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The Curie-Weiss Model of SOC in Higher Dimension (∗)

Matthias Gorny (1)

ABSTRACT. — We build and study a multidimensional version of the Curie-
Weiss model of self-organized criticality we have designed in [2]. For symmetric
distributions satisfying some integrability condition, we prove that the sum Sn of
the randoms vectors in the model has a typical critical asymptotic behaviour. The
fluctuations are of order n3/4 and the limiting law has a density proportional to the
exponential of a fourth-degree polynomial.

RÉSUMÉ. — Nous construisons et étudions une version multi-dimensionnelle du
modèle d’Ising Curie-Weiss de criticalité auto-organisée que nous avons introduit
dans [2]. Pour des distributions vérifiant une certaine condition d’intégrabilité, nous
montrons que la somme Sn des variables aléatoires du modèle a un comportement
asymptotique critique typique. Les fluctuations sont d’ordre n3/4 et la loi limite
admet une densité proportionnelle à l’exponentielle d’un polynôme de degré quatre.

1. Introduction

In [2] and [5], we introduced a Curie-Weiss model of self-organized criti-
cality (SOC): we transformed the distribution associated to the generalized
Ising Curie-Weiss model by implementing an automatic control of the inverse
temperature which forces the model to evolve towards a critical state. It is
the model given by an infinite triangular array of real-valued random vari-
ables (Xk

n)16k6n such that, for all n > 1, (X1
n, . . . , X

n
n ) has the distribution

1
Zn

exp
(

1
2

(x1 + · · ·+ xn)2

x2
1 + · · ·+ x2

n

)
1{x2

1+···+x2
n>0}

n∏
i=1

dρ(xi),

(*) Reçu le 2 octobre 2016, accepté le 22 février 2017.
Keywords: Ising Curie-Weiss, SOC, Laplace’s method.
2010 Mathematics Subject Classification: 60F05, 60K35.
(1) Université Paris-Sud and ENS Paris, Paris (France) — Current address: Lycée

Carnot, 145 Boulevard Malesherbes, 75017 Paris (France) — contact@matthiasgorny.fr
Article proposé par Laurent Miclo.

– 91 –

mailto:contact@matthiasgorny.fr


Matthias Gorny

where ρ is a probability measure on R which is not the Dirac mass at 0, and
where Zn is the normalization constant. We extended the study of this model
in [8], [7], [6] and [9]. For symmetric distributions satisfying some exponential
moments condition, we proved that the sum Sn of the random variables
behaves as in the typical critical generalized Ising Curie-Weiss model: the
fluctuations are of order n3/4 and the limiting law is C exp(−λx4) dx where C
and λ are suitable positive constants. Moreover, by construction, the model
does not depend on any external parameter. That is why we can conclude it
exhibits the phenomenon of self-organized criticality (SOC). Our motivations
for studying such a model are detailed in [2].

Let d > 1. In this paper we define a d-dimensional version of the Curie-Weiss
model of SOC, i.e, such that the Xk

n, 1 6 k 6 n, are random vectors in Rd.
Let us start by defining the d-dimensional generalized Ising Curie-Weiss
model. Let ρ be a symmetric probability measure on Rd such that

∀ v > 0
∫
Rd

exp(v‖z‖2) dρ(z) <∞ .

Assume that its covariance matrix

Σ =
∫
Rd

z tz dρ(z)

is invertible. It is known to be equivalent to non-degeneracy of ρ, i.e. that
there no hyperplane has full measure. The d-dimensional generalized Ising
Curie-Weiss model associated to ρ and to the temperature field T (which is
here a d×d symmetric positive definite matrix) is defined through an infinite
triangular array of random vectors (Xk

n)16k6n such that, for all n > 1,
(X1

n, . . . , X
n
n ) has the distribution

1
Zn(T ) exp

(
1

2n
〈
T−1(x1 + · · ·+ xn), (x1 + · · ·+ xn)

〉) n∏
i=1

dρ(xi) ,

where Zn(T ) is a normalization. When d = 1 and ρ = (δ−1 + δ1)/2, we
recover the classical Ising Curie-Weiss model. Let Sn = X1

n + · · · + Xn
n for

any n > 1. By extending the methods of Ellis and Newmann (see [4]) to the
higher dimension, we obtain that, under some « sub-Gaussian » hypothesis
on ρ, if T − Σ is a symmetric positive definite matrix, then

Sn√
n

L−→
n→+∞

Nd
(
0, T (T − Σ)−1Σ

)
,

the centered d-dimensional Gaussian distribution with covariance matrix
T (T − Σ)−1Σ. If T = Σ (critical case) then

Sn
n3/4

L−→
n→+∞

Cρ exp (−φρ(s1, . . . , sd)) ds1 · · · dsd,
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where Cρ is a normalization constant and φρ is an homogeneous polynomial
of degree four in R[X1, . . . , Xd] such that exp(−φρ) is integrable with respect
to the Lebesgue measure on Rd. Detailed proofs of these results are given in
section 23 of [6]. These results highlight that the non-critical fluctuations are
normal (in the Gaussian sense) while the critical fluctuations are of order
n3/4.

Now we try to modify this model in order to construct a d-dimensional
SOC model. As in [2], we search an automatic control of the temperature
field T , which would be a function of the random variables in the model, so
that, when n goes to +∞, T converges towards the critical value Σ of the
model. We start with the following observation: if (Yn)n>1 is a sequence of
independent random vectors with identical distribution ρ, then, by the law
of large numbers,

Σ̂n
n

a.s−→
n→+∞

Σ,

where
∀ n > 1 Σ̂n = X1

n
t(X1

n) + · · ·+Xn
n
t(Xn

n ).
This convergence provides us with an estimator of Σ. If we believe that
a similar convergence holds in the d-dimensional generalized Ising Curie-
Weiss model, then we are tempted to « replace T by Σ̂n/n » in the previous
distribution. Hence, in this paper, we consider the following model:

The model. Let (Xk
n)n>d, 16k6n be an infinite triangular array of random

vectors in Rd such that, for any n > d, (X1
n, . . . , X

n
n ) has the distribution

µ̃n,ρ, the probability measure on (Rd)n with density

(x1, . . . , xn) 7−→ 1
Zn

exp

1
2

〈(
n∑
i=1

xi
txi

)−1( n∑
i=1

xi

)
,

(
n∑
i=1

xi

)〉
with respect to ρ⊗n on the set

D+
n =

{
(x1, . . . , xn) ∈ (Rd)n : det

(
n∑
i=1

xi
txi

)
> 0

}
,

where

Zn =
∫
D+

n

exp

1
2

〈(
n∑
i=1

xi
txi

)−1( n∑
i=1

xi

)
,

(
n∑
i=1

xi

)〉 n∏
i=1

dρ(xi).

For any n > d, we denote Sn = X1
n + · · ·+Xn

n ∈ Rd and

Tn = X1
n
t(X1

n) + · · ·+Xn
n
t(Xn

n ).
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According to the construction of this model and according to our results in
one dimension, we expect that the fluctuations are of order n3/4. Our main
theorem states that they are indeed:

Theorem 1.1. — Let ρ be a symmetric probability measure on Rd sat-
isfying the two following hypothesis:

(H1) there exists v0 > 0 such that
∫
Rd

ev0‖z‖2
dρ(z) <∞,

(H2) the ρ-measure of any vector hyperplane of Rd is less than 1/
√
e.

Let Σ be the covariance matrix of ρ and let M4 be the function defined
on Rd by

∀ z ∈ Rd M4(z) =
∫
Rd

〈z, y〉4 dρ(y).

Law of large numbers: Under µ̃n,ρ, (Sn/n, Tn/n) converges in probability
to (0,Σ).

Fluctuation result: Under µ̃n,ρ,

Sn
n3/4

L−→
n→∞

exp
(
− 1

12M4
(
Σ−1z

))
dz∫

Rd

exp
(
− 1

12M4
(
Σ−1u

))
du

.

We prove that the matrix Σ is invertible in subsection 2.2.1. In section 2.2.2,
we prove rigorously that this model is well-defined, i.e. Zn ∈ ]0,+∞[ for any
n > d. After giving large deviation results in subsection 2.2.3, we show the
law of large numbers in section 3. Finally, in section 4, we prove that the
function

z 7−→ exp
(
−M4

(
Σ−1/2z

)
/12
)

is integrable on Rd and that Sn/n3/4 converges in distribution to the an-
nounced limiting distribution.

Remark : in the case where d = 1, we have already proved this theorem
in [2], [7] and [9]. Moreover we succeeded to remove hypothesis (H2) – which
turns out to be simply ρ({0}) < 1/

√
e when d = 1 – with a conditioning

argument. It seems not immediate that such arguments could extend in the
case where d > 2. However this assumption together with hypothesis (H1)
are technical hypothesis and we believe that the result should be true if ρ is
only a non-degenerate symmetric probability measure on Rd having a finite
fourth moment.
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2. Preliminaries

In this section, we suppose that ρ is a symmetric probability measure on Rd
satisfying hypothesis (H1) and (H2).

2.1. Σ is a symmetric positive definite matrix

Since ρ satisfies hypothesis (H1), the covariance matrix Σ is well-defined. It
is of course a symmetric positive semi-definite matrix. Let H be a hyperplane
of Rd. If H is a vector hyperplane then, by hypothesis, ρ(H) < 1/

√
e < 1. If

H is an affine (but not vector) hyperplane then,

ρ(H) = ρ(−H) = 1
2(ρ(H) + ρ(−H)) 6 1

2 < 1,

since ρ is symmetric and H∩ (−H) = ∅. In both cases ρ(H) < 1 thus ρ is a
non-degenerate probability measure on Rd. As a consequence Σ is positive
definite.

Notice that the hypothesis that ρ(H) < 1/
√
e is not involved on this point.

We only need that ρ is non-degenerate.

2.2. The model is well-defined

Let us prove that the model is well defined, i.e. Zn ∈ ]0,+∞[ for any n > d.

Lemma 2.1. — Let n > 1 and let x1, . . . , xn be vectors in Rd. We denote
An = x1

tx1 + · · ·+ xn
txn.

? If n < d, then An is non-invertible.
? If n = d, then An is invertible if and only if (x1, . . . , xn) is a basis of Rd.
? If n > d and if the vectors x1, . . . , xn span Rd, then An is invertible.

Proof. ? Let n 6 d. If n < d, we put xn+1 = · · · = xd = 0. We denote by
B the d× d matrix such that its columns are x1, . . . , xd. We have then, for
any 1 6 k, l 6 d,

(B tB)k,l =
d∑
i=1

Bk,iBl,i =
d∑
i=1

xi(k)xi(l) =
d∑
i=1

(xi txi)k,l = (An)k,l.

Therefore An = B tB and thus An is invertible if and only if B is invertible.
As a consequence An is invertible if and only if (x1, . . . , xd) is a basis of
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Rd. In the case where n < d, B has at least a null column and thus is not
invertible.

? Let n > d and assume that the vectors x1, . . . , xn span Rd. Then there
exists then 1 6 i1 < · · · < id 6 n such that (xi1 , . . . , xid) is a basis of Rd. As
a consequence, by the previous case, An is the sum of a symmetric positive
definite matrix and n − d other symmetric positive semi-definite matrices.
Therefore An is definite thus invertible. �

Let n > d. The non-degeneracy of ρ implies that its support is not included
in a hyperplane of Rd. As a consequence

ρ⊗n
(
{ (x1, . . . , xn) ∈ (Rd)n : (x1, . . . , xd) is a basis of Rd }

)
> 0.

The previous lemma yields

ρ⊗n
(
{ (x1, . . . , xn) ∈ (Rd)n : x1

tx1 + · · ·+ xn
txn is invertible }

)
> 0,

i.e. ρ⊗n(D+
n ) > 0. Therefore Zn > 0.

Let 〈 · , · 〉 be the usual scalar product on Rd and ‖ · ‖ be the Euclidean
norm. We denote:

• Sd the space of d× d symmetric matrices.

• S+
d the space of all matrices in Sd which are positive semi-definite.

• S++
d the space of all matrices in Sd which are positive definite.

We introduce the sets

∆ = { (x,M) ∈ Rd × S+
d : M − x tx ∈ S+

d }.

and
∆∗ = { (x,M) ∈ Rd × S++

d : M − x tx ∈ S+
d }.

The two following lemmas guarantee that Zn < +∞ pour tout n > 1.

Lemma 2.2. — If (x,M) ∈ ∆∗ then 〈M−1x, x〉 6 1.

Proof. The matrix M − x tx is symmetric positive semi-definite. Hence

∀ y ∈ Rd 〈x, y〉2 = 〈x tx y, y〉 6 〈My, y〉.

Applying this inequality to y = M−1x, we get

〈x,M−1x〉2 6 〈M−1x, x〉.

If x = 0 then 〈M−1x, x〉 = 0 6 1. If x 6= 0, since M ∈ S++
d , we have

〈M−1x, x〉 > 0 and thus 〈M−1x, x〉 6 1. �
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Let n > 1. For any (x1, . . . , xn) ∈ (Rd)n,

m = 1
n

n∑
i=1

xi =⇒ 1
n

n∑
i=1

xi
txi −mtm = 1

n

n∑
i=1

(xi −m) t(xi −m) ∈ S+
d .

Therefore, for any (x1, . . . , xn) ∈ D+
n ,(

1
n

n∑
i=1

xi,
1
n

n∑
i=1

xi
txi

)
∈ ∆∗

and thus
1
2

〈(
n∑
i=1

xi
txi

)−1( n∑
i=1

xi

)
,

(
n∑
i=1

xi

)〉
6
n

2 .

Hence Zn 6 en/2 < +∞ and the model is well-defined for any n > d.

2.3. Large deviations for (Sn/n, Tn/n)

As in the one-dimensional case (see [2]), we introduce

F : (x,M) ∈ ∆∗ 7−→ 〈M
−1x, x〉
2 .

For any n > d, the distribution of (Sn/n, Tn/n) under µ̃n,ρ is
exp(nF (x,M))1{(x,M)∈∆∗} dν̃n,ρ(x,M)∫

∆∗
exp(nF (s,N)) dν̃n,ρ(s,N)

,

where ν̃n,ρ is the law of(
Sn
n
,
Tn
n

)
= 1
n

n∑
i=1

(
Yi, Yi

tYi
)

when Y1, . . . , Yn are independent random vectors with common law ρ.

We endow Rd × Sd with the scalar product given by

((x,M), (y,N)) 7−→ 〈x, y〉+ tr(MN) =
d∑
i=1

xiyi +
d∑
i=1

d∑
j=1

mi,jni,j .

We denote by ‖ · ‖d the associated norm. Notice that

∀ z ∈ Rd ∀ A ∈ Sd tr(z tzA) =
d∑
i=1

d∑
j=1

zizjai,j = 〈Az, z〉.
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Let νρ be the law of (Z,Z tZ) when Z is a random vector with distribution
ρ. We define its Log-Laplace Λ, by

∀ (u,A) ∈ Rd × Sd Λ(u,A) = ln
∫
Rd×Sd

exp (〈z, u〉+ tr(MA)) dνρ(z,M)

= ln
∫
Rd

exp (〈u, z〉+ 〈Az, z〉) dρ(z),

and its Cramér transform I by

∀ (x,M) ∈ Rd×Sd I(x,M) = sup
(u,A)∈Rd×Sd

(
〈x, u〉+ tr(MA)−Λ(u,A)

)
.

Let DΛ and DI be the domains of Rd × Sd where Λ and I are respectively
finite. All these definitions generalize the case where d = 1, treated in [2]
and [7].

For any (u,A) ∈ Rd × Sd, we have

exp Λ(u,A) 6
∫
Rd

exp
(
‖u‖ ‖z‖+

√
tr(A2) ‖z‖2

)
dρ(z)

6
∫
Rd

exp
(
‖(u,A)‖d max(‖z‖, ‖z‖2)

)
dρ(z)

6 exp (‖(u,A)‖d) +
∫
Rd

exp
(
‖(u,A)‖d ‖z‖2

)
dρ(z).

Therefore hypothesis (H1) is sufficient to ensure that (0, Od) belongs to D
o

Λ,
where Od denotes the d × d matrix whose coefficients are all zero. As a
consequence Cramér’s theorem (cf. [3]) implies that (ν̃n,ρ)n>1 satisfies the
large deviation principle with speed n and governed by the good rate function
I.

3. Convergence in probability of (Sn/n, Tn/n)

We saw in the previous section that, under the hypothesis of theorem 1.1,
the sequence (ν̃n,ρ)n>1 satisfies the large deviation principle with speed n
and governed by the good rate function I. This result and Varadhan’s lemma
(see [3]) suggest that, asymptotically, (Sn/n, Tn/n) concentrates on the min-
ima of the function I − F . In subsection 3.3.1, we prove that I − F has a
unique minimum at (0,Σ) on ∆∗ and we extend F on the entire closed set
∆ so that it remains true on ∆. This is the key ingredient for the proof of
the law of large numbers in theorem 1.1, given in subsection 3.3.2.
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3.1. Minimum de I − F

Proposition 3.1. — If ρ is a symmetric non-degenerate probability mea-
sure on Rd, then

∀ x ∈ Rd\{0} ∀M ∈ S++
d I(x,M) > 〈M

−1x, x〉
2 .

Moreover, if Λ is finite in a neighbourhood of (0, Od), then the function I−F
has a unique minimum at (0,Σ) on ∆∗.

Proof. Let x ∈ Rd\{0} and M ∈ S++
d . By taking A = −M−1x txM−1/2

and u = M−1x, we get

〈u, x〉+ tr(AM) = 〈M−1x, x〉 − 1
2tr(M−1x tx) = 〈M

−1x, x〉
2 .

As a consequence

I(x,M) > 〈M
−1x, x〉
2 − Λ

(
M−1x,−1

2M
−1x txM−1

)
.

For any z ∈ Rd, we have tzM−1x = 〈M−1x, z〉 = tr(z t(M−1x)) ∈ R thus

−1
2tr(z tzM−1x txM−1) = −〈M

−1x, z〉
2 tr(z txM−1) = −〈M

−1x, z〉2

2 .

Therefore

Λ
(
M−1x,−1

2M
−1x txM−1

)
= ln

∫
Rd

exp
(
〈M−1x, z〉 − 〈M

−1x, z〉2

2

)
dρ(z).

By symmetry of ρ, we have, for any s ∈ Rd,∫
Rd

exp
(
〈s, z〉 − 〈s, z〉

2

2

)
dρ(z) =

∫
Rd

exp
(
−〈s, z〉 − 〈s, z〉

2

2

)
dρ(z)

= 1
2

(∫
Rd

exp
(
〈s, z〉 − 〈s, z〉

2

2

)
dρ(z) +

∫
Rd

exp
(
−〈s, z〉 − 〈s, z〉

2

2

)
dρ(z)

)
=
∫
Rd

cosh(〈s, z〉) exp
(
−〈s, z〉

2

2

)
dρ(z).

As a consequence

Λ
(
M−1x,−1

2M
−1x txM−1

)
=

ln
∫
Rd

cosh
(
〈M−1x, z〉

)
exp

(
−〈M

−1x, z〉2

2

)
dρ(z).
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It is straightforward to see that the function y 7−→ 1 − cosh(y) exp(−y2/2)
is non-negative on R and vanishes only at 0. Hence, for any z ∈ Rd,∫

Rd

cosh (〈s, z〉) exp
(
−〈s, z〉

2

2

)
dρ(z) 6 1,

and equality holds if and only if ρ({z : 〈s, z〉 = 0}) = 1. The non-degeneracy
of ρ implied that the equality case only holds if s = 0. Applying this to
s = M−1x 6= 0, we obtain

Λ
(
M−1x,−1

2M
−1x txM−1

)
< 0,

and thus I(x,M) > 〈M−1x, x〉/2.

Suppose now that x = 0 and M ∈ S++
d . Then

I(x,M)− 〈M
−1x, x〉
2 = I(0,M).

If we assume that Λ is finite in a neighbourhood of (0, . . . , 0, Od), then
I(0,M) = 0 if and only if M = Σ (see proposition III.4 of [6]). This ends
the proof of the proposition. �

However, in order to apply Varadhan’s lemma, F must be extended to an
upper semi-continuous function on the entire closed set ∆. To this end, we
put

∀ (x,M) ∈ ∆\∆∗ F (x,M) = 1
2 ,

and it is easy to check that F is indeed an upper semi-continuous function
on ∆.

Now we prove the inequality in proposition 3.1 holds on ∆.

Let (x,M) ∈ Rd×S+
d . We denote by 0 6 λ1 6 λ2 6 . . . ,6 λd the eigenvalues

(not necessary distinct) ofM . There exists an orthogonal matrix P such that
M = PD tP , where D is the diagonal matrix such that Di,i = λi for any
i ∈ {1, . . . , d}. We have

I(x,M) = sup
(u,A)∈Rd×Sd

(
〈x, u〉+ tr(PD tPA)− Λ(u,A)

)
= sup

(u,A)∈Rd×Sd

(
〈x, u〉+ tr(DA)− Λ(u, PA tP )

)
.

Assume that M /∈ S++
d and denote by k = kM > 1 the dimension of the

kernel of M . Let a ∈ ]−∞, 0[. By taking u = 0 and A the symmetric matrix
such that

∀ (i, j) ∈ {1, . . . , d} Ai,j =
{
a if i = j ∈ {1, . . . , k},
0 otherwise,
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we obtain

I(x,M) > −Λ(u, PA tP ) = − ln
∫
Rd

exp 〈PA tPz, z〉 dρ(z),

i.e.

∀ a ∈ R I(x,M) > − ln
∫
Rd

exp

a k∑
j=1

(t
Pz
)2
j

 dρ(z).

For any z ∈ Rd, we have
k∑
j=1

(t
Pz
)2
j

= 0 ⇐⇒ z ∈ Ker(M)⊥,

since (Pe1, . . . , P ek) is a basis of Ker(M) (they are the eigenvectors of M
associated to the eigenvalue 0). As a consequence

∀ z ∈ Rd exp

a k∑
j=1

(t
Pz
)2
j

 −→
a→−∞

1Ker(M)⊥(z).

Moreover the left term defines a function which is bounded above by 1.
Therefore the dominated convergence theorem implies that∫

Rd

exp

a k∑
j=1

(t
Pz
)2
j

 dρ(z) −→
a→−∞

ρ
(
Ker(M)⊥

)
,

hence
I(x,M) > − ln ρ

(
Ker(M)⊥

)
,

so that I(x,M) > 1/2 as soon as ρ
(
Ker(M)⊥

)
< e−1/2. Since Ker(M)⊥ is

included in some vector hyperplane of Rd, we obtain the following proposi-
tion:

Proposition 3.2. — If ρ is a symmetric probability measure on Rd sat-
isfying hypothesis (H1) and (H2), then I − F has a unique minimum at
(0,Σ) on ∆.

3.2. Convergence of (Sn/n, Tn/n) under µ̃n,ρ

Let us first prove the following proposition, which is a consequence of Varad-
han’s lemma.

Proposition 3.3. — Let ρ be a symmetric probability measure on Rd
with a positive definite covariance matrix Σ. We have

liminf
n→+∞

1
n

lnZn > 0.
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Suppose that ρ satisfies hypothesis (H1) and (H2). If A is a closed subset of
Rd × Sd which does not contain (0,Σ), then

limsup
n→+∞

1
n

ln
∫

∆∗∩A
exp

(
n〈M−1x, x〉

2

)
dν̃n,ρ(x,M) < 0.

Proof. The set ∆
o
, the interior of ∆∗, contains (0,Σ) thus Cramér’s theorem

(cf. [3]) implies that

liminf
n→+∞

1
n

lnZn = liminf
n→+∞

1
n

ln
∫

∆∗
exp

(
n〈M−1x, x〉

2

)
dν̃n,ρ(x,M)

> liminf
n→+∞

1
n

ln ν̃n,ρ(∆∗) > − inf
{
I(x,M) : (x,M) ∈ ∆

o }
= 0.

We prove now the second inequality. Since ρ verifies hypothesis (H1), we have
that (0, Od) ∈ D

o

Λ. Cramér’s theorem implies then that (ν̃n,ρ)n>1 satisfies the
large deviation principle with speed n and the good rate function I. Since F
is upper semi-continuous on the closed set ∆, a variant of Varadhan’s lemma
(see Lemma 4.3.6 of [3]) yields

limsup
n→+∞

1
n

ln
∫

∆∗∩A
exp

(
n〈M−1x, x〉

2

)
dν̃n,ρ(x,M)

6 limsup
n→+∞

1
n

ln
∫

∆∩A
exp (nF (x,M)) dν̃n,ρ(x,M) 6 sup

∆∩A
(F − I ).

Since ρ satisfies hypothesis (H2), proposition 3.2 implies that I − F has a
unique minimum at (0,Σ) on ∆. Since the closed subset ∆ ∩ A does not
contain (0,Σ) and since F is upper semi-continuous and I is a good rate
function, we have

sup
∆∩A

(F − I ) < 0.

This proves the second inequality of the proposition. �

Proof of the law of large numbers in theorem 1.1. Suppose that ρ is
symmetric and satisfies hypothesis (H1) and (H2). Let us denote by θn,ρ the
law of (Sn/n, Tn/n) under µ̃n,ρ. Let U be an open neighbourhood of (0,Σ)
in Rd × Sd. Proposition 3.3 implies that

limsup
n→+∞

1
n

ln θn,ρ(U c) = limsup
n→+∞

1
n

ln
∫

∆∗∩Uc

exp
(
n〈M−1x, x〉

2

)
dν̃n,ρ(x,M)

− liminf
n→+∞

1
n

lnZn < 0.
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Hence there exist ε > 0 and n0 > 1 such that θn,ρ(U c) 6 e−nε for any
n > n0. Therefore, for any neighbourhood U of (0,Σ),

lim
n→+∞

µ̃n,ρ

((
Sn
n
,
Tn
n

)
∈ U c

)
= 0,

i.e. under µ̃n,ρ, (Sn/n, Tn/n) converges in probability to (0,Σ). �

4. Convergence in distribution of T−1/2
n Sn/n

1/4

under µ̃n,ρ

In this section, we generalize theorem 1 of [9] to the higher dimension in
order to prove our fluctuation result.

Theorem 4.1. — Let ρ be a symmetric non-degenerate probability mea-
sure on Rd such that ∫

Rd

‖z‖5 dρ(z) < +∞.

Let Σ the covariance matrix of ρ and let M4 be the function defined in the-
orem 1.1. Then, under µ̃n,ρ,

1
n1/4 T

−1/2
n Sn

L−→
n→∞

exp
(
− 1

12M4
(
Σ−1/2z

))
dz∫

Rd

exp
(
− 1

12M4
(
Σ−1/2u

))
du

.

In the proof of this theorem, we show that the limiting law is well defined.
Notice that, if d = 1, then Σ−1/2 = σ−1 and

∀ z ∈ R M4
(
Σ−1/2z

)
= µ4z

4

σ4 .

Hence theorem 4.1 is indeed a generalization of theorem 1 of [9]

4.1. Proof of theorem 4.1

Let (Xk
n)n>d, 16k6n be an infinite triangular array of random variables such

that, for any n > d, (X1
n, . . . , X

n
n ) has the law µ̃n,ρ. Let us recall that

∀ n > 1 Sn = X1
n+ · · ·+Xn

n and Tn = X1
n
t(X1

n)+ · · ·+Xn
n
t(Xn

n ).
and that Tn ∈ S++

d almost surely. We use the Hubbard-Stratonovich trans-
formation: let W be a random vector with standard multivariate Gaussian
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distribution and which is independent of (Xk
n)n>d, 16k6n. Let n > 1 and f

be a bounded continuous function on Rd. We put

En = E
[
f

(
W

n1/4 + 1
n1/4 T

−1/2
n Sn

)]
.

We introduce (Yi)i>1 a sequence of independent random vectors with com-
mon distribution ρ. We denote

An =
n∑
i=1

Yi, Bn =
(

n∑
i=1

Yi
tYi

)1/2

and Bn =
{

det(B2
n) > 0

}
.

We have

En = 1
Zn(2π)d/2

E

[
1Bn

∫
Rd

f

(
w

n1/4 + 1
n1/4B

−1
n An

)

× exp
(

1
2

〈
B−2
n An, An

〉
− ‖w‖

2

2

)
dw

]
.

We make the change of variables z = n−1/4 (w +B−1
n An

)
in the integral and

we get

En = Cn E

[
1Bn

∫
Rd

f(z) exp
(
−
√
n‖z‖2

2 + n1/4〈z,B−1
n An

〉)
dz

]
where Cn = nd/4Z−1

n (2π)−d/2. Let U1, . . . , Un, ε1, . . . , εn be independent
random variables such that the distribution of Ui is ρ and the distribution of
εi is (δ−1 + δ1)/2, for any i ∈ {1, . . . , n}. Since ρ is symmetric, the random
variables ε1U1, . . . , εnUn are also independent with common distribution ρ.
Therefore

En = Cn E

[
1Bn

∫
Rd

f(z) exp
(
−
√
n‖z‖2

2 +n1/4

〈
z,B−1

n

(
n∑
i=1

εiUi

)〉)
dz

]
.

In the case where the matrix B2
n = U1

tU1 + · · · + Un
tUn is invertible, we

denote

∀ i ∈ {1, . . . , n} ai,n =
(

n∑
j=1

Uj
tUj

)−1/2

Ui.

By using Fubini’s theorem and the independence of εi, Ui, i > 1, we obtain

En = Cn E

[
1Bn

∫
Rd

f(z) exp
(
−
√
n‖z‖2

2

)

× E

(
n∏
i=1

exp
(
n1/4εi〈z, ai,n〉

) ∣∣∣∣∣ (U1, . . . , Un)
)
dz

]
.
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Therefore

En = CnE

[
1Bn

∫
Rd

f(z) exp
(
−
√
n‖z‖2

2

)
exp

(
n∑
i=1

ln cosh (n1/4〈z, ai,n〉)
)
dz

]
.

We define the function g by

∀ y ∈ R g(y) = ln cosh y − y2

2 .

It is easy to see that g(y) < 0 if y > 0. Therefore
n∑
i=1
〈z, ai,n〉2 =

n∑
i=1
〈z, (ai,n tai,n)z〉 =

〈
z,

(
n∑
i=1

ai,n
tai,n

)
z

〉
= 〈z, Idz〉 = ‖z‖2.

As a consequence

En = Cn E

[
1Bn

∫
Rd

f(z) exp
(

n∑
i=1

g(n1/4〈z, ai,n〉)
)
dz

]
.

Now we use Laplace’s method. Let us examine the convergence of the term
in the exponential: for any z ∈ Rd and i ∈ {1, . . . , n}, the Taylor-Lagrange
formula states that there exists a random variable ξn,i such that

g
(
n1/4〈z, ai,n〉

)
= −n〈z, ai,n〉

4

12 + n3/2〈z, ai,n〉5

n1/45!
g(5)(ξn,i).

Let z ∈ Rd. We have

n

n∑
i=1
〈z, ai,n〉4 = n

n∑
i=1

〈
B−1
n z, Ui

〉4 = 1
n

n∑
i=1

〈√
nB−1

n z, Ui
〉4
.

We denote ζn =
√
nB−1

n z. We have

n

n∑
i=1
〈z, ai,n〉4 = 1

n

n∑
i=1
〈ζn, Ui〉4 = 1

n

n∑
i=1

 d∑
j=1

(ζn)j(Ui)j

4

=
∑

16j1,j2,j3,j46d

(ζn)j1(ζn)j2(ζn)j3(ζn)j4

1
n

n∑
i=1

(Ui)j1(Ui)j2(Ui)j3(Ui)j4 .

Since ρ is non-degenerate, its covariance matrix Σ is invertible. Moreover ρ
has a finite fourth moment thus the law of large numbers implies that

ζn
a.s−→

n→+∞
Σ−1/2z,

and that, for any (j1, j2, j3, j4) ∈ {1, . . . , d}4,

1
n

n∑
i=1

(Ui)j1(Ui)j2(Ui)j3(Ui)j4
a.s−→

n→+∞

∫
Rd

yj1yj2yj3yj4 dρ(y).
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As a consequence

n

n∑
i=1
〈z, ai,n〉4

a.s−→
n→+∞

M4

(
Σ−1/2z

)
.

Since ρ has a finite fifth moment, we prove similarly that

n3/2
n∑
i=1
〈z, ai,n〉5

a.s−→
n→+∞

M5

(
Σ−1/2z

)
,

where M5(z) =
∫
Rd〈z, y〉5 dρ(y) for any z ∈ Rd. Finally, by a simple compu-

tation, we see that g(5) is bounded over R. Hence

∀ z ∈ Rd
n∑
i=1

g
(
n1/4〈z, ai,n〉

) a.s−→
n→+∞

− 1
12M4

(
Σ−1/2z

)
.

Lemma 4.2. — There exists c > 0 such that

∀ z ∈ Rd ∀ n > 1
n∑
i=1

g
(
n1/4〈z, ai,n〉

)
6 − c‖z‖4

1 + ‖z‖2/
√
n
.

Proof. We define h by

∀ y ∈ R\{0} h(y) = 1 + y2

y4 g(y).

It is a non-negative continuous function on R\{0}. Since g(y) ∼ −y4/12
in the neighbourhood of 0, the function h can be extended to a function
continuous on R by putting h(0) = −1/12. Next we have

∀ y ∈ R\{0} h(y) = 1 + y2

y2 ×
(

ln cosh y
y2 − 1

2

)
,

so that h(y) goes to −1/2 when |y| goes to +∞. Therefore h is bounded by
some constant −c with c > 0. Hence, for any z ∈ R and n > 1,

n∑
i=1

g
(
n1/4〈z, ai,n〉

)
6 −nc 1

n

n∑
i=1

(
n1/4〈z, ai,n〉

)4
1 +

(
n1/4〈z, ai,n〉

)2 .
We easily check that x 7−→ x2/(1+x) is convex on [0,+∞[. As a consequence

n∑
i=1

g
(
n1/4〈z, ai,n〉

)
6 −nc

(
1
n

∑n
i=1
(
n1/4〈z, ai,n〉

)2)2

1 + 1
n

∑n
i=1
(
n1/4〈z, ai,n〉

)2 = − c‖z‖4

1 + ‖z‖2/
√
n
,

since 〈z, a1,n〉2 + · · ·+ 〈z, an,n〉2 = 1. �
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If ‖z‖ 6 n1/4 then 1 + ‖z‖2/
√
n 6 2 and thus, by the previous lemma,∣∣∣∣∣1Bn

1‖z‖6n1/4 exp
(

n∑
i=1

g
(
n1/4〈z, ai,n〉

))∣∣∣∣∣ 6 exp
(
−c‖z‖

4

2

)
.

Thus the dominated convergence theorem implies that

z 7−→ exp
(
−M4

(
Σ−1/2z

)
/12
)

is integrable on Rd and that

E

[
1Bn

∫
Rd

1|z|6n1/4 f (z) exp
(

n∑
i=1

g
(
n1/4〈z, ai,n〉

))
dz

]

−→
n→+∞

∫
Rd

f(z) exp
(
− 1

12M4

(
Σ−1/2z

))
dz.

If ‖z‖ > n1/4 then 1 + ‖z‖2/
√
n 6 2‖z‖2/

√
n and thus, by the previous

lemma,

E

[
1Bn

∫
Rd

1|z|>n1/4 f (z) exp
(

n∑
i=1

g
(
n1/4〈z, ai,n〉

))
dz

]

6 ‖f‖∞
∫
Rd

exp
(
−c
√
n‖z‖2

2

)
dz =

‖f‖∞ (2π)d/2

nd/4cd/2
−→

n→+∞
0,

and thus

En
Cn

= E

[
1Bn

∫
Rd

f (z) exp
(

n∑
i=1

g
(
n1/4〈z, ai,n〉

))
dz

]

−→
n→+∞

∫
Rd

f(z) exp
(
− 1

12M4

(
Σ−1/2z

))
dz.

If we take f = 1, we get

1
Cn

= Zn(2π)d/2

nd/4
−→

n→+∞

∫
Rd

exp
(
− 1

12M4

(
Σ−1/2z

))
dz.

Summarizing, we have proved that

W

n1/4 + 1
n1/4 T

−1/2
n Sn

L−→
n→∞

exp
(
− 1

12M4
(
Σ−1/2z

))
dz∫

Rd

exp
(
− 1

12M4
(
Σ−1/2u

))
du

.

Since (Wn−1/4)n>1 converges in distribution to 0, Slutsky’s lemma (theo-
rem 3.9 of [1]) implies the convergence in distribution of theorem 4.1.
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We remark that we needed the hypothesis that ρ has a finite fifth moment
in order to use Taylor-Lagrange formula. This hypothesis may certainly be
weakened by assuming instead that

∃ ε > 0
∫
Rd

‖z‖4+ε dρ(z) < +∞.

4.2. Proof of the fluctuation result in theorem 1.1.

In section 3, we proved the law of large numbers in theorem 1.1. It implies
that, under µ̃n,ρ, Tn/n converges in probability to Σ. Moreover hypothesis
(H1) implies that (0, Od) ∈ D

o

Λ and thus ρ has finite moments of all orders.
Theorem 4.1 and Slutsky lemma yield

Sn
n3/4 =

(
Tn
n

)1/2
× 1
n1/4 T

−1/2
n Sn

L−→
n→∞

exp
(
− 1

12M4
(
Σ−1z

))
dz∫

Rd

exp
(
− 1

12M4
(
Σ−1u

))
du

.
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