cover all O(n)-invariant convex cone equations and
their complex and quaternionic analogues, with the exception of the homogeneous
Monge–Ampère equations, where uniqueness fails. They also cover a large class of
geometrically defined subequations which includes those coming from calibrations.
A discreteness result for the sets where the density is > c > 0 is also established in
any case where strong uniqueness holds. A further result (which is sharp) asserts the
Hölder continuity of subsolutions when the Riesz characteristic p satisfies 1 6 p < 2.
Many explicit examples are examined.

The second part of this paper [23] is devoted to the “geometric cases”. A Homo-
geneity Theorem and an additional Strong Uniqueness Theorem are proved, and the
tangents in the Monge–Ampère cases are completely classified.

RÉSUMÉ. — Il existe une théorie du potentiel intéressante associée à chaque équa-
tion, nonlinéaire et élliptique dégénérée, de la forme f(D2u) = 0. Ceci inclut toutes
les théories du potentiel associées aux calibrations. Cet article commence l’étude
des tangents aux sous-solutions dans ces théories, un sujet inspiré par l’oeuvre de
Kiselman dans le cas pluri-potentiel classique. Fondamentale à notre étude est une
nouvelle invariante, la caractéristique de Riesz, qui gouverne les structures asympto-
tiques. L’existence de tangents aux sous-solutions est établie en général ; on démontre
aussi l’existence générale d’une fonction de densité, semi-continue supérieurement.
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Deux théorèmes qui établissent l’unicité forte de tangents (i.e., tangents sont toujours
unique et sont noyaux de Riesz) sont démontrés. Ils comprennent toutes les sous-
équations qui sont des cones convexes et O(n)-invariants, ainsi que leurs analogues
complexes et quatérnioniques, avec l’exception de l’équation de Monge–Ampère, pour
laquelle l’unicité forte ne tient pas. Ils s’appliquent aussi à une grande classe de sous-
équations définies géométriquement. Parmi elles sont toutes celles qui proviennent de
calibrations. Un résultat de finitude locale, pour les ensembles de densité > c > 0, est
établi dans chaque cas où régit l’unicité forte. Selon un autre résultat, quand la carac-
téristique de Riesz p satisfait 1 6 p < 2, alors toutes les functions sous-harmoniques
sont Hölder-continues. On considère beaucoup d’exemples explicites.

La deuxième partie de cet article [23] concerne les “cas géométriques”. On y
établit un Théorème d’Homogénéité et un Théorème d’Unicité Forte. Aussi, les es-
paces tangents pour les équations de Monge–Ampère (réelles, complexes et quater-
nioniques) sont classifiés complètement.

1. Introduction

The point of this paper is to introduce and study tangents for a wide class
of degenerate elliptic, fully nonlinear equations of the form F(D2u) = 0
in Rn. It was inspired by Kieselman’s study [29] (cf. [30]) of tangents to
plurisubharmonic functions in classical pluripotential theory. The aim is to
develop techniques for studying the behavior, in particular the singular be-
havior, of subsolutions: the upper semi-continuous functions u which satisfy
F(D2u) > 0 in the viscosity sense. A number of quite general results are ob-
tained. These include existence, uniqueness and “harmonicity” of tangents
for a wide range of equations. Densities for subsolutions are defined and
shown to be upper semi-continuous, and a structure theorem is proved for
the sets where the density is > c > 0. A key to the analysis is the notion
of the Riesz characteristic of the equation. This invariant is a real number
p > 1 which governs the asymptotic behavior of singularities, and is easily
computed in all of the examples, no matter how degenerate (see Sections 3
and 4).

For this study we focus on the closed set F = {A ∈ Sym2(Rn) : F(A) > 0}
(cf. [14, 32]), and the operator F will play no role. This set is always assumed
to have the following three properties:

(1) (Positivity) F + P ⊂ F where P ≡ {A > 0}.
(2) (ST-Invariance) F is invariant under a subgroup G ⊂ O(n) which

acts transitively on the sphere Sn−1 ⊂ Rn.
(3) (Cone Property) tF ⊂ F for all t > 0.

A closed set F satisfying Positivity is called a subequation, and the viscosity
F -subsolutions are called F -subharmonic functions. Each subequation F has
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its own potential theory ([14, 17]). For some of the results here, in addition to
these three conditions, F is also assumed to be convex. In this case distribu-
tion theory provides an alternate but equivalent foundation (Theorem 9.5)
for subsolutions, which is helpful.

The equations covered here include many classical examples coming from
real, complex and calibrated geometry, such as the Monge–Ampère and Hes-
sian equations. The reader is encouraged to glance at Section 4 for some basic
examples.

At the time of the first writing of this paper the authors were unaware of
its connections to the important work of Armstrong, Sirakov and Smart [1].
They also studied conical subequations F ⊂ Sym2(Rn) with the additional
assumption that F is uniformly elliptic. This is a stringent assumption which
eliminates many of the examples arising from geometry. They also studied
only solutions (as opposed to the much more general subsolutions consid-
ered here). On the other hand they do not assume invariance or convexity,
which is extremely nice. There are also connections of our work to that of
Labutin [33] who, like Armstrong, Sirakov and Smart, studied uniformly el-
liptic equations. At the end of this introduction the overlap / lack of overlap
is discussed in more detail.

We begin the paper by introducing the algebraically defined and easily
computable Riesz characteristic pF for F , which determines much of the
behavior of subsolutions examined here. The name comes from the fact that
when p ≡ pF is finite, the classical pth Riesz kernel Kp(|x|), where

Kp(t) =


t2−p if 1 6 p < 2
log t if p = 2
− 1
tp−2 if 2 < p <∞ ,

(1.1)

is a solution of the non-linear equation F . In fact, every increasing radial
solution is of the form ΘKp(|x|) + C for constants Θ > 0 and C ∈ R. The
signs in (1.1) have been chosen so that Kp(t) is always increasing.

When p is finite, there is an associated tangential p-flow onF-subharmonic
functions u at each point x0, given for x0 = 0 by

ur(x) =
{
rp−2u(rx) if p 6= 2
u(rx)−M(u, r) if p = 2 ,

(1.2)

where
M(u, r) ≡ sup

|x|6r
u. (1.3)

The tangents to u at 0 ∈ Rn are defined to be the set T0(u) cluster
points of the flow (1.2). When F is convex, these cluster points are taken
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in L1
loc(Rn). When 1 6 pF < 2 (but F not necessarily convex), they can

be taken in the local β-Hölder norm for β < 2 − p. In either case, U ∈
T0(u) if and only if there exists a sequence rj ↓ 0 such that urj → U (in
the appropriate space). It is a basic result that tangents are always entire
F -subharmonic functions on Rn. In particular, the L1

loc-limits have unique
upper semi-continuous representatives which are viscosity F -subsolutions
(see Theorem 9.5(2)). A fundamental result, which is proved in Sections 11
and 15, is the following.

Theorem 1.1 (Existence of Tangents). — If F is convex or if pF < 2,
then tangents always exist.

A natural question is whether tangents are actually solutions (as opposed
to subsolutions). The answer is no (if pF > 2). Classical pluripotential theory
provides (self) tangent examples with large singular sets. It also provides the
remedy: an appropriate concept enlarging the space of (viscosity) solutions.

An F -subharmonic function on Xopen ⊂ Rn is called F -maximal if for
each F -subharmonic function v on X and each compact subset K ⊂ X,

v 6 u on X −K ⇒ v 6 u on X.

If u is F -maximal on X, then on any subdomain Y ⊂ X where u is continu-
ous, it is a viscosity solution (or “F -harmonic”). In particular, it is always the
Perron function for its boundary values on any ball. A second fundamental
result is the following (see Theorem 10.2 and Corollary 10.3).

Theorem 1.2 (Maximality of Tangents). — If F is convex, then tan-
gents are always maximal outside the origin in Rn. If pF < 2, then tangents
are F -harmonic (maximal and continuous) outside the origin.

Existence and regularity (in the weakened form of maximality) for tan-
gents brings us to the natural question of uniqueness. Here there are several
versions.

We say that uniqueness of tangents holds for the subequation F if for
every F -subharmonic function u defined in a neighborhood of 0, there is
exactly one tangent to u at 0.

We say that strong uniqueness of tangents holds for F if for every such
u, the unique tangent is Θ(u)Kp(|x|), with Θ(u) > 0.

We say that homogeneity of tangents holds for F if every tangent to an
F -subharmonic is fixed by the tangential p-flow (1.2).

Since the flow takes a tangent to u to another tangent to u, uniqueness
of tangents implies homogeneity of tangents.
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Several important special cases where uniqueness holds are discussed in
Section 12 (Propositions 12.2, 12.4 and 12.5).

One of the main results of this paper is the Strong Uniqueness Theo-
rem in Section 13. Note that there is a natural action of the group O(n) on
Sym2(Rn). The subequations F ⊂ Sym2(Rn) which are O(n)-invariant are
exactly those which are defined in terms of the eigenvalues of the matrices
A ∈ Sym2(Rn). Every such subequation has a complex and quaternionic
counterpart defined on Cn and Hn by applying the same eigenvalue con-
straints to the complex or quaternionic hermitian symmetric part of A.

Theorem 1.3.I (Strong Uniqueness of Tangents I). — Suppose F is a
convex O(n)-invariant subequation, or the complex or quaternionic counter-
part of such an equation. Then, except for the three basic cases P,PC,PH,
strong uniqueness of tangents holds for F .

There do exist non-convex O(n)-invariant subequations of every Riesz
characteristic for which strong uniqueness fails. See Example 13.15.

Theorem 1.3.I establishes strong uniqueness for a wide range of equations.
These include the kth Hessian equations (k < n) and p-convexity equations
(p real, 1 6 p 6 n), the trace powers of the Hessian, equations coming
from Gårding polynomials, and much more. Each of these has a complex
and a quaternionic counterpart to which Theorem 1.3.I applies. However,
there are many U(n)- and Sp(n)·Sp(1)-invariant subequations, arising from
calibrations and Lagrangian geometry, which have no O(n)-invariant coun-
terpart, so that Theorem 1.3.I does not apply. Results in these cases are
provided by Theorems 1.3.II and 1.3.III below, which require a completely
different method of proof.

Suppose F = F (G) is a subequation defined by a compact subset G ⊂
G(p,Rn) of the Grassmannian of p-planes in Rn (see Example 4.4).

Theorem 1.3.II (Strong Uniqueness II). — Fix p > 2 and n > 3. Then
strong uniqueness of tangents to F (G)-subharmonic functions holds for:

(1) Every compact SU(n)-invariant subset G ⊂ GR(p,Cn) with the one
exception G = GC(1,Cn),

(2) Every compact Sp(n) · Sp(1)-invariant subset G ⊂ GR(p,Hn) with
three exceptions, namely the sets of real p-planes which lie in a
quaternion line for p = 2, 3, 4 (when p = 4 this is GH(1,Hn)),

(3) For p > 5, every compact Sp(n)-invariant subset G ⊂ GR(p,Hn).

This result is based on a companion theorem which has further appli-
cations. Given G ⊂ G(p,Rn) as above, we say that G has the transitiv-
ity property if for any two vectors x, y ∈ Rn there exist W1, . . . ,Wk ∈ G
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with x ∈ W1, y ∈ Wk and dim(Wi ∩ Wi+1) > 0 for all i = 1, . . . , k − 1.
The subequations attached to Lagrangian, Special Lagrangian, Associative,
Coassociative, and Cayley geometries all have this property.

Theorem 1.3.III (Strong Uniqueness III). — If G has the transitivity
property, then strong uniqueness of tangents holds for all F (G)-subharmonic
functions.

Theorems 1.3.II and 1.3.III will be proved in Part II ([23]) of this paper.
There homogeneity of tangents is proved first, and then strong uniqueness
is established. This method makes no use of uniform ellipticity, and has its
roots in pluripotential theory, not viscosity theory.

It is important to note that uniqueness of tangents does not always hold.
In the basic case of convex functions (F = P) we have uniqueness, but strong
uniqueness fails. For classical plurisubharmonic functions (the complex coun-
terpart: F = PC), the uniqueness question was raised in [11] and answered
in the negative by Kiselman [29], who actually characterized the sets which
can arise as T0(u) for a plurisubharmonic function u in Cn. In Part II of this
paper a similar result is obtained for the quaternionic counterpart PH.

The proof of Theorem 1.3.I involves several steps. The first step is of a
classical nature going back to standard potential theory for the Laplacian
and used by Labutin and Armstrong–Sirakov–Smart in viscosity theory. In
our formulation it involves various characterizations of radial F -harmonics.
For example, a result (Theorems 2.4 and 2.7), straightforward in the smooth
case, but which fills a gap in the literature, characterizes the radial viscosity
subsolutions u(x) = ψ(|x|) as the subsolutions of the one-variable subequa-
tion

RF : ψ′′(r) + pF − 1
r

ψ′(r) > 0 (1.4)

This classical subequaton is reviewed in detail in Section 5. Several important
facts are derived. For example, all subsolutions of (1.4) are continuous, which
has the important consequence that if a radial function is F -maximal, then
it is F -harmonic (a solution), and hence of the form ΘKp(|x|) + c. Another
consequence of (1.4) is that quotients ψ(r)−ψ(t)

K(r)−K(t) are jointly (or “doubly”)
monotone. This can be applied to a general non-radial F -subsolution u by
associating to u several radial functions which are also F -subharmonic (Lem-
mas 6.1 and 6.2). The simplest is the maximum M(u, |x|) defined by (1.3),
which is a basic tool in [33, 35, 34] and [1]. We choose the following formu-
lation (see Section 6).
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Theorem 1.4 (Double Monotonicity). — Let u be F -subharmonic in a
neighborhood of the origin in Rn. Then

M(u, r)−M(u, s)
K(r)−K(s) is increasing in r and s. (1.5)

for all 0 < s < r where M is defined.

Furthermore, if F is convex, the same statement holds with M(u, r) re-
placed by either

S(u, r) ≡
 
S

u(rσ) dσ or V (u, r) ≡
 
B

u(rx) dx (1.6)

(the spherical or volume average) where B ≡ {|x| 6 1} is the unit ball, S ≡
∂B is the unit sphere, and

ffl
S

= 1
|S|

´
S
denotes the average or “normalized”

integral.

This theorem has several immediate consequences for the functions Ψ(u,r)
for Ψ = M,S, V . In particular, it leads to the concept of densities (see Corol-
lary 5.4).

Definition 1.5. — Suppose u is F -subharmonic in a neighborhood of
0 ∈ Rn. Then the M -density of u at 0 is the decreasing limit

ΘM (u, 0) ≡ lim
s<r↓0

M(u, r)−M(u, s)
K(r)−K(s) .

When F is convex, there are also Ψ-densities

ΘΨ(u, 0) ≡ lim
s<r↓0

Ψ(u, r)−Ψ(u, s)
K(r)−K(s) .

for Ψ = S and V as in (1.6).

Elementary results concerning these densities are established in Lem-
ma 5.5.

When F is convex, each F subharmonic function is classically ∆-sub-
harmonic, and so ∆u = µ > 0 (a positive measure). Thus we also have the
standard “mass density”

Θq(µ, 0) ≡ lim
r↓0

µ (Br(0))
α(q)rq where q = n− p.

In this convex case all of the densities for M,S, V and µ are universally
related, and when p = 2 we have the further result that ΘM = ΘS = ΘV

(see Propositions 7.1 and 7.2).

As noted, tangents need not be unique. However, the averages of tangents
are uniquely determined by the density alone, even in the most degenerate
cases. This is step two in the proof of the Stong Uniqueness Theorem 1.3.I. It
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is also the key step in the proof of existence (Theorem 1.1) and maximality
(Theorem 1.2).

In the classical case of pluripotential theory the Riesz characteristic is 2,
and our next result, when p = 2, is an extension of the work of Kiselman [29].

Theorem 1.6 (Averages of Tangents). — Suppose F is convex and u is
an F -subharmonic function defined in a neighborhood of the origin in Rn.
Let p = pF be the Riesz characteristic of F . If p 6= 2, then each tangent U
to u at 0 has averages

M(r) = sup
S
U(rσ) = ΘM (u)K(r) ,

S(r) =
 
S

U(rσ) dσ = ΘS(u)K(r) ,

and V (r) =
 
B

U(rx) dx = ΘV (u)K(r) .

(1.7)

In particular,
ΘΨ(U) = ΘΨ(u) for Ψ = M,S or V . (1.8)

When p = 2, all the densities of u and any tangent U to u at 0, agree,
and will be simply denoted by Θ = Θ(u). Specifically, we have

Θ(u) = ΘM (U) = ΘS(U) = ΘV (U) = ΘM (u) = ΘS(u) = ΘV (u). (1.9)
Moreover, the averages of a tangent U to u are given by

M(r) = Θ log r, S(r) = Θ log r+
 
S

U , and V (r) = Θ log r+
 
B

U . (1.10)

This result about spherical averages of tangents has many applications,
for example it is enough to prove maximality of tangents (see Theorem 8.2).

Theorem 1.7 (Maximality Criterion). — Suppose F is convex and U is
an F -subsolution on an annular region A about 0. If the spherical average
S(U, |x|) is an increasing F -solution on A, then U is maximal on A.

Some of the remaining steps in the proof of Theorem 1.3.I, which are
given in detail in Section 12, can be outlined as follows. By applying the
maximality criterion we conclude in Theorem 10.2 that all tangents are F -
maximal. Now if F ′ is any subequation which contains F and has the same
Riesz characteristic, then an F -tangent U to u is also an F ′-tangent to u. In
the O(n)-invariant (and the other cases of Theorem 1.3.III) it is somewhat
surprising that there is a simple convex subequation of characteristic p which
contains all the others (Proposition 13.10). This largest subequation is very
nice; in particular, it is uniformly elliptic. This, together with Theorem 8.7,
shows that tangents are harmonic for this largest subequation, and that they
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are C1. One completes the proof of Theorem 1.3.I by showing that for each
tangent U and rotation g, we must have U = g∗U or otherwise one can
produce a tangent which is not C1.

As with most notions of density in analysis, we have the following.

Theorem 1.8 (Upper Semi-Continuity of Density). — Suppose u is F -
subharmonic on an open set X ⊂ Rn. Then each of the densities

ΘM (u, x), ΘS(u, x), ΘV (u, x)
considered above is an upper semi-continuous function of x. Equivalently,
for all c > 0 and each Θ as above, the sets

Ec ≡ {x : Θ(u, x) > c} are closed.

We also note that by standard geometric measure theory
cHn−p(Ec) 6 µ(X) .

In many cases one can say much more about these high density sets Ec
for c > 0.

For classical plurisubharmonic functions in Cn a deep theorem, due to
L. Hörmander, E. Bombieri and in its final form by Siu ([3, 25, 40]), states
that Ec is a complex analytic subvariety. One straightforwardly deduces
from this result that for the 2-convexity subequation P2 in R2n the set Ec is
discrete, since PC(J) ⊂ P2 for all orthogonal (parallel) complex structures
J on R2n. This very restrictive corollary has a quite general extension.

Theorem 1.9 (Structure of High Density Sets). — Suppose strong
uniqueness of tangents holds for F . Then for any F -subharmonic function u,
the set Ec(u) is discrete.

Theorem 1.9 is essentially sharp. Suppose Ω is a domain with strictly
convex boundary. Given any finite subset E = {xj}Nj=1 ⊂ Ω , any set of
numbers Θj > 0, j = 1, . . . , N , and any ϕ ∈ C(∂Ω), there exists a unique
continuous u : Ω→ [−∞,∞) such that

(1) u is F -harmonic on Ω− E,
(2) u

∣∣
∂Ω = ϕ, and

(3) Θ(u, xj) = Θj for j = 1, . . . , N .

See Remark 14.2 for more details.

The subequations with characteristic 1 6 p < 2 are very different in
nature from those where p > 2. They are discussed in detail in Section 15.
In particular, the following is proved.
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Theorem 1.10 (Hölder Continuity 1 6 p < 2). — Suppose F is a (not
necessarily convex) subequation with Riesz characteristic 1 6 p < 2. Then
each F -subharmonic function is locally Hölder continuous with exponent
α ≡ 2− p.

Furthermore, if u is an F -subharmonic defined in a neighborhood of
0 ∈ Rn, then every sequence {urj}∞j=1 with rj ↓ 0, has a subsequence which
converges locally uniformly to an F -subharmonic function U on Rn. In fact
for each 0 < β < 2− p there exists a subsequence which converges locally in
β-Hölder norm. Finally, when F is convex, this limit U is F -harmonic on
Rn − {0}.

For the kth Hessian equation the Riesz characteristic is p = n/k. For
k > n/2, the Hölder continuity result for this subequation is a fundamental
theorem of Trudinger and Wang [42], and their proof can be carried over
to more general convex equations. However, we do not require convexity in
Theorem 1.10.

In Appendix A we examine the radial subequation for the “subaffine” case
P̃ ≡ {λmax > 0} and establish a basic dichotomy: the Increasing/Decreasing
Lemma.

In Appendix B we show that the subequation P(δ) ≡ {A + δtr(A) > 0}
is uniformly elliptic in the conventional sense.

While in Section 4 we give a number of examples to which our the-
ory applies, many more examples are given in the appendix to Part II.
That appendix also constructs the maximal and minimal subequations of
Riesz characteristic p (showing, in particular, that these largest and small-
est subequations exist). There is a companion result describing the largest
and smallest convex subequations of characteristic p. The largest is given in
Proposition 13.10. The smallest is given in Lemma A.1 of Part II.

It is worth noting that the main results in this paper (existence, strong
uniqueness, maximality, etc.) apply to any subequation obtained by a linear
change of variables, i.e. of the form gtFg for g ∈ GLn(R) (where F is as
assumed herein). This means for cone subequations F which are invariant
under a conjugate subgroup g−1Gg where G ⊂ O(n) acts transitively on
Sn−1. Of course the notion of Riesz characteristic must be reformulated in
this case, and the Riesz kernel Kp(|x|) must be replaced by its transform
Kp(|gx|).

– 786 –



Tangents to subsolutions: existence and uniqueness, Part I

The Work of Armstrong, Sirakov and Smart

In the very interesting paper [1] the authors also study conical sube-
quations F ⊂ Sym2(Rn) with the added assumption that F is uniformly
elliptic. However, they do not assume invariance or convexity. An impor-
tant part of their work (which is “automatic” in our case) proves the exis-
tence and uniqueness of fundamental solutions: F -harmonic functions Φ on
Rn − {0}, which are invariant under the flow Φr(x) = rp−2Φ(rx) for some
p > 1, p 6= 2 and bounded from above or below. (When p = 2 the log enters
as it does here.) They show the existence and uniqueness of two families
of such solutions (up to positive scalars and additive constants) among all
entire punctured F -harmonics with a one-sided bound. In our degenerate
cases two fundamental solutions are not always available. In fact, they are
if and only if both F and the dual F̃ have finite Riesz characteristics. (See
Proposition 3.16 for a description of all such subequations.)

One of the results in [1] is closely related to the work here. They prove
existence and strong uniqueness of tangents to solutions of uniformly elliptic
equations. That is, under their assumptions that F is conical and uniformly
elliptic, they prove that: Any F -harmonic function defined on Bε −{0} and
bounded above (or below), has a unique tangent of the form ΘΦ for some
Θ > 0 (see [1, (5.13), ff.]).

This paper addresses a much broader class of functions, namely subso-
lutions to degenerate elliptic equations. Naturally the equations must be in
some ways restricted, but the results apply to a wide range of geometrically
interesting cases. Here it is shown that tangents exist and are maximal, and
that maximal plus continuous implies F-harmonic. However, it is not true
that maximal implies continuous in this general case. It fails for example for
PC, as does uniqueness of tangents (not just strong uniqueness, see Kisel-
man [29]).

Said differently, the step from maximal to F -harmonic does not always
hold in the degenerate subharmonic case, and it is somewhat surprising that
strong uniqueness of tangents can actually be established for such a broad
spectrum of interesting subequations with p > 2.

We should add that the techniques used in proving strong uniqueness
in the non-O(n)-invariant cases are substantially different from those in the
O(n)-case, and they appear in the sequel (Part II) to this paper.

For the question of existence we need to assume convexity or that 1 6
p < 2. This is quite reasonable since we are dealing with subsolutions and
the equations are only degenerate elliptic. One needs a function space in
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which to extract convergent subsequences just to get off the ground. These
assumptions provide such spaces, namely L1

loc and Hölder.

The work in [1] is related to earlier results of Labutin [33, 34, 35] who
studied the Pucci extremal equations. He established among other things a
removable singularity result and an extension of a classical result of Bôcher.
In this work the classical Riesz kernels also play a prominent role. There is a
careful account of the relationship to the work of Armstrong–Sirakov–Smart
given in [1].

Historical Reflections

In 1982 the authors showed that for each calibration on a riemannian
manifold there is an associated family of minimal subvarieties, forming a
calibrated geometry [13]. More recently [16] it was discovered that the cali-
bration also determines a potential theory of functions whose restrictions to
each of the distinguished submanifolds are subharmonic. Although there is
an analoguein this setting of the i∂∂ operator from complex geometry, that
operator does not play a critical role in the development of the potential
theory [14]. In fact, somewhat surprisingly, a corresponding potential theory
can be established for any collection of submanifolds determined by requiring
their tangent spaces to be in an arbitrary given closed subset of the grass-
mannian. Even more generally one has the potential theory associated to an
elliptic (possibly degenerate) nonlinear inequality F (D2u) > 0, provided by
viscosity subsolutions ([6]).

This raises the possibility of cross-fertilization between two well estab-
lished and deep fields, pluripotential theory (in several complex variables)
and nonlinear elliptic theory. This paper, although not the first, can be
viewed as an example of this phenomenon. The authors believe there are
many more to come.

2. The Radial Subequations Associated to a Subequation F

In this section we first describe the ordinary differential inequality which
governs C2 radial (i.e., spherically symmetric) F -subharmonic functions. Our
main result fills an apparent gap in the literature by extending this character-
ization to general upper semi-continuous radial F -subharmonics. Somewhat
surprisingly this extension requires the attention of Lemma 2.10 below.

– 788 –



Tangents to subsolutions: existence and uniqueness, Part I

Suppose ψ(t) is of class C2 on an interval contained in the positive real
numbers. We also consider ψ as the function ψ(|x|) of x on the corresponding
annular region in Rn.

Lemma 2.1.

D2
xψ = ψ′(|x|)

|x|
P[x]⊥ + ψ′′(|x|)P[x] , (2.1)

where P[x] = x◦x
|x|2 denotes orthogonal projection onto the line [x] through

x 6= 0 and P[x]⊥ = I−P[x] denotes orthogonal projection onto the hyperplane
with normal [x].

Proof. — First note that D(|x|) = x
|x| , and therefore D2(|x|) = D( x

|x| ) =
1
|x|I −

x
|x|2 ◦

x
|x| = 1

|x| (I − P[x]) = 1
|x|P[x]⊥ . Hence,

Dxψ = ψ′(|x|) x
|x|

and

D2
xψ = ψ′(|x|)D

(
x

|x|

)
+ ψ′′(|x|) x

|x|
◦ x

|x|
= ψ′(|x|)

|x|
P[x]⊥ + ψ′′(|x|)P[x] . �

Corollary 2.2. — The second derivative D2
xψ has eigenvalues ψ′(|x|)

|x|
with multiplicity n− 1 and ψ′′(|x|) with multiplicity 1.

Let F ⊂ Sym2(Rn) be a pure second-order constant coefficient sub-
equation. Then by Lemma 2.1 a radial C2-function u(x) = ψ(|x|) is
F -subharmonic on an annular region in Rn if and only if

D2
xu = ψ′(t)

t
Pe⊥ + ψ′′(t)Pe ∈ F , (2.2)

for t = |x| in the corresponding interval in (0,∞). We use λ = ψ′(t) and
a = ψ′′(t) as one-variable jet coordinates. Then the basic one-variable sube-
quation associated with F is defined as follows.

Definition 2.3. — The radial subequation associated with F is the
reduced variable coefficient subequation RF on (0,∞) whose fibre at t is

(RF )t ≡
{

(λ, a) ∈ R2 : λ
t
Pe⊥ + aPe ∈ F,∀ |e| = 1

}
.

Thus for C2-functions we have that
u(x) ≡ ψ(|x|) is F subharmonic ⇐⇒ ψ(t) is RF subharmonic . (2.3)

We extend this to the viscosity setting where F -subharmonic functions
are just upper semi-continuous (see [5, 6, 14, 17] for definitions). The proof
given below of the implication ⇒ is elementary, whereas the proof of ⇐
will require a lemma. Note that the equivalence: u(x) = ψ(|x|) is upper
semicontinuous ⇐⇒ ψ(t) is upper semicontinuous, is obvious.
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Theorem 2.4 (Radial Subharmonics). — The function u(x) ≡ ψ(|x|)
is F -subharmonic on an annular region in Rn if and only if ψ(t) is RF -
subharmonic on the corresponding open sub-interval of (0,∞).

Remark 2.5. — In all but this section of the paper, the subequations
F will be assumed to be cones, unless explicitly stated to the contrary.
For such subequations the maximum principle holds, i.e., it holds for each
F -subharmonic function u(x) (see Theorem A.2). Consequently, if u(x) =
ψ(|x|) is a radial F -subharmonic on a ball about 0, then ψ(t) must be increas-
ing in t. This motivates focusing on an “increasing” version of Theorem 2.4.

We will use the fact, which is elementary to establish, that for an upper
semi-continuous function ψ(t),

ψ(t) is increasing ⇐⇒ ψ is {λ > 0}-subharmonic . (2.4)

(See [12] for a proof.)

Definition 2.6. — The increasing radial subharmonic equation R↑F on
(0,∞) is defined by

R↑F = RF ∩ {λ > 0}. (2.5)

In light of (2.3), it is obvious that for C2-functions ψ(t):

ψ(t) is R↑F -subharmonic ⇐⇒ ψ(|x|) is F ∩{x ·p > 0}-subharmonic (2.6)

where the variable coefficient first-order subequation {x · p > 0} is the con-
straint x ·Dxu > 0 on C2-functions. The equivalence (2.6) can be extended
as in Theorem 2.4.

Theorem 2.7 (Increasing Radial Subharmonics). — The function
u(x) ≡ ψ(|x|) is an increasing, radial F -subharmonic function if and only if
ψ(t) is R↑F -subharmonic.

Remark 2.8. — We will sometimes blur the distinction between ψ(t) and
u(x) = ψ(|x|) by calling ψ(t) a radial (or increasing radial) F -subharmonic.

Remark 2.9. — The statement and proof of a theorem analogous to 2.7
for decreasing radial subharmonics is left to the reader.

Proof of Theorem 2.4.

(⇒): Suppose u(x) ≡ ψ(|x|) is F -subharmonic. If ϕ(t) is a test function
for ψ(t) at t0, then ϕ(|x|) is a test function for ψ(|x|) at any point on the t0-
sphere in Rn. Therefore D2

x0
ϕ ∈ F . Applying the formula for D2

x0
ϕ in terms

of ϕ′(t0) and ϕ′′(t0), the equivalence (2.3), and the definition of (RF )t0 , we
have J2

t0ϕ ∈ RF . This proves that ψ(t) is RF -subharmonic.
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(⇐): Suppose that ψ(t) is RF -subharmonic. We must show that u(x) ≡
ψ(|x|) is F -subharmonic. That is, given a test function ϕ(x) for u(x) at a
point x0, we must show that D2

x0
ϕ ∈ F .

Suppose that there exists a smooth function ψ(t), defined near t0 = |x0|,
such that ϕ(x) ≡ ψ(|x|) satisfies

u(x) 6 ϕ(x) 6 ϕ(x) (2.7)
near x0. Then ψ(t) is a test function for ψ(t) at t0. Hence, the 2-jet of ψ at
t0 belongs to RF . By Lemma 2.1 and the discussion above, this implies that
D2
x0
ϕ ∈ F . The inequality ϕ(x) 6 ϕ(x) (with equality at x0) implies that

D2
x0
ϕ = D2

x0
ϕ+ P for some P > 0, which proves that D2

x0
ϕ ∈ F as desired.

To complete this argument by finding ψ(t) there is some flexibility given
by Lemma 2.4 in [17] so that not all test functions ϕ(x) need be considered.
First we may choose new coordinates z = (t, y) near x0 so that t ≡ |x|.
(Thus t = constant defines the sphere of radius t near x0.) Furthermore, we
may assume that ϕ(z) is a polynomial of degree 6 2 in z = (t, y) and that it
is a strict local test function, i.e., u(z) < ϕ(z) for z 6= z0. Now Lemma 2.10
below ensures the existence of ϕ(x) = ψ(|x|) satisfying (2.7). �

Let z = (t, y) denote standard coordinates on Rn = Rk ×R`. Fix a point
z0 = (t0, y0) and let u(t) be an upper semi-continuous function (of t alone)
and ϕ(z) a C2-function, both defined in a neighborhood of z0.

Lemma 2.10. — Suppose u(t) < ϕ(z) for z 6= z0 with equality at z0. If
ϕ(z) is a polynomial of degree 6 2, then there exists a polynomial ϕ(t) of
degree 6 2 with

u(t) 6 ϕ(t) 6 ϕ(z) near z0 . (2.8)

Proof. — We may assume z0 = 0 and u(0) = ϕ(0) = 0. Then
ϕ(z) = 〈p, t〉+ 〈q, y〉+ 〈At, t〉+ 2〈Bt, y〉+ 〈Cy, y〉 .

We assume u(t) < ϕ(t, y) for |t| 6 ε and |y| 6 δ with (t, y) 6= (0, 0).

Setting t = 0, we have 0 = u(0) < 〈q, y〉 + 〈Cy, y〉 for y 6= 0 sufficiently
small. Therefore, q = 0 and C > 0 (positive definite). Now define

ϕ(t) ≡ 〈p, t〉+ 〈(A−BtC−1B)t, t〉 . (2.9)
The inequalities in (2.8) follow from the fact that for t sufficiently small,

ϕ(t) = inf
|y|6δ

ϕ(z) = 〈p, t〉+ 〈At, t〉+ inf
|y|6δ
{2〈Bt, y〉+ 〈Cy, y〉}. (2.10)

To prove (2.10) fix t and consider the function 2〈Bt, y〉 + 〈Cy, y〉. Since
C > 0, it has a unique minimum point at the critical point y = −C−1Bt.
The minimum value is −〈BtC−1Bt, t〉. If t is sufficiently small, the critical
point y satisfies |y| < δ, which proves (2.7). �
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Proof of Theorem 2.7. — The arguments given for Theorem 2.4 along
with the following missing steps provide the proof. If ϕ(t) is a test function
for ψ(t) at a point t0, then ϕ(|x|) is a test function for ψ(|x|) at x0 whenever
|x0| = t0. Now

Dx0ϕ = ϕ′(|x0|)
x0

|x0|
and hence x0 ·Dx0ϕ = |x0|ϕ′(|x0|) . (2.11)

Hence, if ψ(|x|) is {p·x > 0}-subharmonic, then ψ(t) is {λ > 0}-subharmonic,
and thus increasing. Conversely, if ψ(t) is increasing and ϕ(x) is a test func-
tion for ψ(|x|) at x0, then ϕ(t) ≡ ϕ( tx0

|x0| ) is a test function for ψ(t) at
t0 = |x0|. Hence, ϕ′(t0) > 0. However, ϕ′(t0) = (Dx0ϕ) · x0. �

3. ST-Invariant Cone Subequations: The Riesz Characteristic

This section is devoted to investigating the cone subequations which sat-
isfy a weak form of invariance which will be referred to as spherical transi-
tivity (ST). Two characteristic numbers (p, q) will be associated with each
such subequation F . They uniquely determine the radial subequation for
F and, as we shall show in this and the following sections, can be easily
computed in any example. Moreover, we give a complete description of all
possible examples (of ST-invariant subequations with characteristics (p, q))
in the second subsection here. Most readers will prefer to come back to this
subsection. Although it adds important perspective to the scope of ST-cone
subequations, it is not used in the subsequent results of the paper.

Recall from the introduction that a subequation F ⊂ Sym2(Rn) is said to
be ST-invariant if there exists a subgroup G ⊂ O(n) which acts transitively
on the sphere Sn−1 ⊂ Rn and leaves F invariant (under the induced action
of G on Sym2(Rn)).

For an ST-invariant cone subequation F ,

the slices F ∩ span{Pe⊥ , Pe} for e ∈ Sn−1 are all isomorphic. (3.1)

Note that span{Pe⊥ , Pe} = span{I, Pe} and that the induced action on
Sym2(Rn) sends Pe to Pg(e). In particular,

λPe⊥ + µPe ∈ F for one e ∈ Sn−1

⇐⇒ λPe⊥ + µPe ∈ F for all e ∈ Sn−1. (3.2)

This weakening of ST-invariance will be referred to as weak invariance.
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The Riesz Characteristics

We begin by focusing on the first of the two characteristics (p, q). Al-
though there is an abundance of interesting ST-invariant cone subequations
in dimensions > 3, there are not many increasing radial subequations. In
fact they are described by a single “characteristic” number p between 1 and
∞, which determines a one-variable subequation as follows.

Definition 3.1. — For each p with 1 6 p < ∞, the increasing radial
subequation R↑p is defined by

R↑p : a+ (p− 1)
t

λ > 0 and λ > 0 , (3.3)

while for p = ∞, the subequation R↑∞ is first-order and defined by R↑∞ =
{λ > 0}.

Definition 3.2 (The Increasing Riesz Characteristic). — Suppose F is
an ST-invariant cone subequation. The increasing characteristic pF of F is
defined to be

pF ≡ sup{p : Pe⊥ − (p− 1)Pe ∈ F}. (3.4a)
Equivalently, for finite Riesz characteristic, pF is the unique number p such
that

Pe⊥ − (p− 1)Pe ∈ ∂F . (3.4b)

Proposition 3.3 (Increasing). — Suppose that F is an ST-invariant
cone subequation. Then the increasing radial subequation R↑F equals R↑p where
p = pF is the increasing Riesz characteristic of F .

Proof. — Using Definitions 2.3, 2.6, 3.1 and 3.2, we must show that for
λ > 0

λ

t
Pe⊥ + aPe ∈ F ⇐⇒ a+ p− 1

t
λ > 0 .

Set −(p − 1) ≡ at/λ, so that λ
t Pe⊥ + aPe ∈ F ⇐⇒ Pe⊥ − (p − 1)Pe ∈ F .

Then p 6 p ⇐⇒ −atλ 6 p− 1 ⇐⇒ a+ p−1
t λ > 0. �

Note that by Definition 3.2, the positivity condition for F , and the fact
that 0 ∈ F , we have that pF > 1. Thus 1 6 pF 6∞.

The only equation with pF = 1 is P. At the other extreme we have
pF = ∞. Here there is a test which is very simple to apply in all the ST-
invariant examples, namely: pF =∞ iff −Pe ∈ F . Hence, determining when
pF <∞ is also simple, namely: pF <∞ iff −Pe /∈ F .

We recall the fact that for a subequation F , the dual subequation F̃ is
defined as

F̃ = −(∼ IntF ) = ∼(− IntF ) . (DE)
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Lemma 3.4. — For ST-invariant cone subequations F

(1) pF = 1 ⇐⇒ Pe⊥ ∈ ∂F ⇐⇒ F = P
(2) pF =∞ ⇐⇒ −Pe ∈ F ⇐⇒ −Pe ∈ ∂F.
(3) pF <∞ ⇐⇒ −Pe /∈ F ⇐⇒ Pe ∈ Int F̃ ⇐⇒ P−{0} ⊂ Int F̃ .

Actually, as noted above, it is easy to compute the exact value of pF in
all the examples.

Proof of (1). — Note first that pF > 1 ⇐⇒ Pe⊥ − εPe ∈ F for all
small ε > 0. Now if F contains an element A with at least one eigenvalue
strictly negative, then by positivity and the cone property there is an element
A′ = Pe⊥ − εPe ∈ F . Hence F 6= P ⇒ pF > 1.

Proof of (2). — Note first that −Pe ∈ F ⇒ αPe⊥ − Pe ∈ F ∀α > 0 ⇒
Pe⊥ − (p − 1)Pe ∈ F ∀ p > 1 ⇒ pF = ∞. On the other hand −Pe /∈ F ⇒
εPe⊥ − Pe /∈ F ∀ ε > 0 small ⇒ Pe⊥ − (p − 1)Pe /∈ F ∀ p large ⇒ pF < ∞.
To complete the proof of (2), note that −Pe ∈ IntF cannot occur unless
F = Sym2(Rn) since −Pe ∈ IntF ⇒ 0 ∈ IntF .

Proof of (3). — By (DE) above we have ∼ (−F ) = Int F̃ , and the first
part of (3) follows from the first part of (2). For the last ⇒ note that P is
the convex cone hull of the Pe’s. The last ⇐ is obvious. �

The primary application of the Riesz characteristics (and the reason for
choosing the name) is the fact that the solutions of the associated increasing
radial equation R↑p are given by the Riesz kernels.

Proposition 3.5. — An ST-invariant cone subequation F has finite
Riesz characteristic p = pF if and only if the increasing radial harmonics
for F are:

ΘKp(|x|) + C (3.5)
where Θ > 0, C ∈ R, and Kp(t) is the pth Riesz function defined on
0 < t <∞ by

Kp(t) =


t2−p if 1 6 p < 2
log t if p = 2
− 1
tp−2 if 2 < p <∞.

(3.6)

Proof. — From (3.4b) it is easy to see that u(x) ≡ ψ(|x|) is F -subhar-
monic if and only if ψ(t) is R↑p-subharmonic. The ordinary differential equa-
tion given by equality in (3.3) is easily solved, and ΘKp(t) + C are the
viscosity solutions. One can check directly using Lemma 2.1 that

D2Kp(|x|) = 1
|x|p

(
P[x]⊥ − (p− 1)P[x]

)
and DKp = x

|x|p
(3.7)
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where Kp has been renormalized to

Kp ≡
1

|p− 2|Kp if p 6= 2 and K2 = K2 . (3.8)
�

The sign of Kp(t) has been chosen so that Kp(|x|) is a increasing
or downward-pointing F -harmonic on Rn − {0}. The actual normalization
in (3.6) is simpler when the focus is on the function u, while the normaliza-
tion in (3.8) is simpler when the focus is on the first and second derivatives
of u.

The second of the two numbers (p, q) can also be defined in several equiv-
alent ways.

Definition 3.6 (The Decreasing Riesz Characteristic). — For each ST-
invariant cone subequation F , this characteristic, denoted qF , is defined by

qF = sup {q̄ : −Pe⊥ + (q̄ − 1)Pe /∈ F} , (3.9a)
or equivalently qF is the unique number q such that

− Pe⊥ + (q − 1)Pe ∈ ∂F , (3.9b)
or finally, qF can be defined to be the increasing characteristic of the dual
subequation, i.e.

qF = p
F̃
. (3.9c)

Since ∂F̃ = −∂F , the equivalence of (3.9c) follows easily from (3.4b).
Thus the decreasing characteristic of F might also be called the dual char-
acteristic of F .

For each 1 6 q <∞ set

R↓q : a+ q − 1
t

λ > 0 and λ 6 0 (3.10)

while for q = ∞ the subequation R↓q is first-order and defined by R↓∞ =
{λ 6 0}.

Then the decreasing versions of Propositions 3.3, Lemma 3.4(3) and
Proposition 3.5 state the following.

Proposition 3.7 (Decreasing).

R↓F = R↓q with q ≡ qF . (3.11a)
F has finite decreasing characteristic qF ⇐⇒ Pe ∈ IntF , (3.11b)

which in turn holds if and only if the decreasing radial F -harmonics are
−ΘKq(|x|) + C where Θ > 0 and C ∈ R, and q = qF . (3.11c)
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Remark. — In summary we have that:

(1) For some p finite, Kp(|x|) is an increasing (or downward-pointing)
F -harmonic on Rn − {0} ⇐⇒ −Pe /∈ F ⇐⇒ F has finite
increasing characteristic.

(2) For some q finite, −Kq(|x|) is an decreasing (or upward-pointing)
F -harmonic on Rn − {0} ⇐⇒ Pe ∈ IntF ⇐⇒ F has finite
decreasing characteristic.

(3) Both Kp(|x|) and −Kq(|x|) are F -harmonic on Rn − {0} ⇐⇒ F
has both characteristics (p, q) finite ⇐⇒ −Pe /∈ F and Pe ∈ IntF .

These criteria hold for a significant number of degenerate (non uniformly
elliptic) subequations. (See the next section and Appendix A in Part II.)
However, in case (3) if either F or F̃ is convex, then both are uniformly
elliptic. Conversely, uniform ellipticity always implies that (p, q) are both
finite even in the non-convex case.

Finally, combining both characteristics we have

Proposition 3.8. — If F has characteristics (p, q), then the radial sube-
quation for F is

RF = R↑p ∪R↓q . (3.12)

Remark 3.9 (Boundary Convexity and the Riesz Characteristic). — The
finiteness of the two characteristics of F , which is so easy to ascertain, is
equivalent to automatic boundary convexity for all domains.

Proposition 3.10. — The boundary ∂Ω of every smoothly bounded do-
main Ω ⊂⊂ Rn is

(1) strictly F -convex ⇐⇒ p
F̃

= qF <∞ ⇐⇒ Pe ∈ IntF ,
(2) strictly F̃ -convex ⇐⇒ pF = q

F̃
<∞ ⇐⇒ −Pe /∈ F ,

(3) both strictly F - and F̃ -convex ⇐⇒ (pF , qF ) is finite ⇐⇒
Pe ∈ IntF and −Pe /∈ F .

Proof. — We first prove (2). By Lemma 5.3(ii′) in [14], ∂Ω is strictly
F̃ -convex at x ∈ ∂Ω for all domains Ω if and only if

∀B ∈ Sym2(W ), B + tPe ∈ Int F̃ for all t > some t0 . (3.13)

where |e| = 1 and W = e⊥. Now (3.13) ⇒ Pe ∈ Int F̃ ⇒ 1
tB + Pe ∈ Int F̃

for all t > some t0 ⇒ (3.13). Thus (3.13) is equivalent to pF < ∞ by
Lemma 3.4(3). The proof of (1) follows by duality, and (1) and (2) together
imply (3). �

Results in [14] immediately imply the following.
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Theorem 3.11 (Universal Solvability of the Dirichlet Problem). — Sup-
pose that F is an ST-invariant cone subequation for which both Riesz char-
acterstics pF and qF are finite (or equivalently for which the simple con-
dition Pe ∈ IntF and −Pe /∈ F holds). Then for every domain Ω ⊂⊂ Rn
with smooth boundary ∂Ω, and for every ϕ ∈ C(∂Ω), there exists a unique
h ∈ C(Ω) such that

(1) h is F -harmonic on Ω, and
(2) h

∣∣
∂Ω = ϕ.

Remark 3.12. — In fact Theorem 3.11 holds for any constant coefficient
second-order subequation F if and only if its asymptotic cone subequation−→
F satisfies Pe ∈ IntF and −Pe /∈ F for all |e| = 1.

A Description of all ST-Invariant Cone Subequations

Although it is always easy to compute the characteristics (p, q) of a given
F , it is still enlightening to give a description (or construction) of all the
possible ST-invariant cone subequations with characteristics (p, q).

The following specific examples are instrumental in this description. For
A ∈ Sym2(Rn) let λ1(A) 6 · · · 6 λn(A) denote the ordered eigenvalues of
A, and set λmin(A) ≡ λ1(A) and λmax(A) ≡ λn(A). We then define

Pmin/max
p ≡ {A : λmin(A) + (p− 1)λmax(A) > 0} (3.14)

Pmin/2
p ≡ {A : λmin(A) + (p− 1)λ2(A) > 0} (3.15)

It is clear that both of these are O(n)-invariant cone subequations. Both
A ≡ Pe⊥ − (p− 1)Pe and B ≡ −Pe⊥ + 1

p−1Pe have the property that λmin +
(p − 1)λmax = 0, which shows that A,B ∈ ∂Pmin/max

p and hence Pmin/max
p

has characteristics (p, q) where q satisfies (p−1)(q−1) = 1. Similarly, Pmin/2
p

has characteristics (p,∞) if n > 3.

Our general discussion is a characterization in terms of these two exam-
ples and their duals.

Proposition 3.13. — Suppose that F is an ST-invariant (not necessar-
ily convex) cone subequation. Then F has a finite (increasing) Riesz charac-
teristic p if and only if

Pmin/2
p ⊂ F ⊂ Pmin/max

p . (3.16)
Equivalently, Kp(|x|) is an increasing (or downward-pointing) radial F -har-
monic. In particular, both the “smallest” and the “largest” subequations,
Pmin/2
p and Pmin/max

p , have Riesz characteristic p.
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Proof. — Let A(p) ≡ Pe⊥ − (p − 1)Pe. If F satisfies (3.16), then A(p) ∈
Pmin/2
p ⇒ A(p) ∈ F , and A(p) /∈ IntPmin/max

p ⇒ A(p) /∈ IntF , which proves
that A(p) ∈ ∂F , and hence F has characteristic p.

Each A ∈ Sym2(Rn) can be written as a sum A = λ1Pe1 + · · · + λnPen
using the ordered eigenvalues of A. Set B0 ≡ λ1Pe1 + λ2Pe⊥1 , and B1 ≡
λ1Pe1 + λnPe⊥1 , and note that B0 6 A 6 B1.

If A ∈ Pmin/2
p , then λ1 + (p− 1)λ2 > 0. Thus, B0 ∈ Pmin/2

p . Since Pmin/2
p

and F have the same profile given by (3.1) (and λ2 > 0), we conclude that
B0 ∈ F . However, B0 6 A proving that A ∈ F .

For the other inclusion, pick A ∈ F . Since F ⊂ P̃, we have λmax > 0.
Now A 6 B1 implies B1 ∈ F . Again F and Pmin/max

p have the same profile
given by (3.1). Therefore, B1 ∈ Pmin/max

p . This implies by definition that
A ∈ Pmin/max

p . �

This imposes a constraint on the decreasing characteristic q of F .

Corollary 3.14. — The characteristics of F satisfy
(p− 1)(q − 1) > 1. (3.17)

Proof. — It follows from Definition 3.6(3.9a) that if one shrinks a sube-
quation, then its decreasing characteristic goes up. Thus if F has character-
istic p, we have Pmin/max

p ⊃ F and so the decreasing characteristic q of F
satisfies q − 1 > qPmin/max

p
− 1 = 1/(p− 1). �

Remark. — The only ST-invariant cone subequation with given charac-
teristics (p, q) satisfying equality in (3.17) is Pmin/max

p . This can be proved
by using Proposition 3.15 below, but details are omitted here.

It is just as easy to describe all examples with dual characteristic q. First
note that the duals of the two subequations in (3.16) are given by

P̃min/2
p : λmax(A) + (p− 1)λn−1(A) > 0 , (3.18)

P̃min/max
p : λmax(A) + (p− 1)λmin(A) > 0 . (3.19)

Note that the increasing characteristics of these two subequations are both
∞, and the decreasing characteristics are p by (3.9c).

Applying Proposition 3.13 to F̃ now yields the following result.

Proposition 3.15. — Suppose that F is an ST-invariant (not necessar-
ily convex) cone subequation. Then F has a finite (decreasing) Riesz char-
acteristic q if and only if

P̃min/max
q ⊂ F ⊂ P̃min/2

q . (3.20)
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Proof. — Pmin/2
q ⊂ F̃ ⊂ Pmin/max

q ⇐⇒ P̃min/max
q ⊂ F ⊂ P̃min/2

q . �

Finally, it is possible to describe all the ST-invariant cone subequations
with both characteristics finite.

Proposition 3.16. — Suppose that F is an ST-invariant cone subequa-
tion. Then F has both Riesz characteristics (p, q) finite if and only if

Pmin/2
p ∪ P̃min/max

q ⊂ F ⊂ Pmin/max
p ∩ P̃min/2

q . (3.21)
Such subequations exist if and only if

(p− 1)(q − 1) > 1, (3.22)
and so in particular if this constraint holds for (p, q), then both

Pmin/2
p ∪P̃min/max

q and Pmin/max
p ∩P̃min/2

q have characteristics (p, q). (3.23)

Proof. — Note that (3.21) holds if and only if both (3.16) and (3.20)
hold. Thus by Propositions 3.13 and 3.15, F has finite Riesz characteristics
(p, q) if and only if (3.21) holds.

Corollary 3.14 states that if F has characteristics (p, q), then (3.22) must
hold. Now suppose that (3.22) holds. Then

P̃min/max
q ⊂ Pmin/max

p and Pmin/2
p ⊂ P̃min/2

q (3.24)
because λmax +(q−1)λmin > 0⇒ λmin +(p−1)λmax > 0 if p−1 > 1/(q−1);
and λmin+(p−1)λ2 > 0⇒ λn−1+(p−1)λmax > 0⇒ λmax+(q−1)λn−1 > 0 if
q−1 > 1/(p−1). Finally, (3.24) implies that Pmin/2

p ∪P̃min/max
q ⊂ Pmin/max

p ∩
P̃min/2
q so that both of these subequations have characteristics (p, q). �

4. Some Illustrative Examples

For the basic subequations the Riesz characteristic is quite easy to com-
pute. We shall illustrate this with a selection of examples of differing types.
A detailed discussion of subequations of characteristic p, and further results,
are given in Appendix A of Part II.

For A ∈ Sym2(Rn) we let
λ1(A) 6 λ2(A) 6 · · · 6 λn(A) (4.1)

denote the ordered eigenvalues of A.

Example 4.1 (The p-Convexity Equation). — For each real number p with
1 6 p 6 n, the smallest (see Lemma A.2 in Part II) convex cone subequation
with characteristic p is also one of the most basic:

Pp ≡ {A : λ1(A) + · · ·+ λ[p](A) + (p− [p])λ[p]+1(A) > 0}. (4.2)
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For p an integer the Pp-subharmonic functions are characterized by the fact
that their restrictions to minimal submanifolds of dimension p are intrinsi-
cally subharmonic. For this and a discussion of the geometry associated with
this equation, see [22]. (Results for integer p go back to H. Wu [37, 45].) Note,
by the way, that P1 = P is the homogeneous Monge–Ampère subequation
and Pn = ∆ is the standard Laplacian.

There are complex and quaternionic analogues PC
p and PH

p defined
by (4.2) but using the eigenvalues of the complex (respectively quaternionic)
hermitian symmetric part of A = D2u. When p = 1 this yields the homo-
geneous complex and quaternionic Monge–Ampère subequations. The PC

p -
subharmonic functions are characterized by the fact that their restrictions
to complex p-dimensional submanifolds are ∆-subharmonic. The Riesz char-
acteristics of PC

p and PH
p are 2p and 4p respectively. See Lemma 4.8 below.

Example 4.2 (The Elementary Symmetric or Hessian Equations). — For
each integer k, 1 6 k 6 n, let σk(A) denote the kth elementary symmetric
function of the eigenvalues of A ∈ Sym2(Rn). The convex cone subequation

Σk = {A : σ1(A) > 0, σ2(A) > 0, . . . , σk(A) > 0} (4.3)
has Riesz characteristic

pΣk ≡
n

k
. (4.4)

These subequations, often called hessian equations, have been the focus of
much study (e.g., [33, 34, 35, 42, 43, 44]). There are again complex and
quaternionic analogues ΣC

k and ΣH
k with Riesz characteristics 2n/k and 4n/k

respectively.
Example 4.3 (The δ-Uniformly Elliptic Equations). — The δ-uniformly

elliptic regularization of the basic subequation P ≡ {A > 0} (cf. Exam-
ple 4.10) is

P (δ) ≡
{
A : A+ δ

n tr(A)I > 0
}
. (4.5)

These are convex cone subequations with Riesz characteristic p = n(1 + δ)/
(n+ δ). Given p with 1 6 p 6 n and setting

δ = n(p− 1)
n− p

. (4.6)

Lemma A.2 of Part II states that P(δ) is the largest O(n)-invariant convex
cone subequation with Riesz characteristic p. There are again complex and
quaternionic analogues described in Example 4.7 below.

Example 4.4 (Geometrically Defined Subequations). — These important
examples account for our choice of normalization in defining the Riesz charac-
teristic. Fix a compact subset G ⊂ G(p,Rn) in the Grassmannian of p-planes
in Rn, and define

F (G) ≡ {A : trW (A) > 0 for all W ∈ G} (4.7)
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where trW (A) denotes the trace of A
∣∣
W
. Assuming the ST-invariance of G,

the Riesz characteristic is easily seen to be

pF (G) = p. (4.8)

Many interesting subequations arise this way. WhenG = G(p,Rn), GC(p,Cn)
and GH(p,Hn) we retrieve the integer cases in Example 4.1 above. There are
many other interesting examples. One such is LAG ⊂ GR(n,Cn), the set of
Lagrangian n-planes in Cn. Closely related are the sets of isotropic p-planes,
and p-planes satisfying certain CR (Cauchy–Riemann) conditions. Also of in-
terest is SLAG ⊂ LAG, the special Lagrangian planes (cf. [13]). This latter
is an example of a subequation associated to a calibration [16]. Other par-
ticularly interesting examples come from the associative and coassociative
calibrations in R7 and the Cayley calibration in R8. All the specific subequa-
tions in this paragraph have the property that they are ST-invariant, i.e.,
invariant under a subgroup G ⊂ O(n) which acts transitively on the sphere
Sn−1 ⊂ Rn.

These geometrically defined subequations will be the sole focus of Part II
of this paper.

Example 4.5 (Branches of Gårding Operators). — In many of the cases
above, one can associate a homogeneous polynomial operator Φ(D2u). When
the polynomial Φ is Gårding hyperbolic with respect to the identity I (which
is typically the case), the equation has many branches [10, 15, 21].

The simplest case is P = P1 where the operator is Φ(A) = detR(A). Here
the branches are given by {λk(A) > 0} (see (4.1)). Unfortunately, in this
case the branches for k > 1 have infinite characteristic.

For the general Gårding polynomial Φ(A) of degree m, there are ordered
eigenvalues,

Λ1(A) 6 Λ2(A) 6 · · · 6 Λm(A), and Φ(A) = Λ1(A) · · ·Λm(A). (4.1′)

Just as with detR(A), the kth branch is defined by {Λk(A) > 0} for k =
1, . . . ,m. The Riesz characteristics p1 6 · · · 6 pm of these respective branches
are determined by the eigenvalues of Pe (assuming ST-invariance). They are
exactly the numbers 1/Λj(Pe), j = 1, . . . ,m arranged in increasing order (see
Proposition A.10 in Part II). Therefore the number of branches with finite
Riesz characteristic equals the number of non-zero eigenvalues of Pe. Only
the first and smallest branch is convex, and it is uniformly elliptic ⇐⇒ all
branches are uniformly elliptic ⇐⇒ Φ(Pe) > 0.

Gårding operators are plentiful. For instance, in each of our first three
examples there is an associated Gårding operator, and hence each comes
equipped with branches. To illustrate, for the case where p is an integer in
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Example 4.1, we have

Φ(A) =
∏

i1<···<ip

(λi1(A)+ · · ·+λip(A)) = det (DA : ΛpRn −→ ΛpRn) . (4.9)

Said differently, ΛI(A) = λi1(A) + · · ·+λip(A) are the eigenvalues. Here DA

is the extension of A as a derivation. The kth branch is given by requiring
that the kth ordered p-fold sum of the λi’s be > 0. One easily computes
that the first

(
n−1
p−1
)
branches have Riesz characteristic p and the remaining

branches have infinite characteristic.

In Example 4.2 the Gårding operator is Φ(A) = σk(A). Although the
eigenvalues Λj(A) of Φ do not have an explicit formula in terms of the
standard eigenvalues of A, the eigenvalues of A = Pe are all zero except
for one which equals k/n. Hence, Σk has characteristic n/k and all other
branches have characteristic ∞.

In Example 4.3 the eigenvalues are

Λk(A) = λk(A) + δ

n(1 + δ) tr(A), k = 1, . . . , n .

Hence, each of the kth branches {Λk(A) > 0}, for k > 2, has the same Riesz
characteristic p = n(1 + 1

δ ), which is finite but larger than n, while as noted
above, the first branch P(δ) has characteristic n(1 + δ)/(n+ δ).

Example 4.6 (Trace Powers of the Hessian). — Consider the non-convex
cone subequation

F ≡ {A : tr (Aq) > 0}
where q > 1 is an odd integer. More generally one could define Aq for any
q > 0 by using the function tq for t > 0 and −|t|q for t < 0. In all cases one
computes that the Riesz characteristic is

pF = 1 + (n− 1)
1
q .

More generally, for k ∈ [1, n] and q > 0 real numbers, there is the subequation

F ≡ {A : λq1(A) + · · ·+ λq[k](A) + (k − [k])λq[k]+1 > 0}

with tq defined as above. Here the Riesz characteristic is

pF = 1 + (k − 1)
1
q .

Example 4.7 (Complex and Quaternionic Analogues). — Suppose
F ⊂ Sym2(Rn) is an O(n)-invariant subequation. Then F can be defined
by the constraint set E ⊂ Rn imposed by F on the eigenvalues λ(A) =
(λ1(A), . . . , λn(A)). Thus A ∈ F ⇐⇒ λ(A) ∈ E. The equation F has com-
plex and quaternionic analogues FC and FH, defined on Cn = (R2n, J) and
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Hn = (R4n, I, J,K) respectively, as follows. For A ∈ Sym2(R2n) consider the
hermitian symmetric part

AC ≡
1
2(A− JAJ)

whose eigenspaces are complex lines with ordered eigenvalues λ1(AC) 6 · · · 6
λn(AC). One now defines FC by applying the eigenvalue constraints E of F to
these eigenvalues ofAC. The story in the quaternionic case is parallel and uses
the quaternionic hermitian symmetric part AH ≡ 1

4 (A−IAI−JAJ−KAK)
and eigenvalues λk(AH).

Lemma 4.8. — If F is an O(n)-invariant cone subequation with Riesz
characteristic p, then the Riesz characteristics of FC and FH are

pFC = 2p and pFH = 4p.

Proof. — We consider the complex case. If A = Pe⊥ − (p − 1)Pe ∈
Sym2(R2n), then one computes that

AC = PCe⊥ −
(p

2 − 1
)
PCe and AH = PHe⊥ −

(p
4 − 1

)
PHe (4.10)

which displays the eigenvalues of AC and AH. �

Example 4.9 (The Subequation Determined by a Gårding Operator and a
Universal Eigenvalue Constraint). — The procedures above can be greatly
generalized. Note, to begin, that given an O(m)-invariant subequation F , the
eigenvalue set E ≡ λ(F ) is closed, invariant under permutation of coordi-
nates and Rm+ -monotone. Conversely, any such eigenvalue set E determines
an O(m)-invariant subequation F = λ−1(E). Each such E is a universal
eigenvalue subequation in the sense that, for each degree-m Gårding oper-
ator Φ on Sym2(Rn), the set F ≡ λ−1

Φ (E) is a subequation on Rn, where
λΦ : Sym2(Rn) → Rm is the eigenvalue map associated to Φ. See Proposi-
tion A.8 in [23] for the details and further discussion.

Example 4.10 (The δ-Uniformly Elliptic Regularization of a Subequation).
Given a cone subequation F ⊂ Sym2(Rn) and δ > 0, define

F (δ) ≡
{
A : A+ δ

n tr(A)I ∈ F
}
. (4.11)

This equation satisfies the uniformly elliptic condition:

F (δ) + P(δ) ⊂ F (δ) . (4.12)

One computes that

F has Riesz characteristic p ⇐⇒ F (δ) has Riesz characteristic pn(1 + δ)
n+ δp

.
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5. Kp-Convexity and Monotonicity

In this section we give a fairly complete discussion of the classical one-
variable results that underlie this paper. They concern the properties of
subsolutions to the one-variable subequation Rp introduced below.

In the following section we will prove that associated to each F -sub-
harmonic function u there are three functions of r (denoted M(r), S(r)
and V (r)), which are subsolutions of Rp, and which capture much of the
asymptotic behavior of u. By Lemma 5.1(3) below this will imply the key
double monotonicity result, Theorem 6.4, which is needed for defining the
notion of density and for proving our main theorems.

Fix a real number p with 1 6 p < ∞, and for r > 0 consider the one-
variable Riesz kernel

Kp(r) ≡
1

(2− p)r
2−p if p 6= 2 and K2(r) = log r . (5.1)

With this normalization

K ′p(r) = 1
rp−1 for all 1 6 p <∞ .

Note that Kp(r) is a strictly increasing solution to the subequation

Rp : ψ′′(r) + p− 1
r

ψ′(r) > 0 on (0,∞) . (5.2a)

Alternatively,

Rp : d

dr

(
rp−1ψ′(r)

)
= d

dr

(
ψ′(r)
K ′p(r)

)
> 0 on (0,∞) . (5.2b)

All solutions of Rp are of the form
h(r) ≡ CKp(r) + k with C, k ∈ R . (Riesz Harmonics) (5.3)

Note that h(r) is increasing if and only if C > 0.

The change of variables
s = Kp(r) along with its inverse r = K−1

p (s) (5.4)

play an important role. The inverse r(s) = K−1
p (s) is defined on the range

of Kp which is the interval (0,∞) when 1 6 p < 2, all of R when p = 2, and
(−∞, 0) for 2 < p <∞.

Lemma 5.1 (The Equivalences). — The following conditions on an up-
per semi-continuous function ψ(r), defined on a subinterval of (0,∞), are
equivalent.

(1) (Rp-Subharmonic) ψ(r) satisfies the subequation Rp defined by (5.2).
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(2) (Kp-Convexity) ψ(r) is Kp-convex, meaning that under the change
of variables (5.4)), the function f(s) ≡ ψ(r(s)) is a convex function
of s.

(3) (Kp-Monotonicity) ψ(r)−ψ(t)
Kp(r)−Kp(t) is non-decreasing in r and t (r 6= t).

(4) (Rp-Comparison) If ψ(r) 6 CKp(r) + k for r = s and r = t, then
the inequality holds for all r between s and t.

Proof. — Now f(s) ≡ ψ(r(s)) implies ψ(r) = f(Kp(r)). First, assume ψ
is smooth. Then

ψ′(r) = f ′(s)K ′p(r) and hence d
dr

(
ψ′(r)
K ′p(r)

)
= f ′′(s)K ′p(r) . (5.5)

For general ψ, the fact that: ϕ(r) is a test function for ψ at r0 if and only if
ϕ(r(s)) is a test function for ψ(r(s)) at s0 ≡ s(r0), reduces the proof to the
smooth case. Since viscosity convexity f ′′(s) > 0 is equivalent to classical
convexity (see for example, [14, Prop. 2.6]), this proves that (1) ⇐⇒ (2).

Now (3) is just monotonicity of the slopes of secant lines to the function
f(s) ≡ ψ(r(s)), and hence it is equivalent to the convexity of f(s). Asser-
tion (4) is just the statement that f(s) is convex if and only if f satisfies
comparison with affine functions Cs+ k. �

Corollary 5.2. — Let ψ(r) satisfy the equivalent conditions in Lem-
ma 5.1. Then

(1) the function ψ(r) is locally Lipschitz continuous,
(2) the left and right hand derivatives ψ′±(r) exist.

Proof. — The corresponding statements for the function f(s) ≡
ψ(r(s)) with r(s) = K−1(s) are standard classical facts about the convex
function f . �

Densities

The remainder of this section is devoted to describing properties of a
function ψ(r), defined on an interval (0, r0) (with r0 = ∞ possible), under
the

Hypothesis 5.3. — ψ satisfies the equivalent conditions (1)–(4) of Lem-
ma 5.1.

The Properties (1) and/or (3) enable us to introduce the following.
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Corollary 5.4 (Existence of Densities). — The decreasing limits

Θψ = lim
r,t→0
t>r>0

ψ(t)− ψ(r)
K(t)−K(r) = lim

r→0

ψ′±(r)
K ′(r) (5.6)

exist and define the density Θψ. Moreover, if ψ is increasing, then 06Θψ<∞.

Proof. — To see that the two decreasing limits in (5.6) agree divide the
numerator and denominator of ψ(r+δ)−ψ(r)

K(r+δ)−K(r) by δ and let δ → 0. �

In this one-variable context, rather than in its later applications, it might
be better to call this “the derivative of ψ(r(s)) at r = 0”.

Note that the monotonicity quotient in (3) remains unchanged if ψ is
replaced by a translate ψ − c with c ∈ R. In particular, the densities of u
and u− c are the same. This point is critical in establishing the following.

Lemma 5.5. — If ψ is increasing, then there exists c ∈ R and r0 such
that

ψ(r)− c
K(r) decreases to Θψ as 0 < r < r0 decreases down to 0 .

Moreover,
ψ(r)− ψ(0)

K(r) decreases to Θψ if 1 6 p < 2 , and (5.7a)

lim
r→0

ψ(r)
K(r) = Θψ if 2 6 p <∞ . (5.7b)

(Note: if we set ψ(0) = 0 when 1 6 p < 2, then we have in all cases
(1 6 p <∞) that limr→0 ψ(r)/K(r) = Θψ.)

Proof. — For any value of p, 1 6 p < ∞, there is exactly one point
in[0,∞] where K vanishes. However there are three cases: K(0) = 0 if
1 6 p < 2, K(1) = 0 if p = 2, and K(∞) = 0 if 2 < p. First let us
suppose that the function ψ is defined and finite on an interval containing
the point where K vanishes. Then one can take r in (5.6) to be that point,
and the Proposition follows immediately from the double monotonicity in (3)
of Lemma 5.1. Specifically, in the three cases we obtain that:

(16 p< 2) ψ(t)−ψ(0)
K(r) decreases to Θψ as 0<t<r0 decreases to 0 , (5.7a′)

(p= 2) ψ(t)−ψ(1)
K(t) decreases to Θψ as 0<t<r0 decreases to 0 , (5.7b′)

(2<p) ψ(t)−ψ(∞)
K(t) decreases to Θψ as 0<t<r0 decreases to 0 . (5.7c′)
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This leaves us with an extension problem in the last two cases. Namely we
must prove that there exists an r0 > 0 such that the restriction of the given
ψ to (0, r0)

(p = 2) has an extension ψ to (0, 1] satisfying Lemma 5.1(3), and (5.8b)

(2 < p) has an extension ψ to (0,∞) satisfying Lemma 5.1(3)
with ψ(∞) <∞. (5.8c)

Suppose that ψ has domain containing (0, r0] (and if p = 2 that r0 < 1
since if r0 > 1 in this case we are finished.) Make the change of variables
s0 ≡ K−1(r0) as in Lemma 5.1(2). Since 2 6 p < ∞, we have s0 < 0. The
convex increasing function f(s) on (−∞, s0) can be extended to a convex
increasing function f on (−∞, 0] by defining f to be the affine function

a(s) ≡ f ′−(s0)(s− s0) + f(s0) (5.9)
on s0 6 s 6 0. Since the graph of a(s) is a supporting line for the epigraph
of f over (−∞, s0), this extension f is convex and increasing on (−∞, 0].

Observe now that by translating our original ψ by a suitable additive
constant, we can insure that f < 0 on (−∞, 0]. Now set ψ(t) ≡ f(K(t)),
where 0 < t 6 1 if p = 2 and 0 < t 6 ∞ if 2 < p. Finally, by (5.7b′) where
ψ(1) is finite, and (5.7c′) where ψ(∞) is finite, the fact that K(0) = −∞
implies that limr→0 ψ(r)/K(r) = Θψ. �

Remark 5.6. — The subequation Rp : ψ′′ + p−1
r ψ′(r) > 0 is linear and

could have been interpreted in the distributional sense as well as the viscosity
sense.

6. Monotonicity and Stability of Averages for F -Subharmonic
Functions

In this section we discuss three of the basic ways of taking an average of
an F -subharmonic function, and show that each average produces a radial
F -subharmonic. Since the radial F -subharmonics are just one-variable Rp-
subharmonics (Proposition 3.3), they are well understood and enjoy all the
properties of Lemma 5.1. In particular, they satisfy the double monotonicity
described in Theorem 6.4 below, which provides the vehicle for defining the
densities explored in the next section. Finally, the stability of these averages
under the tangential flow is established in Lemma 6.5.

We assume as always that the subequation F is an ST-invariant cone
with invariance group G ⊂ O(n). We further assume that the Riesz charac-
teristic p of F is finite. This is because when p = ∞, the increasing radial
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subequation R↑F is simply g′(t) > 0 (Proposition 3.3 and Definition 3.1).
Thus, when p =∞, all increasing functions g(t) determine increasing radial
subharmonics g(|x|), and no sensible notion of density is possible.

To begin we set some notation. Let Br(x0) = {x : |x − x0| 6 r} denote
the ball of radius r about x0, and set Sr(x0) ≡ ∂Br(x0). Let A(a, b;x0) ≡
{x : a < |x − x0| < b} denote an annular region centered at x0. Here and
elsewhere, when x0 = 0, reference to it will be dropped from the notation.
Thus, Br = Br(0) and Sr = ∂Br. Similarly we set B = B1 and S = ∂B.

The first average only requires that F be an ST-invariant cone (not nec-
essarily convex). We denote the (spherical) maximum for an F -subharmonic
function u defined on a region containing Sr(x0) by

M(u, x0; r) ≡ sup
S
u(x0 + rx) , (6.1a)

Note that if u is F -subharmonic on BR(x0), then by the maximum principle

M(u, x0; r) = sup
B
u(x0 + rx) = sup

Br(x0)
u

and hence is increasing for 0 6 r 6 R.
(6.1b)

By the ST-invariance of F

M(u, x0; |x|) ≡ sup
g∈G

u(x0 + gx) . (6.2)

We now simplify by setting x0 = 0 and using the abbreviated notation
M(r) ≡M(u; r) = M(u, 0; r) when the meaning is obvious.

Lemma 6.1. — If u is F -subharmonic on an annular region A(a, b), then
M(|x|) is a radial F -subharmonic function on A(a, b). If u is F -subharmonic
on BR, then M(r) is also increasing in r.

Proof. — Let ug(x) ≡ u(gx) with g ∈ G. Then M(|x|) = supg∈G ug(x).
Since F is G-invariant, each ug is F -subharmonic. Therefore, by the standard
“families locally bounded above” property for F , it suffices to prove that
M(t) is upper semi-continuous. This is done as follows. For each δ > 0,
Nδ ≡ {x : u(x) < M(t)+δ} is an open set containing ∂Bt. Hence the annulus
A(t − ε, t + ε) is contained in Nδ for ε > 0 small. Thus M(r) < M(t) + δ if
t − ε 6 r 6 t + ε, proving that M(t) is upper semi-continuous, and hence
M(|x|) is F -subharmonic. �

For the other averages we make the further standing assumption that F
is convex. In this case we note the following.

F is an ST-invariant convex cone ⇒ F ⊂ ∆ ≡ {tr(A) > 0}. (6.3)
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Proof. — If F ∩ {tr(A) = c < 0} is non-empty, then invariance plus
convexity implies that − c

nI ∈ F . Now by the cone property, −λI ∈ F for
all λ > 0. This along with positivity implies that F = Sym2(Rn). Since
tr(Pe⊥ − (p− 1)Pe) = n− p, the condition F ⊂ {trA > 0} implies pF 6 n.
Therefore,

F is an ST-invariant convex cone ⇒ 1 6 pF 6 n. (6.4)

We now define the spherical and volume averages of u at x0 by

S(u, x0; r) ≡ 1
|S|

ˆ
σ∈S

u(x0 + rσ) dσ ≡
 
S

u(x0 + rσ) dσ, (6.5a)

V (u, x0; r) ≡ 1
|B|

ˆ
x∈B

u(x0 + rx) dx ≡
 
B

u(x0 + rx) dx. (6.5b)

Note that for any upper semi-continuous function u, each of these func-
tions is jointly upper semi-continuous in (x0, r) since u(x0 + rx) is the infi-
mum of ϕ(x0 + rx) taken over continuous functions ϕ > u. �

Lemma 6.2. — Suppose that u is F -subharmonic on the annulus A(a, b).
Then S(u; |x|) is a radial F -subharmonic on A(a, b). If u is F -subharmonic
on the ball BR, then both S(u; |x|) and V (u; |x|) are increasing radial F -
subharmonic functions on BR (with limiting values S(u, 0) = V (u, 0) = u(0)
at x = 0).

Proof. — As noted above S(u; r) and V (u; r) are upper semi-continuous
in r, and hence so are the functions S(u; |x|) and V (u; |x|) of x defined on BR.
The statement about their limiting values at x = 0 is a standard fact about
∆-subharmonic functions. It remains to show that S(u; |x|) and V (u; |x|) are
F -subharmonic on BR. Note that

S(|x|) =
ˆ
G

u(gx) dg (6.6)

for a suitably normalized invariant measure dg on G, and that

V (|x|) = n

ˆ 1

0
S(ρ|x|)ρn−1 dρ since |B| = 1

n
|S|. (6.7)

To prove (6.7), set |x| = r and compute V (r) = 1
|B|

´
B
u(ry) dy using

polar coordinates. Now since F is a convex cone subequation, averages such
as (6.6) and (6.7) preserve F -subharmonicity. This is explained further by
Theorem 9.5 and Remark 9.6. �

Remark 6.3. — By Theorem 2.4 and Theorem 2.7, the lemmas above
could have been restated by concluding that the functions M(r), S(r) and
V (r) are R↑F -subharmonic on (0, R), or Rp-subharmonic on (a, b) in the
annular cases.
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The properties of upper semi-continuous functions ψ(r) satisfying Rp
have been presented in detail in Section 5. We make full use of those
results by applying them to the three functions M(u, x0, r), S(u, x0, r) and
V (u, x0, r), where u is an F -subharmonic function. This includes the
Kp-convexity, the Kp-monotonicity and the Rp-comparison properties of
Lemma 5.1.

In particular, the Kp-monotonicity, part (3) of Lemma 5.1, gives the
following basic result.

Theorem 6.4 (Double Monotonicity). — Let u be F -subharmonic in an
annular region about the origin in Rn. Then

M(u, r)−M(u, s)
K(r)−K(s) is increasing in r and s. (1.5)

for all 0 < s < r where M is defined.

Furthermore, if F is convex, the same statement holds with M(u, r) re-
placed by S(u, r); or by V (u, r) provided that u is F -subharmonic on a ball
about the origin.

It is an important fact that each of these averages is stable under limits
in L1. This basic classical fact can be found in [26, §III.3.2]. We state it here
in slightly different form needed later for tangents.

Lemma 6.5 (Stability of Averages). — Suppose uj is a sequence of ∆-
subharmonic functions on BR converging in L1(BR) to a ∆-subharmonic
function U . Then for 0 < r < R,

(1) M(U, r) = limj→∞M(uj , r),
(2) S(U, r) = limj→∞ S(uj , r),
(3) V (U, r) = limj→∞ V (uj , r),

Proof. — Taking K ≡ Br in (3.2.7) of Theorem 3.2.1 in [26] gives us that

lim sup
j→∞

M(uj , r) 6M(u, r) .

Suppose there exists C < M(u, r) such that M(uj , r) 6 C for all j suffi-
ciently large. Then in the L1-limit we would have u − C 6 0 a.e. on Br.
However, for ∆-subharmonic functions, this implies that u − C 6 0 ev-
erywhere on Br, contrary to the definition of M(u, r). We conclude that
lim supj→∞M(uj , r) = M(u, r). The fact that this is also true for all subse-
quences proves (1).

As discussed in the paragraph prior to Proposition 3.2.14 in [26], the
Theorem 3.2.13 can be applied to spherical measure σr on ∂Br. Thus ujσr
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converges to Uσr in the weak topology of measures, yielding (2). Finally, (3)
is implied directly by the hypothesis of L1(Br)-convergence. �

7. Densities for F -Subharmonic Functions: Upper
Semi-Continuity

From the results of the last section and Corollary 5.4 we have three
densities,

ΘM (u, x), ΘS(u, x) and ΘV (u, x)
associated to an F -subharmonic function u defined in a neighborhood of the
origin. For the second two densities, we must assume that F is convex. Under
this convexity assumption there exists a fourth , even more classical density.

The Mass Density

Note that by (6.3) u is classically ∆-subharmonic. Thus ∆u is a measure
µ > 0, which means ∆u has a “mass density”. Given a measure µ > 0 defined
in a neighborhood of a point x0 ∈ Rn, and 0 < k 6 n, the limit

Θk(µ, x0) ≡ lim
r↓0

µ (Br(x0))
α(k)rk , (7.1)

if it exists, is called the k-dimensional mass density of µ at x0. (See, for
example, [9, 2.10.19] for discussion and definition of the constants α(k).)
When k is an integer, α(k) = |Bk|, the volume of the unit ball in Rk.
Suppose Θk(µ, x) exists everywhere or replace lim by lim sup in (7.1). Fix
an open set X, a constant c > 0, and define Ec ≡ {x ∈ X : Θk(µ, x) > c}.
Then the Hausdorff k-measure satisfies (cf. [39, p. 11])

cHk(Ec) 6 µ(X).

Comparing Densities

The next proposition states that: All densities but ΘM “agree”, where
“agree” means “are equal up to universal factors”.

Proposition 7.1. — Suppose that u is F -subharmonic near x0 where
F is convex with characteristic p, and set µ = ∆u. Then when p 6= 2,

ΘS(u, x0) = n− p+ 2
n

ΘV (u, x0) = α(n− p)
n|p− 2|α(n)Θn−p(µ, x0) , (7.2)
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and when p = 2 we have that

ΘS(u, x0) = ΘV (u, x0) = α(n− 2)
nα(n) Θn−2(µ, x0) . (7.3)

The discussion of all densities is completed by showing that the maximum
density and the spherical density are in general “comparable”, and in fact
equal when p = 2.

Proposition 7.2. — Suppose that u is F -subharmonic near x0 where F
is convex and of characteristic p. Then there exists a constant C = C(p, n)>1
such that

ΘM (u, x0) 6 ΘS(u, x0) 6 CΘM (u, x0) if 2 < p <∞ , and (7.4)
ΘS(u, x0) 6 ΘM (u, x0) 6 CΘS(u, x0) if 1 < p < 2 , while (7.5)

ΘM (u, x0) = ΘS(u, x0) if p = 2 . (7.6)

Remark 7.3. — Kiselman proved the equality in (7.6) in the plurisubhar-
monic case where F = PC on Cn (see [29, p. 161, line 2ff.]) by using Harnack’s
Inequality for ∆-subharmonic functions. The same proof works for any con-
vex F of characteristic p = 2. Note that for p = 1 the left inequality in (7.5)
holds but the right inequality fails, even for linear functions.

Proof of Proposition 7.1. — We give the proof of the first equality for
all p using (6.7). Taking x0 = 0 and dropping u and x0 from the notation,
it says that

V (r) = n

ˆ 1

0
S(rt)tn−1 dt . (7.7)

Hence, we have
V (r)
K(r) = n

ˆ 1

0

S(rt)
K(rt)

K(rt)
K(r) t

n−1 dt .

When p 6= 2, K(rt)/K(r) = 1/tp−2, so that letting r ↓ 0 and integrating
yields the first equality in (7.2). When p = 2,

K(rt)
K(r) = 1 + log t

log r ,

so letting r ↓ 0 and integrating yields the first equality ΘV (u) = ΘS(u)
in (7.3).

For the proof of the second equalities we show that the mass density
Θn−p(µ) (µ = ∆u) is the desired multiple of the spherical density ΘS(u).
Recall the classical fact that

µ(Br) = (n− 2)|S|
S′−(r)
K ′n(r) . (7.8)
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(See in [26, Thm. 3.2.16, (3.2.13)′] for a proof.) Since
n− 2
K ′n(r) = rn−1 = |p− 2|rn−p

K ′p(r)
when p 6= 2 ,

we have
rp−nµ(Br) = |p− 2||S|

S′−(r)
K ′n(r) when p 6= 2. (7.8′)

If p = 2, this holds with |p − 2| replaced by 1. Finally, letting r ↓ 0 and
using (5.6) completes the proof. �

Proof of Proposition (7.2). — For simplicity let x0 = 0. Note that for
all p and r we have S(u, r) 6 M(u, r). On the other hand, K(r) < 0 when
p > 2 and K(r) > 0 when p < 2. Dividing by K(r) and letting r ↓ 0 then
gives the inequalities on the left as well as the inequality ΘM (u) 6 ΘS(u)
when p = 2 (since u and u + c have the same density, we can assume that
u(0) = 0 when p < 2.)

The remainder of the proof is a consequence of Harnack’s inequality.
The standard form of this inequality is for a function v 6 0 which is ∆-
subharmonic on Bρ. It says, with ϕ defined by

ϕ(λ) ≡ 1− λ
(1 + λ)n−1 for 0 < λ < 1,

that
M(v, λr) 6 ϕ(λ)S(v, r) for all 0 < r 6 ρ. (7.9)

(See, for example [7, Prop. 4.2.2].) For an arbitrary ∆-subharmonic function
v, the function v −M(v, r) is 6 0 on Br. Hence, (7.9) gives the following
more general form of Harnack’s inequality
M(v, λr)−M(v, r) 6 ϕ(λ)

(
S(v, r)−M(v, r)

)
for all 0 < r 6 ρ. (7.10)

for functions not necessarily 6 0.

Suppose first that p > 2. We may assume u(0) = −∞ since otherwise the
assertion is trivial. Then u is negative near 0, and we can apply the standard
form (7.9)of Harnack’s inequality to obtain

M(u, λr)
K(λr) > λp−2ϕ(λ)S(u, r)

K(r) .

Letting r ↓ 0 gives ΘM (u, 0) > cΘS(u, 0) where c = λp−2ϕ(λ) > 0. This
gives (7.4) with C = 1/c. (Note that c ≡ supλ λp−2ϕ(λ) provides the best
constant C.)

Suppose now that 1 < p < 2. Replace u by u(x)− u(0) so that u(0) = 0.
Since densities are unchanged by adding a constant, we have ΘM (u, 0) =
limr↓0M(u, r)/K(r) and ΘS(u, 0) = limr↓0 S(u, r)/K(r) by Corollary 5.4.
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Since u may not be 6 0, we must use the general form (7.10) of Harnack.
Dividing by K(r) gives

(1 + λ)n−1

1− λ

(
M(u, λr)
K(r) − M(u, r)

K(r)

)
6
S(u, r)
K(r) −

M(u, r)
K(r) . (7.11)

Using the fact that K(λr) = λ2−pK(r) and letting r ↓ 0 gives

ψ(λ)ΘM (u, 0) 6 ΘS(u, 0) with ψ(λ) = 1 + (1 + λ)n−1

1− λ (λ2−p − 1) .

Now direct calculation shows that limλ↓0 ψ
′(λ) = ∞, and so c ≡

sup0<λ<1 ψ(λ) > 0. This gives the desired result with C = 1/c.

It remains to prove that ΘS(u) 6 ΘM (u) when p = 2. Set λ = 1/e
in (7.11) and note the fact that K(r) = log r = log r

e + 1 = K(λr) + 1 =
K(λr)(1 + o(r)). Then taking the limit as r → 0 in (7.11) yields 0 =
ΘM (u) − ΘM (u) 6 ΘS(u) − ΘM (u) by Corollary 5.4. This completes the
proof of Proposition 7.2. �

The Upper Semi-Continuity of Density

Theorem 7.4. — Each of the densities ΘM (u, x), ΘS(u, x), and
ΘV (u, x) considered above is an upper semi-continuous function of x.

Proof. — Because of Proposition 7.1 there are only two cases to consider.
We must show that

lim sup
x→x0
x 6=x0

Θ(u, x) 6 Θ(u, x0) . (7.12)

Set x0 = 0. Assume 0 < |x| < r < t. Then

Θψ(u, x) 6 ψ(u, x, t)− ψ(u, x, r)
K(t)−K(r) . (7.13)

Case 1. ψ = M . — By using the facts that Bt(x) ⊂ Bt+|x|(0) and
Br−|x|(0) ⊂ Br(x), we see that the last quantity above is

6
supBt+|x|(0) u− supBr−|x|(0) u

K(t)−K(r) .

The function M(u, 0, r) ≡ supBr(0) u is continuous (see Corollary 5.2(1))
and increasing. Therefore,

lim sup
x→0
x 6=0

ΘM (u, x) 6
supBt(0) u− supBr(0) u

K(t)−K(r) , 0 < r < t.

Finally, the limit of the RHS as r, t → 0 equals ΘM (u, 0). This proves the
first case.
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Case 2. ψ = V . — It suffices to note that limx→0 V (u, x, t) = V (u, 0, t),
which follows since V (u, x, t) =

ffl
B
u(x+ ty) dy and u converges in L1(B) to

u(ty) as x→ 0. �

Remark. — By using Theorem 3.2.13 in [26], one can show that
u(x + tσ) dσ converges weakly in measure to u(tσ) dσ as x → 0. This gives
a direct proof that S(u, x, t) is continuous in x at x = 0 without using
Proposition 7.1

Corollary 7.5. — For all c > 0, the set
Ec ≡ {x : Θ(u, x) > c} is closed.

Remark. — When p = 1 the set where Θ(u) = 0 is just the set of differ-
entiability points of u (see (5.5) in Part II).

8. Maximality of Subharmonics with Harmonic Averages

In this section we extend the standard notion of maximality in pluripo-
tential theory to each F -potential theory. This notion extends the notion of
being F -harmonic, but is still very close to it. In fact, a maximal function is
harmonic if and only if it is continuous. Our main result, Theorem 8.2, is key
for the study of tangents. It provides a new criterion for an F -subharmonic
function to be F -maximal. An excellent reference for pluripotential theory
is [31].

Definition 8.1. — An F -subharmonic function u on an open set X ⊂
Rn is said to be F -maximal on X if for each F -subharmonic function v on
X and each compact subset K ⊂ X,

v 6 u on X −K ⇒ v 6 u on X. (8.1)
Note that by replacing v with max{u, v}, condition (8.1) is equivalent to

v > u on X and v = u on X −K ⇒ v = u on X. (8.1′)

Most of the previous results come together in the proof of the next result.

Theorem 8.2 (The Maximality Criterion). — Suppose that F is an ST-
invariant convex cone subequation, and U is an F -subharmonic function on
the annulus A = {x : a < |x| < b}. If the spherical average

S(U, t) ≡
 
S

U(tσ) dσ determines an

increasing F harmonic S(U, |x|) on A(a, b),
(8.2)

then the function
U is F -maximal on A. (8.3)
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Proof. — The hypothesis on U can be restated as the condition
S(U, t)is R↑F harmonic on (a, b), (8.2′)

by Theorem 2.7. By Proposition 3.3, R↑F = R↑p, so by Proposition 3.5 this
proves that (8.2′) is equivalent to

S(U, t) = ΘK(t) + c on (a, b) (8.2′′)
for constants Θ > 0 and c ∈ R. Now by the homogeneity of S and K, this is
equivalent to

S(U, t)− S(U, r)
K(t)−K(r) = Θ > 0 for all r < t in (a, b) (8.2′′′)

for some constant Θ > 0.

As in (8.1′) assume that v is F -subharmonic on A with v > U and that
outside a compact subset K ⊂ A we have v = U . By the fundamental double
monotonicity Theorem 6.4 we have that for a < r < t < b,

S(v, t)− S(v, r)
K(t)−K(r) is increasing in r and t. (8.4)

Since v = U outside K, this quotient equals Θ if both r and t are sufficiently
close to a or sufficiently close to b. Hence, this quotient equals Θ for all r < t
in (a, b). That is, S(v, t) satisfies (8.2′′′). It follows that S(v, t), in addition
to S(U, t), satisfies (8.2′′). Therefore,

S(v, t) = S(U, t) + c ∀ t ∈ (a, b) . (8.5)
Taking t close to a shows that c = 0. Now the fact that S(v, t) = S(U, t) for
all t ∈ (a, b) combined with the inequality U 6 v implies that U = v on A,
thus proving that U is F -maximal on A. �

The following additional facts about F -maximal functions are standard
in pluripotential theory, where F = PC. The proofs easily adapt to the more
general subequation F , but since these results are not part of the viscosity
literature, we inlcude them for the convenience of the reader. Throughout
the remainder of this section F is an arbitrary subequation, i.e., a closed set
F ⊂ Sym2(Rn) which satisfies F + P ⊂ F .

Proposition 8.3. — If u is F -harmonic on X, then u is F -maximal
on X.

This is immediate since comparison holds for F (cf. [19, Thm. 6.4]). The
only thing standing in the way of the converse is the continuity of u.

Example 8.4. — The subequation F = PC of pluripotential theory has
many functions, such as log |z1| on C2, which are maximal but not F -
harmonic. In fact any function u(z1), which is ∆-subharmonic on a domain
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X0 ⊂ C, when considered as a function u(z) ≡ u(z1) on X = X0 × Cn−1

with n > 2, is PC-maximal. (If v(z) 6 u(z1) on X−K, then by applying the
maximum principle to v on slices z1 = constant, we get v(z) 6 u(z) on X.)
Now u(z) ≡ u(z1) is PC-harmonic if and only if u is continuous, however, u
is not necessarily continuous even if it is bounded.

Proposition 8.5. — If u is F -maximal and continuous on X, then u
is F -harmonic on X.

Proof. — This is the standard “bump-function” argument which occurs
for example as far back as [2] or in [28]. It goes as follows. Suppose u is not
F -harmonic but is F -maximal, and therefore F -subharmonic. Then v ≡ −u
is not F̃ -subharmonic. Therefore, by Lemma 2.4 in [17], there exist x ∈ X,
ε > 0 and a quadratic polynomial Q(y) such that v(y) < Q(y)− ε|y− x|2 on
Br(x)−{x} with equality at y = x, but D2

xQ /∈ F̃ , i.e., −D2
xQ ∈ IntF . Thus,

w ≡ −Q + δ is strictly F -subharmonic at x, and hence in a neighborhood
Br(x). Pick δ > 0 sufficiently small that v(y) < Q(y)−δ = −w(y) on ∂Br(x).
Then w(y) < u(y) on ∂Br(x), but w(x) = u(x) + δ. This proves that u is
not maximal. �

F -harmonic functions may not be closed under decreasing limits. For in-
stance in Example 8.4 each u(z1) which is ∆-subharmonic is the decreasing
limit of functions uj(z1) which are smooth and ∆-subharmonic. The exten-
sions uj → u to Cn give an example for the case F = PC.

This defect is corrected by enlarging the space of F -harmonic functions
to the space of F -maximal functions. (This is the smallest such enlargement
by Theorem 8.7 below.)

Proposition 8.6. — If u is the decreasing limit of a sequence of F -
maximal functions, then u is F -maximal.

Proof. — Suppose {uj} are F -maximal and uj ↓ u on an open set X. Fix
a compact set K ⊂ X. Then v 6 u on X−K ⇒ v 6 uj on X−K ⇒ v 6 uj
on X ⇒ v 6 u on X. �

This fact has a strong converse.
Theorem 8.7. — If u is locally F -maximal, then u is locally the de-

creasing limit u = limj→∞ uj of F -harmonic functions uj.

The proof of this fact requires a lemma.
Lemma 8.8. — Suppose u is F -subharmonic on X, Ωopen ⊂⊂ X, and

v ∈ USC(Ω) is F -subharmonic on Ω. If v 6 u on ∂Ω, then

v ≡

{
max{u, v} on Ω
u on X − Ω
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is F -subharmonic on X.

Proof. — Sup-convolution provides a decreasing sequence uε ↓ u of con-
tinuous F -subharmonic functions which are defined on subdomains which
contain Ω and increase to X. Set

vεδ ≡

{
max{uε + δ, v} on Ω
uε + δ on X − Ω .

Since {v < uε+δ} is a relatively open subset of Ω containing ∂Ω, the function
vεδ is F -subharmonic on domains containing Ω which increase to X as ε ↓ 0.
Finally, vεδ ↓ v as ε, δ ↓ 0, proving that v is F -subharmonic on X. �

Using this Lemma 8.8, the definitions (8.1) and (8.1′) of F -maximality
on X can be further refined as follows:

For each domain Ω ⊂⊂ X and v ∈ USC(Ω) which is F -subharmonic
on Ω,

v 6 u on ∂Ω ⇒ v 6 u on Ω . (8.1′′)

Using this definition of F -maximality together with the fact that on balls
B ⊂ Rn the Dirichlet problem is uniquely solvable by the Perron function,
it is easy to prove Theorem 8.7.

Proof of Theorem 8.7. — Suppose u is maximal on X and B ⊂ X is
a closed ball. Choose ϕj ∈ C(∂B) such that ϕj ↓ u

∣∣
∂Ω. Let uj ∈ C(Ω)

denote the solution to the Dirichlet Problem on B with uj
∣∣
∂Ω = ϕj and uj

F -harmonic on B. Since uj is the Perron function for boundary values ϕj ,
we have u 6 uj for all j and uj ↓ v ≡ limj uj is decreasing. Thus u 6 v. Also
v
∣∣
∂B

= lim uj
∣∣
∂B

= limϕj = u
∣∣
∂B

, and v is F -subharmonic on B. Thus,
by (8.1′′) above, v 6 u on B. Hence, u = v = lim uj . �

9. Tangents to Subharmonics

Now we come to the main topic of the paper: introducing the notion of
tangents to F -subharmonics. In this section the ST-invariant cone subequa-
tion F on Rn is assumed to be convex. We shall work at a fixed point, which
for simplicity is assumed to be the origin. That is, given an F -subharmonic
function u defined in a neighborhood of 0, we define the notion of tangent
functions to u at 0. A required clarification is given by Proposition 9.4. The
basic properties of a tangent U to u at 0 are then established in Theo-
rems 10.4 and 11.2.
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Definition 9.1. — Suppose that u is F -subharmonic on the ball about
the origin of radius ρ. The tangential p-flow (or p-homothety) determined
by the Riesz characteristic p = pF of F is defined as follows.

(1) ur(x) = rp−2u(rx) if p > 2,
(2) ur(x) = 1

r2−p [u(rx)− u(0)] if 1 6 p < 2, and
(3) ur(x) = u(rx)−M(u, r) if p = 2.

Remark 9.2. — Suppose 1 6 p < 2. Since u(0) = M(u, 0) is finite, some
readers may prefer to assume once and for all in part (2) that u(0) = 0 so
that the p-flows for all p 6= 2 are the same, namely that

ur(x) = rp−2u(rx) if p 6= 2. (9.1)

Others may wish to make this assumption in the proofs.

Note that the functions ur are F -subharmonic on Bρ/r, and as r → 0,
these balls expand to Rn.

An upper semi-continuous function U(x) on Rn taking values in [−∞,∞)
is invariant under this flow if and only if there exists an u.s.c. function g on
the unit sphere S such that

U(x) = |x|p−2g

(
x

|x|

)
in the cases where p 6= 2,

while in the case where p = 2, we leave it to the reader to prove that

U(x) = Θ log |x|+ g

(
x

|x|

)
with sup

Sn−1
g = 0 and Θ > 0 a constant.

Functions of this form will be said to have Riesz homogeneity p.

Under our assumptions on F each F -subharmonic function u is L1
loc since

it is ∆-subharmonic by (6.3).

Definition 9.3 (Tangents). — Suppose that u is an F -subharmonic
function defined in a neighborhood of the origin. For each sequence rj ↘ 0
such that

U ≡ lim
j→∞

urj converges in L1
loc(Rn), (9.2)

the point-wise defined function

U(x) ≡ lim
r→0

ess sup
Br(x)

U (9.3)

is called a tangent to U at 0. We let T0(u) denote the set of all such tan-
gents U . (We will refer to U , satisfying (9.2), as an L1

loc-tangent when the
distinction between the function U and the equivalence class of functions U
is important.)
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Our first result clarifies this Definition.

Proposition 9.4. — Each tangent U to u at 0 is an entire F -subharm-
onic function on Rn. Moreover, U belongs to the L1

loc-class U ∈ L1
loc(Rn)

and is the unique F -subharmonic function in this L1
loc-class.

To prove Proposition 9.4 we use the following result established in [18,
Cor. 5.4] (see [20] for generalizations). We say that a subequation F can be
defined using fewer of the variables in Rn if there exist an (n−1)-dimensional
subspace W ⊂ Rn and a subequation F ′ ⊂ Sym2(W ) which determines F
by: A ∈ F ⇐⇒ A

∣∣
W
∈ F ′.

An important point in the following result is that the same representative
u of the L1

loc-class u (given by (9.4)) is the correct representative, no matter
which subequation F is being considered.

Theorem 9.5 (Distributional versus Viscosity Subharmonics). — Sup-
pose F is a convex cone subequation which cannot be defined using fewer of
the variables in Rn.

(1) If u is F -subharmonic in the viscosity sense, then u is L1
loc and

F -subharmonic in the distributional sense.
(2) If u is an F -subharmonic distribution, then u ∈ L1

loc and the limit

u(x) = lim
r→0

ess sup
Br(x)

u exists at each point (9.4)

and defines an upper semi-continuous function u in the L1
loc-class u

which is F -subharmonic in the viscosity sense. Moreover, u is the
unique such representative of u.

Remark 9.6. — We refer the reader to Sections 3, 4 and 5 of [18] for
a fuller discussion of this result and the definition of an F -subharmonic
distribution (Definition 4.1 and Proposition 4.3). However, the terminology
used in [18] is somewhat different. Here we use the terminology employed
in [20]. In [18] a convex cone subequation F is called a “positive cone” and
denoted P+. The polar cone is denoted by P+. A convex cone subequation
which cannot be defined using fewer of the variables in Rn is called an
“elliptic cone”.

From the distributional point of view it is straightforward to see that
averages, or more generally convolution, of an F -subharmonic function u
with any non-negative measure is again F -subharmonic.
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Proof of Proposition 9.4. — We use these facts about the ST-invariant
convex cone subequation F :

(1) F ⊂ ∆;
(2) 1 6 pF 6 n;
(3) F cannot be defined using fewer of the variables in Rn.

Properties (1) and (2) have already been noted in (6.3) and (6.4). For
Property (3) note that the ST-invariance of F rules out the possibility that
F could be defined using fewer of the variables in Rn. Because of (3) one
can apply Theorem 9.5.

Suppose U = limj→∞ urj in L1
loc(Rn) is an L1

loc tangent to u at 0. Since
F is a cone, each ur is viscosity F -subharmonic, and hence in L1

loc and distri-
butionally F -subharmonic by Part (1) of Theorem 9.5. Hence, in the limit,
U is distributionally F -subharmonic. Now apply Part (2) of Theorem 9.5 to
U to complete the proof. �

In light of Proposition 9.4 we frequently drop the distinction between U
and U .

10. Uniqueness of Averages of Both Tangents and of Flows

Most of the properties of tangents can be deduced from the following
result, which proves that averages of tangents are always unique by showing
that they are radial harmonics.

Theorem 10.1 (Averages of Tangents). — Suppose that u is an F -
subharmonic function defined in a neighborhood of the origin in Rn. Let
p = pF be the Riesz characteristic of F .

If p 6= 2, then each tangent U to u at 0 has averages

M(r) ≡ sup
S
U(rσ) = ΘM (u)K(r) ,

S(r) ≡
 
S

U(rσ) dσ = ΘS(u)K(r) ,

and V (r) ≡
 
B

U(rx) dx = ΘV (u)K(r) .

(10.1)

In particular,

ΘΨ(U) = ΘΨ(u) for Ψ = M,S, or V. (10.2)
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When p = 2, all the densities of u and any tangent U to u at 0, agree,
and will be simply denoted by Θ = Θ(u). Specifically, we have

Θ(u) = ΘM (U) = ΘS(U) = ΘV (U) = ΘM (u) = ΘS(u) = ΘV (u). (10.3)

Moreover, the averages of a tangent U to u are given by

M(r) = Θ log r, S(r) = Θ log r +
 
S

U, and V (r) = Θ log r +
 
B

U ,

(10.4)
with

−CΘ 6
 
S

U 6 0 and −(C+1)Θ 6
 
B

U, where C = 1
ϕ
( 1
e

) > 1, (10.5)

and where ϕ(λ) = (1− λ)/(1 + λ)n−1.

When p 6= 2, these formulas show that any two tangents have the same
maxima M(r) and the same spherical averages S(r) and volume averages
V (r), all being the appropriate density times K(r). When p = 2, M(r),
S(r) and V (r) all agree with Θ log r modulo an additive constant, but the
constant depends on the tangent U , not just on u.

In all cases, for each tangent U , the function S(U, |x|) is F -harmonic on
Rn − {0} since ΘK(|x|) + C is F -harmonic there (Proposition 3.5).

Combining Theorem 8.2 and Theorem 10.1 is one of the main ingredients
of the paper and has the following immediate consequence.

Theorem 10.2. — Every tangent to an F -subharmonic function is F -
maximal.

Applying Proposition 8.5 yields the following.

Corollary 10.3. — Every continuous tangent to an F -subharmonic
function is F -harmonic.

Theorem 10.1, the uniqueness of averages of tangents, follows from the
stability of averages (Lemma 6.5) and the uniqueness of the averages of a
flow. Its proof is given at the end of this section.

We may assume that u(0) = 0 if 1 6 p < 2 (Remark 9.2), and that
u(0) = −∞ if 2 6 p <∞.

Theorem 10.4 (Averages of Flows). — For p 6= 2 and Ψ = M,S or V ,

lim
s↓0

Ψ(us, r) = ΘΨ(u)K(r) . (10.6)
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For p = 2, if Ψ = M we also have
lim
s↓0

M(us, r) = ΘM (u)K(r) = ΘM (u) log r. (10.6a)

In this case the limit is decreasing and uniform in r 6 R. For Ψ = S or V
we have

lim inf
s↓0

S(us, r) > ΘM (u)(log r − C), (10.6b)

and lim inf
s↓0

V (us, r) > ΘM (u)(log r − C − 1) (10.6c)

with C as in (10.5).

Direct calculations from the definitions of the flow and the averages es-
tablish the next result.

Lemma 10.5. — For Ψ = M,S, or V :

Ψ(us, r) = sp−2Ψ(u, sr) = Ψ(u, sr)
K(sr) K(r) if p 6= 2 , (10.7)

Ψ(us, r) = Ψ(u, sr)−M(u, s) = Ψ(u, sr)−M(u, s)
K(sr)−K(s) K(r) if p = 2 . (10.8)

Proof. — For example, when Ψ is the volume average V and p 6= 2, we
have

V (us, r) = 1
|B|

ˆ
B

us(rx) dx = sp−2

|B|

ˆ
B

u(rsx) dx = sp−2V (u, rs).

The remaining calculations are left to the reader. �

Proof of Theorem 10.4. — By Lemma 5.5, the identity (10.7) implies
(10.6) for p 6= 2. In the case where p = 2 the limit (10.6a) for the max-
imum follows from (10.8) by the double monotonicity Theorem 6.4. The
limit (10.6c) for V follows from the limit (10.6c) for S since V (us, r) =
n
´ 1

0 S(us, t) tn−1 dt by (6.7), and n
´ 1

0 (log rt− C) tn−1 dt = log r − C − 1.

It remains to prove (10.6b). Harnack’s inequality in the form (7.10) with
v = us and λ = 1/e states that

C
(
M
(
us,

r
e

)
−M(us, r)

)
+M(us, r) 6 S(us, r).

We know the limit of the terms involving M as s ↓ 0. This gives
CΘM (u)

(
log r

e − log r
)

+ ΘM (u) log r 6 lim inf
s↓0

S(us, r)

as desired. �

Proof of Theorem 10.1. — The density statements for u are contained
in Propositions 7.1 and 7.2. The density statements for U follow from the
formulas in Theorem 10.1 and the density statements for u. The formulas
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in Theorem 10.1 follow immediately from the formulas in Theorem 10.4 for
the averages of flows and the stability of averages (Lemma 6.5), with the
exception of (10.4) for S and V , and the estimates in (10.5).

The estimates (10.6b) and (10.6c) and the Stability Lemma 6.5 show that
for any tangent U to u at 0,

ΘM (u) (log r − C) 6 S(U, r) and ΘM (u) (log r − C − 1) 6 V (U, r)

for all 0 < r < ∞. Also we have that V (U, r) 6 S(U, r) 6 M(U, r) =
ΘM (u) log r.

Since V (U, et) and S(U, et) are entire convex functions of t, the linear
inequalities

Θ(t− C) 6 S(U, et) 6 Θt and Θ(t− C − 1) 6 V (U, et) 6 Θt

imply that S(U, et) = Θ(t+ k) and V (U, et) = Θ(t+ k′ − 1) where k and k′
satisfy −C 6 k, k′ 6 0. �

11. Existence of Tangents

We now address the basic existence question. Again F is assumed here
to be convex. However, in the case where 1 6 p < 2 much stronger results
are true even if F is just a cone and not necessarily convex. These stronger
results are established in Section 15.

Theorem 11.1 (Existence of Tangents). — Suppose that u is F -sub-
harmonic on a ball Bρ. For each R > 0 there exists δ > 0 such that the family
{ur}0<r6δ is unformly bounded above and bounded in norm in L1(BR). In
particular, the set {ur}0<r6δ is precompact in L1(BR).

Proof. — An upper bound for u can be chosen to be any number greater
than ΘM (u)K(R) by (10.6) if p 6= 2 and by (10.6a) if p = 2. Consequently
the boundedness in L1(BR) is equivalent to a lower bound for V (us, R) which
is uniform in s. This lower bound can be chosen to be any number less than
ΘV (u)K(R) if p 6= 2, or ΘM (u)(log R−C−1) if p = 2, by (10.6) and (10.6c)
respectively in Theorem 10.4. �

The basic properties of the tangent set T0(u) are contained in the fol-
lowing theorem. Again see Section 15 for the stronger versions of parts (2)
and (4) using the Hölder topology instead of the L1

loc-topology when 1 6
p < 2.
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Theorem 11.2. — Suppose that u is an F -subharmonic function defined
in a neighborhood of the origin in Rn. Then the tangent set T0(u) to u at 0
satisfies:

(1) T0(u) is non-empty.
(2) T0(u) is a compact subset of L1

loc(Rn).
(3) T0(u) is invariant under the homothety U → Ur.
(4) T0(u) is a connected subset of L1

loc(Rn).
Proof. — Parts (1) and (2) are immediate from Theorem 11.1. The argu-

ments for parts (3) and (4) are given in [38, Prop. 1.1.1]. We include them
here for completeness. To prove (3) note that U(x) = limrj↓0 urj (x) implies
Ur(x) = limsj↓0 usj (x) with sj = rrj . To prove (4) suppose urj → U0 and
utj → U1 with U0 and U1 elements of disjoint open sets N0 and N1 which
cover T0(u). We can assume rj < tj for all j and choose sj between rj and
tj with usj /∈ N0∪N1. (Note that s 7→ us is a continuous map into L1

loc.) By
Theorem 11.1 the sequence usj has a convergent subsequence, and its limit
is in neither N0 nor N1, a contradiction. �

12. Uniqueness of Tangents

In this section we discuss some basic situations where tangents are unique.
Our main uniqueness results are are stated and proved in subsequent sec-
tions. As in Sections 9–11 we assume that F is convex with finite Riesz
characteristic p.

Definition 12.1. — Suppose u is an F -subharmonic function defined
in a neighborhood of the origin.

(1) If T0(u) = {U} is a singleton, then we say that uniqueness of tan-
gents holds for u. If uniqueness of tangents holds for all such u, we
say the that uniqueness of tangents holds for F .

(2) If T0(u) = {ΘK(|x|)} with Θ > 0 a constant, then we say that
strong uniqueness of tangents holds for u. If strong uniqueness of
tangents holds for all such u, then we say that strong uniqueness of
tangents holds for F .

(3) If every tangent U to u satisfies Ur = U ∀ r, then we say that homo-
geneity of tangents holds for u. If homogeneity of tangents holds for
all such u, then we say that homogeneity of tangents holds for F .

Now (2) ⇒ (1) ⇒ (3). The first implication is obvious. For the second,
note that (1) can be rephrased since

T0(u) = {U} ⇐⇒ lim
r→0

ur exists in L1
loc(Rn) and equals U. (12.1)
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Thus by (1), urj and urrj have the same limit U , but urrj has limit Ur,
which proves (3).

In general, S(u, r) 6M(u, r). Therefore,

For 2 6 p 6 n, ΘM (u) 6 ΘS(u),
and for 1 6 p < 2, ΘS(u) 6 ΘM (u) (12.2)

by (5.7) since K > 0 in the first case and K < 0 in the second case. How-
ever, if strong uniqueness holds for u, then all densities “agree” because of
Proposition 7.1 and the following.

If for some Θ > 0, T0(u) = {ΘK}, then ΘM (u) = ΘS(u) = Θ . (12.3)

This follows from (10.2) and the fact that ΘM (K) = ΘS(K) = 1.

There are two classical cases where strong uniqueness holds, that will
prove useful later. For the sake of completeness we include proofs.

Proposition 12.2 (Radial Subharmonics). — Suppose that u(x)=f(|x|)
is a radial F -subharmonic function defined on a neighborhood of 0. Then

lim
r→0

ur = Θ(u)Kp(|x|)

in L1
loc(Rn) and uniformly on compact subsets in Rn − {0}. Thus, T0(u) =

{ΘKp}.

Proof. — Since u is radial, we have that ur(x) = M(ur, |x|), but by
Theorem 10.4 we know that limr↓0M(ur, |x|) = ΘKp(|x|) uniformly in 0 <
|x| 6 R. �

Remark 12.3. — The conclusion of convergence in C(Rn − {0}) only re-
quires F to be an ST-invariant cone subequation with finite characteristic.
It does not require convexity.

Proposition 12.4 (Newtonian Case). — Suppose u is a ∆-subharmonic
function defined on a neighborhood of 0. Then

lim
r→0

ur(x) = − Θ(u)
|x|n−2 in L1

loc(Rn) when n > 3 ,

and lim
r→0

ur(x) = Θ(u) log |x| in L1
loc(Rn) when n = 2 .

Proof. — Each such u is of the form u = v + h where v = K ∗ v is a
Newtonian potential and h is harmonic near the origin. (Take the measure ν
to be a cut-off of the measure µ = ∆u in a small ball about the origin.) This
reduces the proof to the case v ≡ K ∗ ν. (In the n = 2 case ur and vr + hr
differ by M(v, r) +M(h, r)−M(u, r), but this error has limit zero.)
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Now one checks that: for n > 3, (K ∗ ν)r = K ∗ (( 1
r )∗ν) and for n = 2,

(K ∗ ν)(rx) = K ∗ (( 1
r )∗ν)(x) + ν(1) log r, so that M(K ∗ ν, r) = M(K ∗

( 1
r )∗ν, 1) + ν(1) log r. Now limr→0( 1

r )∗ν always exists weakly in the space of
measures and equals Θ[0], where Θ = limr→0 ν(Br) is the zero-dimensional
density of ν at 0. Since K ∈ L1

loc(Rn), the limit of (K ∗ν)r exists in L1
loc(Rn)

and equals K ∗ (Θ[0]) = ΘK. (Note that for n = 2,M(K ∗ ( 1
r )∗ν, 1) has limit

M(Θ log |x|, 1) = 0.)

In the n = 2 case there is a different proof following Kiselman [29]. Note
that by (10.4) we have M(U, r) = Θ log r for any tangent U to u at 0. In
particular, U(x) − Θ log |x| is 6 0 on R2 and ∆-subharmonic on R2 − {0}.
Hence, it can be extended to R2 as a subharmonic function, and then by
Liouville’s Theorem it must be constant. Since M(ur, 1) = 0 for all r small,
M(U, r) = 0, proving that the constant is zero. �

Proposition 12.4 can be partly generalized.

Proposition 12.4′ (Riesz Potentials, p > 2). — Suppose u = Kp ∗ ν
where ν > 0 is a compactly supported measure. Then

lim
r→0

ur = − Θ(ν)
|x|p−2 in L1

loc(Rn)

where, up to a universal constant, Θ(ν) = limr→0 ν(Br).

Proof. — Ignoring constants, we have (cf. [36])

∆u = (∆Kp) ∗ ν = Kp+2 ∗ ν ≡ µ.

Note that
Kn ∗ µ = Kn ∗Kp+2 ∗ ν = Kp ∗ ν = u.

We compute that

ur(x) = rp−2u(rx) = rp−2(Kp ∗ ν)(rx) is equal to Kp ∗
{( 1

r

)
∗ ν
}
,

and observe that limr↓0
( 1
r

)
∗ ν = Θ(ν)[0]. �

We complete this section with a final case where strong uniqueness holds.

Proposition 12.5 (Zero Density). — Suppose that u is F -subharmonic
in a neighborhood of the origin and F is convex with p > 1. If any of the
densities of u is zero at 0, then all the densities of u vanish at 0, and in this
case

lim
r→0

ur = 0 in L1
loc(Rn). (12.4)

If F is not convex but 1 6 p < 2, then ΘM (u, 0) = 0 implies that

lim
r→0

ur = 0 locally in α Holder norm, α = 2− p. (12.5)
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Proof. — The equality of zero densities is a direct consequence of Propo-
sitions 7.1 and 7.2, while (12.4) follows from Theorem 10.4.

The proof of the final assertion of Proposition 12.5 is postponed as it
follows immediately from (15.11). �

13. The Strong Uniqueness Theorem I

In this section we give two proofs of one of our two main results concern-
ing strong uniqueness. Recall that every O(n)-invariant subequation F has
complex and quaternionic analogues FC and FH, which are invariant under
U(n) and Sp(n) respectively (see Example 4.7).

Theorem 13.1. — Suppose that F is O(n)-invariant and convex with
finite Riesz characteristic p. Then, except for the case F = P, strong unique-
ness of tangents holds for F . Furthermore, except for the cases PC and PH,
strong uniqueness of tangents also holds for the complex and quaternionic
analogues FC and FH of F .

Remark 13.2. — For the subequations P,PC and PH, strong uniqueness
fails dramatically. Nonetheless, tangents are classified in these cases. This is
discussed in Part II of this paper.

Proof. — Let u be F -subharmonic in a neighborhood of the origin and
choose U ∈ T0(u). Then

U(x) = lim
j→∞

urj (x)

for a sequence rj ↓ 0, where the flow urj (x), given in Definition 9.1, depends
on p.

Theorem 10.2 states that

U ∈ T0(u) ⇒ U is F -maximal on Rn − {0}, (13.1)

and

U ∈ T0(u) and U ∈ C(Rn−{0}) ⇒ U is F -harmonic on Rn−{0}. (13.2)

We first prove the theorem under the additional assumption that F is uni-
formly elliptic. (Note, however, from Section 4 that there many examples of
subequations F which are not uniformly elliptic, but for which the theorem
still applies.)

Proposition 13.3. — If, in addition to the hypotheses of Theorem 13.1,
F is uniformly elliptic, then strong uniqueness of tangents holds for F .
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Proof of Proposition 13.3. — Two regularity results are needed for F .
They can be stated as follows.

Fact 13.4. — A sequence {uj} of F -harmonics on Xopen ⊂ Rn, which is
bounded in L∞(K) for each compact K ⊂ X, is precompact in C(X).

Fact 13.5. — Each F -harmonic function is C1.

The reader is referred to [4] and [41] for these results. Also, for Fact 13.4,
one can use the Krylov–Safanov Hölder Estimate 4 in [8] which holds with
f = 0 because of the First Linearization on p. 107.

Recall that F is assumed to be invariant under a subgroup G ⊆ O(n)
which acts transitively on Sn.

Lemma 13.6.
(1) Suppose U ∈ T0(u). Then g∗U ∈ T0(g∗u) for each g ∈ G, and the

densities ΘS(g∗U) = ΘS(U) = ΘS(u) = ΘS(g∗u) are all equal.
(2) If U ∈ T0(u) and V ∈ T0(v), then max{U, V } ∈ T0(max{u, v}).
(3) If U ∈ T0(u) and g ∈ G, then max{U, g∗U} ∈ T0(max{u, g∗u}).

The straightforward proofs are omitted.

The proof of Proposition 13.3 will progress in three stages. First we es-
tablish strong uniqueness for continuous tangents, then for tangents which
are locally bounded, and finally for general tangents.

The proof that U = ΘKp for U ∈ C(Rn − {0}) is as follows. Note that
for g ∈ G, max{U, g∗U} ∈ C(Rn − {0}), and therefore by Lemma 13.6
and (13.2),

max{U, g∗U} is F -harmonic on Rn − {0} for each g ∈ G. (13.3)
By the C1-regularity result Fact 13.5 we have that

max{U, g∗U} is C1 on Rn − {0} for each g ∈ G. (13.4)

Although the maximum of two F -subharmonics is always subharmonic, it
is unusual for the maximum of two distinct F -harmonics to be F -harmonic.
In fact we have the following.

Lemma 13.7. — Let f be a function on the unit sphere in S ⊂ Rn with
the property that max{f, g∗f} ∈ C1(S) for all g ∈ G. Then f = constant.

Proof of Lemma 13.7. — We begin with the case G = O(n). If we can
prove constancy on every great circle in Sn−1, we are done. So we are im-
mediately reduced to the case n = 2. Lifting to the covering R→ S1 we are
then reduced to the following elementary fact:
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Fact 13.8. — Let f : R→ R be a 2π-periodic function with the property
that for all a ∈ R, the function Fa(x) ≡ max{f(x), f(x+a)} is differentiable.
Then f ≡ constant.

We see this as follows. If f is not constant, there exists a point x with
f ′(x) > 0. Since it is periodic, there must also exist a point y with f ′(y) < 0.
Set a = y − x. Then the left hand derivative of Fa at x is < 0 (if it exists),
and the right hand one is > 0. This completes the argument for G = O(n).

Consider now the general case of a closed subgroup G ⊂ O(n). Fix x ∈
Sn−1 and decompose the Lie algebra as g = k ⊕ h (orthogonal with respect
to the Killing form of so(n)), where k = g∩so(n−1) is the Lie algebra of the
subgroup K ≡ {g ∈ G : g(x) = x}. Now the differential of the G-action at
x gives an isomorphism g ∼= Tx(Sn−1), and for every 1-parameter subgroup
ϕt ⊂ G generated by an element of g, the orbit is a great circle. The argument
made above for O(n) now applies, and Lemma 13.7 is proved. �

Taken together, these two lemmas prove that the punctured harmonic
U(x) is radial (constant on spheres about the origin). Therefore, by Propo-
sition 3.5, U = ΘK + C, and by (10.1), C = 0. This completes the proof of
Proposition 13.3 if U ∈ C(Rn − {0}).

For the next step we establish the following strengthening of Propo-
sition 8.5 which reduces the case U ∈ L∞loc(Rn − {0}) to the case U ∈
C(Rn − {0}).

Proposition 13.9. — Suppose F is uniformly elliptic. Then each locally
bounded F -maximal function is F -harmonic.

Proof of Proposition 13.9. — Suppose u is an F -maximal L∞loc-function
on a domain X ⊂ Rn. By Theorem 8.7 for any compact set K ⊂ X, u
is the decreasing limit of a sequence {uj}j of F -harmonic functions on a
neighborhood of K. By Fact 13.4, the limit u is continuous, and hence F -
harmonic by Proposition 8.5. �

This completes the second stage of the proof of Proposition 13.3 where
U ∈ L∞loc(Rn − {0}). It remains to prove the last stage where U is a general
tangent.

By Lemma 13.6(2), for each N > 0 we have UN ≡ max{U,NKp} ∈
T0(max{u,NKp}). Since UN ∈ L∞loc(Rn − {0}), UN is a multiple of Kp. We
now observe that UN decreases down to U as N → ∞. Hence, if each UN
is a multiple of the Riesz kernel, then so is U . This completes the proof of
Proposition 13.3 �

The last result needed for the proof of Theorem 13.1 in the O(n)-invariant
case is the following proposition, which reduces the case of our general F
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of characteristic p, to a specific maximal such equation, which is uniformly
elliptic.

Proposition 13.10. — The subequation

P largest
p

def=
{
A : A+ p− 1

n− p
(trA)I > 0

}
contains all the O(n)-invariant convex cone subequations F of Riesz char-
acteristic p, and has Riesz characteristic p itself. Since

P largest
p = P(δ) with δ = (p− 1)n

n− p
(see Example 4.3), the subequation P largest

p is uniformly elliptic when p > 1.

Proof. — Suppose A = λ1Pe1 + · · · + λnPen is in diagonal form with
λ1 6 · · · 6 λn. Then by definition (4.5) we know that

A /∈ P(δ) ⇐⇒ 〈A,Pe1 + δ
nI〉 = λ1 + δ

n (λ1 + · · ·+ λn) < 0 .
If µ′ = π(λ′) is a permutation of λ′ = (λ2, . . . , λn), then Aπ ≡ λ1Pe1 +
µ2Pe2 +· · ·+µnPen also belongs to the open half-spaceH defined by 〈A,Pe1 +
δ
nI〉 < 0, and H is disjoint from P(δ). Averaging A over these permutations
yields B ≡ λ1Pe1 + Σ

n−1pe⊥1 where Σ ≡ λ2 + · · ·+ λn. Since B ∈ H we have
B /∈ P(δ). Hence setting e ≡ e1 and using the fact that P(δ) is a cone, we
can rescale to obtain B′ ≡ Pe⊥ − (p′ − 1)Pe /∈ P(δ). Since the characteristic
of P(δ) is equal to p, this proves that p′ > p.

Now if A ∈ F , then since F is O(n)-invariant and convex, the average
B ∈ F . Finally since F is a cone, B′ ∈ F . Since p′ > p, this proves that F
has Riesz characteristic > p, contrary to assumption. �

Proposition 13.10 says that if U is a tangent to an F -subharmonic func-
tion, where F satisfies the hypotheses, then U is P largest

p -tangent. Since the
subequation P largest

p is uniformly elliptic, Proposition 13.3 applies, which
completes the proof of Theorem 13.1 in the orthogonally invariant case.

Remark 13.11. — Some (in fact, many) readers may be uncomfortable
with the assertion that P(δ)-harmonics have the regularity of viscosity solu-
tions to equations which are convex and uniformly elliptic in the conventional
sense. A discussion of this point is given in Appendix B.

Consider now the complex analogue FC of F on Cn. Then we have FC ⊂
PC(δ), the complex analogue of the subequation defined in Proposition 13.10.
Now for any A ∈ Sym2

R(Cn) one has that tr(A) = 2trC(AC) and λ1(A) 6
λC1 (AC). Hence, P( δ2 ) ⊂ PC(δ) as subsets of Sym2(R2n) = Sym2

R(Cn). It
follows that PC(δ) is uniformly elliptic (for p > 1). The arguments given
above now go through to establish the theorem in this case.
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The case of the quaternionic analogue FH is proved in exactly the same
way. This completes the proof of Theorem 13.1. �

For the interested reader we present a second argument for Theorem 13.1
where the passage from maximal to harmonic is based on regularization via
the group G, a technique which is discussed, for example, in [27].

A Slightly Different Proof of Theorem 13.1. — Let u be F -subharmonic
in a neighborhood of the origin and choose U ∈ T0(u). For clarity of exposi-
tion we work in the case p > 2. Then

U(x) = lim
j→∞

rp−2
j u(rjx)

for a sequence rj ↓ 0. Let χ = χε : G → [0,∞) be a family of smooth
functions converging to the δ-function at the identity in G, and for any
function f which is L1

loc in Rn − {0} and in L1(Sn−1(r)) for all r, define

f ε(x) ≡
ˆ
G

f(gx)χ(g) dg

where dg is Haar measure with unit volume on G. The following lemma is
proved below.

Lemma 13.12.

U ε(x) = lim
j→∞

rp−2
j uε(rjx) .

Now by the Fubini Theorem, U ε satisfies

S(U ε, r) =
ˆ
|x|=1

U ε(rx) dx =
ˆ
|x|=1

{ˆ
G

U(grx)χ(g) dg
}

dx

=
ˆ
G

{ˆ
|x|=1

U(rgx) dx
}
χ(g) dg =

ˆ
G

S(U, r)χ(g) dg

= S(U, r) = ΘSK(r) .

From this we conclude that U ε is maximal by Theorem 8.2. The next lemma
is also proved below.

Lemma 13.13. — U ε is continuous and converges to U in L1
loc(Rn−{0})

as ε→ 0.

Note that the continuity of U ε implies that it is F -harmonic (Proposi-
tion 8.5).
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We now fix g0 ∈ G and define

V ε(x) ≡ U ε(g0x) = lim
j→∞

rp−2
j uε(rjg0x)

where the second equality comes from Lemma 13.12. Clearly V ε is a tangent,
and it satisfies S(V ε, r) = S(U ε, r) = ΘSK(r). In particular, V ε is also
maximal. Furthermore, note that

max{U ε(x), V ε(x)} ≡ lim
j→∞

rp−2
j max{uε(rjx), uε(rjg0x)}

is also a tangent and hence maximal. We have proved the following.

Proposition 13.14. — For all g ∈ G and all ε > 0 the function
max{U ε, g∗U ε} is F -harmonic.

As in the first proof we now apply elliptic regularity and Lemma 13.7 to
conclude that each function max{U ε, g∗U ε} is C1, and therefore that U ε is
constant on each sphere. Then by Corollary 10.3 U ε is an increasing radial
harmonic and therefore a multiple of the Riesz kernel. Since U ε → U in L1

loc,
we conclude that U = ΘS(u)K(|x|). This completes our second proof in the
orthogonally invariant case. Arguments for the complex and quaternionic
analogous proceed as above. �

Proof of Lemma 13.12. — Let Uj(x) ≡ rp−2
j u(rjx), so that Uj → U in

L1
loc(Rn − {0}). Set A = {r 6 |x| 6 R}. Then

∥∥U εj − U ε∥∥L1(A) =
ˆ
A

∣∣∣∣ˆ
G

{Uj(gx)χ(g)− U(gx)χ(g)} dg
∣∣∣∣ dx

6
ˆ
G

ˆ
A

|Uj(gx)− U(gx)|dxχ(g) dg

=
ˆ
G

‖g∗Uj − g∗U‖L1(A) χ(g) dg

=
ˆ
G

‖Uj − U‖L1(A) χ(g) dg = ‖Uj − U‖L1(A) .

Thus limj→∞ U εj = {limj→∞ Uj}ε as claimed. �

Proof of Lemma 13.13. — It is standard that the restriction of U ε to
each sphere {|x| = r} is continuous (in fact, smooth). We see this as follows.
Suppose xj → x in {|x| = r}. By transitivity we can write xj = gjx where
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gj → 1 in G. Then

|U ε(xj)− U ε(x)| =
∣∣∣∣ˆ
G

U(gxj)χ(g) dg −
ˆ
G

U(gx)χ(g) dg
∣∣∣∣

=
∣∣∣∣ˆ
G

U(ggjx)χ(g) dg −
ˆ
G

U(gx)χ(g) dg
∣∣∣∣

=
∣∣∣∣ˆ
G

U(hx)χ(hg−1
j ) dh−

ˆ
G

U(gx)χ(g) dg
∣∣∣∣

=
∣∣∣∣ˆ
G

U(gx)
{
χ(gg−1

j )− χ(g)
}

dg
∣∣∣∣

6
ˆ
G

|U(gx)|
∣∣χ(gg−1

j )− χ(g)
∣∣ dg

6

{ˆ
{|x|=r}

|U(x)| dg
}

sup
g∈G

∣∣χ(gg−1
j )− χ(g)

∣∣→ 0 .

We also know that U ε is maximal, and in particular upper semi-continuous
with S(U ε, t) ≡ ΘK(t) for all t.

Now for |x| = r, g0 ∈ G, and any r1 < r < r2, the calculation above also
shows that

|U ε(g0x)− U ε(x)| 6 sup
r16t6r2

{ˆ
{|x|=t}

|U(x)| dg
}

sup
g∈G

∣∣χ(gg−1
0 )− χ(g)

∣∣ .
Now every y with |y| = t and |y − x| < δ can be written as y = g0x with
d(g0, 1) < ε(δ) where ε(δ)→ 0 as δ → 0. Thus we have

|U ε(y)− U ε(x)|

6 sup
r16t6r2

{ˆ
{|x|=t}

|U(x)| dg
}

sup
d(g0,1)<ε(δ)

sup
g∈G

∣∣χ(gg−1
0 )− χ(g)

∣∣
6 Cϕ(δ)

for all |x| = t, |y| = t, |y−x| < δ and r1 6 t 6 r2. This shows that the family
of functions

Vt ≡ U ε(tx)is uniformly equicontinuous on the sphere Sn−1 = {|x| = 1}.

Claim.
lim
t→t0

sup
Sn−1

|Vt − Vt0 | = 0 .

Proof. — Let tj → t0 be any sequence. Then by the equicontinuity above,
there is a subsequence such that Vtj converges uniformly to a limit Ṽ on
Sn−1. We are done if we show that Ṽ = Vt0 .
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Now by the upper semi-continuity of U ε we have

Ṽ (x) = lim
j→∞

Vtj (x) = lim
j→∞

U ε(tjx) 6 U ε(t0x) . (13.5)

However, we also have thatˆ
Sn−1

Ṽ (x) dx = lim
j→∞

ˆ
Sn−1

Vtj (x) dx = lim
j→∞

ˆ
Sn−1

U ε(tjx) dx

=
ˆ
Sn−1

U ε(t0x) dx.

since the last two terms are just the averages S(U ε, tj) = ΘK(tj) →
ΘK(t0) = S(U ε, t0). By the inequality (13.5) we conclude that Ṽ (x) =
U ε(t0x) = Vt0(x) for all x ∈ Sn−1. Thus we have shown that U ε is continu-
ous for all ε.

Now it is a general fact that f ε → f in L1
loc. The proof is easy and the

convergence is uniform when f ∈ C∞0 . The general case follows from the fact
that C∞0 is dense in L1 on compact domains. This completes the proof of
Lemma 13.13. �

Example 13.15. — If one drops the convexity hypothesis in Theo-
rem 13.1, then in dimensions n > 3 there are orthogonally invariant sub-
equations of every finite Riesz characteristic for which strong uniqueness
fails. To see this we consider the largest such subequation of characteristic p:

Pmin/max
p ≡ {A : λmin(A) + (p− 1)λmax(A) > 0} .

(See Appendix A in Part II for a proof that there exists a largest and it is
the one above.) To see that strong uniqueness fails for Pmin/max

p we consider
the following functions. Write Rn = Rm × Rn−m,m < n with coordinates
z = (x, y), and consider the function

u(x, y) ≡ Kp(|x|)

where Kp is given by (3.8). Then D2
zu = 1

|x|p (Px⊥ − (p− 1)Px) has ordered
eigenvalues

− (p− 1)
|x|p

, 0, . . . , 0, 1
|x|p

, . . . ,
1
|x|p

,

from which it is clear that u is Pmin/max
p -subharmonic on Rn and, in fact,

Pmin/max
p -harmonic for x 6= 0. Note that u has Riesz homogeneity p and is

therefore its own tangent at points of the form (0, y). Hence strong unique-
ness fails for Pmin/max

p .

Straightforward calculation shows, however, that these “partial Riesz ker-
nels” are not subharmonic for the largest convex subequation of character-
istic p given in Proposition 13.10 above.
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14. The Structure of the Sets Ec where the Density is > c

In this section we assume the subequation F on Rn is convex with finite
Riesz characteristic p > 2. Fix u ∈ F (X) where X is an open subset in Rn.
Let Θ = ΘV : X → R be the density function (for the volume function). For
c > 0 define

Ec(u) ≡ {x ∈ X : Θ(x) > c}.

For classical plurisubharmonic functions in Cn (where F = PC), these
sets have been of central importance. A deep theorem, due to L. Hörmander,
E. Bombieri and in its final form by Siu ([25, 3, 40]), states that in this case
Ec is a complex analytic subvariety. One straightforwardly deduces from
this result that for the subequation P2 in R2n the set Ec is discrete, since
PC(J) ⊂ P2 for all parallel complex structures J on R2n.

This strong corollary has a quite general extension.

Theorem 14.1. — Suppose strong uniqueness of tangents holds for F
(e.g., F = Pp). Then for any F -subharmonic function u the set Ec(u) is
discrete.

This result is essentially sharp. See Remark 14.2 below.

We will prove Theorem 14.1 in the following equivalent form. Consider
an F -subharmonic function u where F has Riesz characteristic p with 2 <
p <∞.

Theorem 14.1′. — Suppose strong uniqueness of tangents holds for u
at a point x0, that is, suppose that the p-flow of u has limit

lim
r↓0

ur(x0;x) = ΘK(|x− x0|) in L1
loc(Rn), for some Θ > 0. (14.1)

Then
lim
x→x0
x 6=x0

Θ(u, x) = 0 .

Proof. — Suppose the conclusion fails. Then there exists a sequence xj →
x0 with Θ(u, xj) > c > 0 for all j. Assume x0 = 0, and set xj = rjσj with
rj = |xj |. Then rj → 0, and passing to a subsequence we can assume that
σj → σ ∈ Sn−1. The idea now is to apply the sequence of rj-homotheties
to u. This will give a sequence urj of F -subharmonics with Θ(urj , σj) > c.
With appropriate estimates from monotonicity, this will contradict (14.1).

To begin pick ρ > 0 small, and note that
V
(
urj , σj , ρ

)
K(ρ) = V (u, xj , rjρ)

K(rjρ) (14.2)
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since

V
(
urj , σj , ρ

)
=
 
B

urj (σj + ρx) dx = rp−2
j

 
B

u (xj + rjρx) dx

and
rp−2
j

K(ρ) = 1
K(rjρ) .

Next we show that for all j
V (u, xj , rjρ)
K(rjρ) >

c

2 . (14.3)

In fact, this uniform bound from below, on the convergence of V (u,xj ,t)
K(t) to

Θ(u, xj), independent of xj , is obtained from the monotonicity property
(Theorem 6.4) as follows. Set α ≡ 2

1
p−2 . Fix xj and abbreviate notation by

setting t = rjρ and V (t) = V (u, xj , t) = V (u, xj , rjρ). We now apply the
identity

V (t)
K(t) =

[
V (αt)− V (t)
K(αt)−K(t)

] (1− K(αt)
K(t)

)
(

1− V (αt)
V (t)

) , (14.4)

with the constant α > 0 chosen so that K(αt)
K(t) = α−(p−2) = 1

2 . We assume u
and hence V (t) is 6 0 which can be obtained by subtracting a constant, or
noting that limx→0 u(x) = −∞ since Θ(u, 0) > c by Theorem 7.4.

Then V (t) 6 V (αt) 6 0 since V (t) is increasing in t, which implies that
the reciprocal of 1− V (αt)

V (t) is > 1.

By Theorem 6.4 this proves that, as desired,
V (t)
K(t) >

c

2 . (14.3′)

Combining (14.2) and (14.3) we have

V
(
urj , σj , ρ

)
K(ρ) >

c

2 . (14.5)

By the hypothesis (14.1) we have

lim
rj↓0

V
(
urj , σj , ρ

)
= lim
rj↓0

 
Bρ(σj)

urj = Θ
 
Bρ(σ)

K(|y|) dy .

Therefore, by (14.5)

−ρp−2Θ
 
Bρ(σ)

K(|y|) dy > c

2 .
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Since
lim
ρ→0

 
Bρ(σ)

K(|y|) dy = K(1) = −1,

this implies that c = 0, a contradiction. �

Remark 14.2. — For F as above, any finite set can occur as the set Ec for
an F -subharmonic function. In fact, more is true. In a separate paper [24]
we construct F -subharmonics with prescribed asymptotics at a finite set of
points and prescribed boundary values.

Theorem 14.3 ([24]). — Let Ω ⊂ Rn be a domain with smooth boundary
∂Ω which is strictly convex (or more generally strictly F -convex, cf. [14]).
Let E = {xj}Nj=1 ⊂ Ω be a finite subset, and {Θj}Nj=1 any set of positive
real numbers. Then given any ϕ ∈ C(∂Ω), there exists a unique u ∈ USC(Ω)
such that:

(1) u is F -harmonic in Ω− E,
(2) u

∣∣
∂Ω = ϕ, and

(3) Θ(u, xj) = Θj for j = 1, . . . , N .

15. Subequations with Riesz characteristic 1 6 p < 2

When the Riesz characteristic satisfies 1 6 p < 2, the behavior and study
of F -subharmonics differs greatly from the case p > 2.

C0,α Regularity of Subharmonics

To begin, all F -subharmonics (not just the F -harmonics) are regular.

To be completely clear we formulate two hypotheses on a function u.

Hypothesis A. — u ∈ F (X) where F is a (not necessarily convex)
ST-invariant cone subequation with characteristic 1 6 p < 2.

Hypothesis B. — u ∈ USC(X) satisfies the Maximum Principle (or
(MP) for short) and Kp double monotonicity, that is, for all y ∈ X

M(u, y, t)−M(u, y, s)
Kp(t)−Kp(s)

is non decreasing in s and t (15.1)

for all 0 6 s < t < dist(y, ∂X).

– 838 –



Tangents to subsolutions: existence and uniqueness, Part I

By Theorem 2.7 and Theorem 6.4

Hypothesis A ⇒ Hypothesis B . (15.2)

Note that under Hypothesis B the density Θ(u, y) exists with 0 6 Θ(u, y) <
∞ for each point y ∈ X. For an arbitrary function u, we abbreviate the
Hölder norm on a compact set K (allowing the value +∞) by

‖u‖α(K) ≡ ‖u‖C0,α(K) . (15.3)

Theorem 15.1. — Assume Hypothesis B. Then u is locally Hölder con-
tinuous on X with exponent α ≡ 2− p.

More specifically, if B3ρ(x0) ⊂ X, then

‖u‖α (Bρ(x0)) 6
[

Rα

(R− ρ)α − ρα

]
M(u, x0, R)− u(x0)

Rα
(15.4)

for all 0 < 3ρ 6 R < dist(x0, ∂X). (In particular, u(x0) > −∞, i.e., u is
finite-valued at each point x0 ∈ X.)

Proof. — Assume x, y ∈ Bρ(x0). Note that x ∈ ∂B|x−y|(y). Hence,

u(x)− u(y)
|x− y|α

6
M(u, y, |x− y|)− u(y)

|x− y|α
.

Choose R > 3ρ. Since x, y ∈ Bρ(x0), we have |x − y| 6 2ρ and hence R >
|x− y|+ ρ, or R− ρ > |x− y|. Therefore, by the monotonicity Hypothesis B

M(u, y, |x− y|)− u(y)
|x− y|α

6
M(u, y,R− ρ)−M(u, y, ρ)

(R− ρ)α − ρα . (15.5)

Now BR−ρ(y) ⊂ BR(x0) since y ∈ Bρ(x0). This proves that

M(u, y,R− ρ) 6M(u, x0, R). (15.6)

Also x0 ∈ Bρ(y) and hence u(x0) 6M(u, y, ρ), or equivalently

−M(u, y, ρ) 6 −u(x0). (15.7)

Now (15.6) and (15.7) imply thatM(u, y,R−ρ)−M(u, y, ρ) 6M(u, x0, R)−
u(x0) and (15.4) follows from (15.5). �

Define the infinitesimal Hölder norm of u at x0 to be

‖u‖α(x0) ≡ lim
ρ→∞

‖u‖α (Bρ(x0)) . (15.8)

Proposition 15.2. — Under Hypothesis B,

‖u‖α(x0) 6 M(u, x0, R)− u(x0)
Rα

6 ‖u‖α (BR(x0)) . (15.9)

for all 0 < R < dist(x0, ∂X).
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Proof. — For the first inequality, let ρ→ 0 on both sides of the inequal-
ity (15.4) in Theorem 15.1.

By the (MP) there exists y ∈ ∂BR(x0) such thatM(u, x0, R) = u(y), and
hence

M(u, x0, R)− u(x0)
Rα

= u(y)− u(x0)
|y − x|α

6 ‖u‖α (BR(x0)) .

Now it is easy to prove that the infinitesimal Hölder norm and the density
are the same thing.

Corollary 15.3.
‖u‖α(x0) = Θ(u, x0) .

Proof. — Take the limit as R → 0 in (15.9) and apply the definition of
the density. �

Remark 15.4 (Hypothesis A). — Lemma A.1 in Part II states that
Pmin/max
p ≡ {A : λmin(A)+(p−1)λmax(A) > 0} is the maximal subequation

of characteristic p, i.e. it contains every other subequation F of characteristic
p. Thus the relevance of Theorem 15.1 for pure second-order subequations
can be stated as follows.

Theorem 15.1 holds under

Hypothesis A′ (0 < α 6 1). — The function u satisfies the subequation
λmin(D2u) + (1− α)λmax(D2u) > 0 on X

in the viscosity sense. Said differently, Hypothesis A and Hypothesis A′ are
the same.

Remark 15.5. — The subequations Pmin/max
p are never convex unless p =

1. In addition we have

Pmin/max
p ⊂ ∆ ⇐⇒ p 6 1 + 1

n− 1 ⇐⇒ n− 2
n− 1 6 α 6 1.

To see this, note that λ1 + (p− 1)λn > 0⇒ λ1 + · · ·+ λn > 0 if and only if
p− 1 6 1

n−1 since λ1 + · · ·+ λn > (n− 1)λ1 + λn = (n− 1)(λ1 + 1
n−1λn).

Existence of Tangents

In the range 1 6 p < 2 the arguments for the existence and structure of
tangents have a different flavor from the case p > 2. Recall that in this range
the tangent flow

ur(x) = 1
rα

(u(rx)− u(0)) where α = 2− p,
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is defined in Definition 9.1(2).

Tangents to subharmonics have only been defined when F is convex (see
Definition 9.3). However, because of the Hölder continuity when 1 6 p < 2,
the definition can be extended to the more general cone case in Hypothe-
sis A. In fact, Hypothesis B is enough. Give C(Rn) the topology of uniform
convergence on compact subsets.

Definition 15.6 (Tangents). — Suppose that u satisfies Hypothesis B
in a neighborhood of the origin in Rn. For each sequence rj ↘ 0 such that

U ≡ lim
j→∞

urj converges in C(Rn) , (15.10)

the limit function U is called a tangent to u at 0, and T0(u) denotes the
space of all such tangents.

The version of Theorem 11.1 for 1 6 p < 2 is given as follows.

Theorem 15.7 (Existence of Tangents). — Suppose u satisfies Hypoth-
esis B on a ball about the origin. Then for each ρ > 0 there exists a δ > 0
such that the family {ur}0<r6δ is bounded in norm in C0,α(Bρ). In fact,

lim sup
r↓0

‖ur‖α (Bρ) 6 ΘM (u, 0) ∀ ρ > 0 . (15.11)

In particular, the set {ur}0<r6δ is precompact in C(Rn).

Proof. — Note that ur(0) = 0 so that Theorem 15.1 states that the
α-Hölder norm of ur on Bρ satisfies

‖ur‖α (Bρ) 6
Rα

(R− ρ)α − ρα
M(ur, 0, R)

Rα

if rR is small and 0 < 3ρ 6 R. Now by the definition of ur

M(ur, 0, R) = M(u, 0, rR)− u(0)
rα

,

and therefore

‖ur‖α (Bρ) 6
Rα

(R− ρ)α − ρα
M(u, 0, rR)− u(0)

(rR)α .

Taking the lim sup as r ↓ 0 yields

lim sup
r↓0

‖ur‖α (Bρ) 6
Rα

(R− ρ)α − ραΘM (u, 0) .

Finally we can let R→∞, proving (15.11).

By the standard compact embedding theorem this proves that (taking
the topology of Hölder norms on compact subsets)

{ur}0<r6δ is precompact in C0,β(Rn) for each 0 6 β < α, (15.12)
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where C0,β(Rn) = C(Rn) when β = 0. �

Remark. — If F is convex, then our previous L1
loc Definition 9.3 of a

tangent U to u at 0 is also applicable. It agrees with Definition 15.6 because
of the precompactness.

The analogue of Theorem 11.2 is the same except that L1
loc(Rn) is re-

placed by C(Rn).

Theorem 15.8. — The tangent set T0(u) to an F -subharmonic function
u satisfies:

(1) T0(u) is non-empty.
(2) T0(u) is a compact subset of C(Rn).
(3) T0(u) is invariant under the tangent flow U → Ur.
(4) T0(u) is a connected subset of C(Rn).

The proof is similar to that of Theorem 11.2 and is omitted.

As a consequence of Theorem 15.8 the Hölder norm of a tangent is finite
on all of Rn.

Corollary 15.9. — If U ∈ T0(u), then

‖U‖α(Rn) = Θ(u, 0) = ‖u‖α(x0) .

Uniqueness, Strong Uniqueness, and Homogeneity of Tangents

The three concepts are defined exactly as in Definition 12.1. For instance,
uniqueness of tangents holds for u at 0 if T0(u) = {U} is a singleton, or
equivalently (cf. (12.1))

lim
r→0

ur exists in C(Rn) and equals U . (15.13)

Strong uniqueness holds for u at 0 if this limit U = ΘKp where Θ =
ΘM (u, 0). In this setting strong uniqueness for u is equivalent to the no-
tion of asymptotic equivalence u ∼ Θ|y|α defined by (15.3) below.

Lemma 15.10. — Strong uniqueness of tangents for u at 0 holds, i.e.,

lim
r→0

ur = ΘKp = Θ|x|α in C(Rn) with Θ > 0 (15.14)

if and only if u(y) ∼ Θ|y|α, i.e.,

lim
y→0

u(y)− u(0)
|y|α

= Θ > 0 . (15.15)
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Proof. — Actually, the equivalence of (15.14) and (15.15) is an elemen-
tary fact which holds for any continuous function defined in a neighborhood
of the origin.

We can assume u(0) = 0. We first show that (15.15) ⇒ (15.14). The
inequality ∣∣∣∣u(y)

|y|α
−Θ

∣∣∣∣ 6 ε
can be rewritten, with y = rx, as

|ur(x)−Θ|x|α| 6 ε|x|α.
If the first holds for |y| 6 δ, then the second holds for |x| 6 R and r 6 δ/R.
Thus we have |ur(x)−Θ|x|α| 6 εRα, for all |x| 6 R and r 6 δ/R, which is
enough to prove (15.13).

For the converse we need only assume that ur → ΘK uniformly on some
sphere ∂BR. The inequality

|ur(x)−Θ|x|α| 6 ε
can be rewritten, with y = rx, as∣∣∣∣u(y)

|y|α
−Θ

∣∣∣∣ 6 ε

|x|α
.

If the first holds for all |x| = R and r 6 δ, then the second holds for all
|y| 6 δR with the right-hand side replaced by ε/Rα. This is enough to prove
that limy→0 u(y)/|y|α = 0. �

Remark 15.11. — We say that strong uniqueness holds for a subequation
F if it holds for all F -subharmonics at 0. Recall that by Theorem 13.1
Strong Uniqueness of Tangents to subharmonics holds for every convex O(n)-
invariant subequation F with finite Riesz characteristic except F = P. This
section is only concerned with the cases 1 6 p < 2, or 1 < p < 2 when P is
excluded. This includes the subequations: Pp (1 < p < 2), Σk (p ≡ n

k < 2),
P(δ) (δ < n

n−2 ), and others.

Harmonicity of Tangents when F is convex

If F is a convex cone ST-invariant subequation with finite characteristic,
then by Theorem 10.2 every tangent to a subharmonic is maximal, and by
Proposition 8.5, every continuous maximal function is F -harmonic. Thus the
regularity result Theorem 15.1 implies the following for 1 6 p < 2.

Theorem 15.12. — Let F be as above. Then for u F -subharmonic in a
neighborhood of 0, every tangent U ∈ T0(u) is F -harmonic in Rn − {0}.
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Removable Point Singularities

The next result should be compared with Theorem 1.9 (the case α∗ < 0)
in [ASS], where F is assumed to be uniformly elliptic.

Theorem 15.13. — Suppose that F is a cone subequation with a Riesz
characteristic p and 1 < p < 2. Suppose Strong Uniqueness of Tangents
holds for F and F +Pp ⊂ F (i.e., F is Pp-monotone). For each function H
which is F -harmonic in a punctured neighborhood of x0 and F -subharmonic
across x0, one has that

H is F -harmonic across x0 ⇐⇒ the density ΘM (H,x0) = 0 .

Proof. — Assume that x0 = 0. By Proposition A.5 in [24], the strong
uniqueness hypothesis can be restated as an asymptotic equivalence
limx→0

(H(x)−H(0))
|x|α = Θ > 0, which was denoted there as H(x) ∼ Θ|x|α,

at x0 = 0.

Suppose Θ = 0. Then for all ε > 0, ∃δ > 0 such that H(x)−H(0) 6 ε|x|α
if |x| 6 δ. Set Vε(x) ≡ −(H(x) − H(0)) + 2ε|x|α. Then ε|x|α 6 Vε(x) on
|x| 6 δ, which implies that Vε has no test functions at 0. Since F̃ +Pp ⊂ F̃ ,
the Addition Theorem (cf. [19]) implies that Vε is F̃ -subharmonic onBδ−{0}.
Thus Vε is F̃ -subharmonic on Bδ. Since Vε decreases to −H(x) + H(0) as
ε → 0, this proves that −H is F̃ -subharmonic on Bδ, and hence H is F -
harmonic.

Suppose Θ > 0. Then for 0 < ε < Θ there exists 0 < δ < 1 with
ε|x|α 6 H(x)−H(0) on Bδ. Therefore, −(H(x)−H(0)) 6 −ε|x|α 6 −ε|x|2
if |x| 6 δ, which proves that −ε|x|2 is a test function for −H(x) at 0, and
hence −H is not subaffine. Finally, 0 ∈ F ⇒ P ⊂ F ⇒ F̃ ⊂ P̃, which proves
that −H is not F̃ -subharmonic. �

Appendix A. Subaffine Functions and a Dichotomy

For punctured radial subharmonics, i.e., a radial F -subharmonic function
defined on a ball, there is a useful dichotomy between those which are in-
creasing and those which are decreasing, which we now discuss. The subaffine
equation P̃ = {λmax > 0} is an important special case, since it contains every
subequation F (including itself) for which the maximum principle holds. It
is also a special case in that the radial subequation RP̃ on (0,∞) is constant
coefficient. Using the jet variables (λ, a), we have

RP̃ = ˜R+ × R+ ≡ {(λ, a) : either λ > 0 or a > 0}. (A.1)
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It is important to note that the maximum principle holds for this one-variable
subequation.

This dual subequation ˜R+ × R+ is more restrictive than one might guess.
The next result shows that near the left endpoint of (a, b) there is a di-
chotomy for a subharmonic. It is either increasing or it is convex and de-
creasing.

Lemma A.1 (Increasing/Decreasing). — Suppose that ψ is a general
upper semi-continuous ˜R+ × R+-subharmonic function on an open interval
(a, b). Then either

(1) ψ is increasing on (a, b), or
(2) ψ is decreasing and convex on (a, b), or
(3) ∃ c ∈ (a, b) such that ψ is decreasing and convex on (a, c) and in-

creasing on (c, b).

Proof. — Suppose that ψ is not increasing on all of (a, b), that is, ψ(r) >
ψ(s) for some a < r < s < b. We claim that ψ is decreasing on (a, r). If not,
there exist r1, r2 with a < r1 < r2 < r and ψ(r1) < ψ(r2). If ψ(r2) < ψ(r),
then since ψ(r) > ψ(s), ψ has a strict maximum on (r2, s). Thus ψ(r2) >
ψ(r) > ψ(s), and since ψ(r1) < ψ(r2), we must have a strict maximum on
(r1, s).

Suppose further that ψ is not decreasing on all of (a, b), that is, ψ(s) <
ψ(t) for some r < s < t < b. The argument above shows that there exists a
maximal c ∈ (s, t) so that ψ is decreasing on (a, c). Now ψ must be increasing
on (c, b) for if not, it would have a strict interior maximum on that interval.

When ψ is decreasing on (a, c), it must be convex there. To see this let ϕ
be a test function for ψ at t0 ∈ (a, c). Then 0 6 ψ(t)−ψ(t0) 6 ϕ(t)−ϕ(t0) for
t < t0. This implies that ϕ′(t0) 6 0. If ϕ′(t0) = 0, then the same inequality
implies that ϕ′′(t0) > 0. On the other hand, if ϕ′(t0) < 0, then ϕ′′(t0) > 0
because ψ is ˜R+ × R+-subharmonic. �

We say that the maximum principle (MP) holds for a subequation F if
it holds for all F -subharmonic functions.

Theorem A.2. — The following conditions on a subequation F ⊂
Sym2(Rn) are equivalent.

(1) The maximum principle holds for F .
(2) F ⊂ P̃ (i.e., the subequation P̃ is universal for (MP)).
(3) 0 /∈ IntF .
(4) RF ⊆ ˜R+ × R+.
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Proof. — Parts (1)–(3) were proved in [14, Lem. 2.2 and Prop. 4.8]. For
part (4) note that F ⊂ P̃ ⇒ (RF )t ⊂ (RP̃)t = ˜R+ × R+. If F is not
contained in P̃ ≡ {A : λmax(A) > 0}, then there exists B < 0 with B ∈ F .
By positivity −εI ∈ F for some ε > 0, which implies that (RP̃)t is not
contained in ˜R+ × R+. �

These two results can be combined as follows.

Corollary A.3. — If the (MP) holds for F , then the conclusions (1),
(2) and (3) of the Increasing/Decreasing Lemma A.1 hold for any radial F -
subharmonic function u(x) = ψ(|x|) defined on an annulus. (In particular,
if u is F -subharmonic on a ball, then ψ(t) must be increasing.)

Proof. — By Theorem 2.4 and Theorem A.2, ψ is ˜R+ × R+-subharmonic,
and hence Lemma A.1 applies to ψ. �

Appendix B. Uniform Ellipticity and P(δ)

The point of this section is to make clear that viscosity harmonics for the
subequation

P(δ′) =
{
A ∈ Sym2(Rn) : A+ δ tr(A) > 0

}
, δ = δ′

n
,

are solutions to a uniformly elliptic equation F (D2u) = 0 as defined in [4],
[6], [41], etc. We define the operator

F : Sym2(Rn) −→ R by F (A) ≡ λmin(A) + δtr(A) .

It is straightforward to verify that for all P > 0 one has

δ tr(P ) 6 F (A+ P )− F (A) 6 (1 + δ) tr(P ) .

which is one of the standard equivalent versions of uniform ellipticity for the
operator F appearing in the sources above.

Now since

P(δ′) = {A : F (A) > 0} and IntP(δ′) = {A : F (A) > 0}

it is completely straightforward to verify that a continuous function u is a
viscosity solution of F (D2u) = 0 if and only if (in our terminology) u is
P(δ′)-harmonic.
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