http://afst.cedram.org/item?id=AFST_2019_6_28_3_523_0Université Paul Sabatier, Toulouse, 2019, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Miraculous cancellations for quantum SL_{2}

Francis Bonahon ${ }^{(1)}$

\grave{A} Jean-Pierre Otal, en l'honneur de ses $3 \times 4 \times 5$ ans

Abstract

In earlier work, Helen Wong and the author discovered certain "miraculous cancellations" for the quantum trace map connecting the Kauffman bracket skein algebra of a surface to its quantum Teichmüller space, occurring when the quantum parameter $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar}$ is a root of unity. The current paper is devoted to giving a more representation theoretic interpretation of this phenomenon, in terms of the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and its dual Hopf algebra SL_{2}^{q}.

Résumé. - Des travaux précédents de Helen Wong et de l'auteur ont mis en évidence, quand le paramètre quantique $q=\mathrm{e}^{2 \pi \mathrm{i} \hbar}$ est une racine de l'unité, des «annulations miraculeuses » pour l'application de trace quantique qui relie l'algèbre d'écheveaux du crochet de Kauffman à l'espace de Teichmüller quantique d'une surface. L'article ci-dessous fournit une interprétation plus conceptuelle de ce phénomène, en termes de représentations du groupe quantique $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ et de son algèbre de Hopf duale SL_{2}^{q}.

Introduction

The equation

$$
\begin{equation*}
(X+Y)^{n}=X^{n}+Y^{n} \tag{0.1}
\end{equation*}
$$

is (unfortunately) very familiar to some of our students, who find it convenient to "simplify" computations. However, it is also well-known that this relation does hold in some cases, for instance in a ring of characteristic n with n prime, or when the variables X and Y satisfy the q-commutativity relation that $Y X=q X Y$ with $q \in \mathbb{C}$ a primitive n-root of unity; see Section 1.

The structure of Equation (0.1) can be described by considering the twovariable polynomial $P(X, Y)=X+Y$. Then (0.1) states that the polynomial

[^0]$P(X, Y)^{n}$, obtained by taking the n-th power of $P(X, Y)$, coincides with the polynomial $P\left(X^{n}, Y^{n}\right)$ obtained by replacing the variables X, Y with their powers X^{n}, Y^{n}, respectively.

Helen Wong and the author discovered similar identities in their study of the Kauffman bracket skein algebra of a surface [6]. These relations involved a 2-dimensional version of the operation of "taking the n-th power", through the Chebyshev polynomial $T_{n}(t) \in \mathbb{Z}[t]$ defined by the property that

$$
\text { Trace } A^{n}=T_{n}(\text { Trace } A)
$$

for every 2 -by- 2 matrix $A \in \mathrm{SL}_{2}(\mathbb{C})$ with determinant 1 . A typical consequence of the miraculous cancellations discovered in [6] is that, when $Y X=q X Y$ and q is a primitive n-root of unity,

$$
\begin{equation*}
T_{n}\left(X+Y+X^{-1}\right)=X^{n}+Y^{n}+X^{-n} \tag{0.2}
\end{equation*}
$$

which fits the pattern $T_{n}(P(X, Y))=P\left(X^{n}, Y^{n}\right)$ for the polynomial $P(X, Y)=X+Y+X^{-1}$. The arguments of [6] provide many examples of such polynomials, involving several q-commuting variables.

In [6] these "Chebyshev cancellations" were used to connect, when q is a root of unity, irreducible representations of the Kauffman bracket skein algebra $\mathcal{S}^{q}(S)$ of a surface S to group homomorphisms $\pi_{1}(S) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$. The skein algebra $\mathcal{S}^{q}(S)$ is a purely topological object whose elements are represented by framed links in the thickened surface $S \times[0,1]$. It draws its origin from Witten's interpretation [17, 18, 22] of the Jones polynomial knot invariant within the framework of a topological quantum field theory, and as a consequence it is closely connected to the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

The arguments of [6] were often developed by trial and error. The purpose of the current article is to put these constructions into a more conceptual framework, where the connection with $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and $\mathrm{SL}_{2}(\mathbb{C})$ appears more clearly. Another goal is to emphasize the representation theoretic nature of these phenomena, with the long term objective of generalizing them to quantum knot invariants and skein algebras based on other quantum groups $\mathrm{U}_{q}(\mathfrak{g})$, such as the $\mathrm{U}_{q}\left(\mathfrak{s l}_{n}\right)$-based HOMFLY polynomial and skein algebra.

In addition to the fact that quantum groups are still an acquired taste for many mathematicians, including the author, the connection between $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and $\mathrm{SL}_{2}(\mathbb{C})$ is more intuitive if we replace $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ with its dual Hopf algebra SL_{2}^{q}, in the sense of $[14,15,16,19,20]$. This will enable us to express our constructions solely in terms of 2 -by- 2 matrices with coefficients in an arbitrary noncommutative algebra \mathcal{A}; in [6], the algebra \mathcal{A} was the quantum Teichmüller space of the surface. This point of view is sufficiently close to $\mathrm{SL}_{2}(\mathbb{C})$ that it should be relatively intuitive for those mathematicians who
have a long track record in hyperbolic geometry, since $\mathrm{PSL}_{2}(\mathbb{C})$ is the isometry group of the hyperbolic space \mathbb{H}^{3}. This category includes the author and Jean-Pierre Otal, and it is a pleasure to dedicate this article to him as an acknowledgement of the great influence that he had on the author's work, either through their joint articles $[1,2,3,4]$ or through many informal conversations.

We now state the main result of this article.
THEOREM 0.1. - Let $A_{1}, A_{2}, \ldots, A_{k}$ be 2-by-2 matrices with coefficients in an algebra \mathcal{A} over \mathbb{C}, such that:
(1) each A_{i} is triangular of the form $\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$ with $b_{i} a_{i}=$ $q a_{i} b_{i}$ for some nonzero number $q \in \mathbb{C}-\{0\}$;
(2) a_{i} and b_{i} commute with a_{j} and b_{j} whenever $i \neq j$.

Then, if q^{2} is a primitive n-root of unity,

$$
T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)=\operatorname{Trace} A_{1}^{(n)} A_{2}^{(n)} \ldots A_{k}^{(n)}
$$

where each $A_{i}^{(n)}$ is obtained from A_{i} by replacing a_{i} and b_{i} with their powers a_{i}^{n} and b_{i}^{n}

This statement is easier to understand if we illustrate it by an example. Consider the product of five triangular matrices

$$
A=\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & a_{1}^{-1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & b_{2} \\
0 & a_{2}^{-1}
\end{array}\right)\left(\begin{array}{cc}
a_{3} & 0 \\
b_{3} & a_{3}^{-1}
\end{array}\right)\left(\begin{array}{cc}
a_{4} & b_{4} \\
0 & a_{4}^{-1}
\end{array}\right)\left(\begin{array}{cc}
a_{5} & 0 \\
b_{5} & a_{5}^{-1}
\end{array}\right)
$$

where $b_{i} a_{i}=q a_{i} b_{i}$, and a_{i} and b_{i} commute with a_{j} and b_{j} whenever $i \neq j$.
Computing the product and taking the trace straightforwardly gives

$$
\begin{aligned}
\text { Trace } A=a_{1} & a_{2} a_{3} a_{4} a_{5}+a_{1} a_{2} a_{3} b_{4} b_{5}+a_{1} b_{2} b_{3} a_{4} a_{5}+a_{1} b_{2} b_{3} b_{4} b_{5} \\
& \quad+a_{1} b_{2} a_{3}^{-1} a_{4}^{-1} b_{5}+b_{1} a_{2}^{-1} b_{3} a_{4} a_{5}+b_{1} a_{2}^{-1} b_{3} b_{4} b_{5} \\
& +b_{1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1} b_{5}+a_{1}^{-1} a_{2}^{-1} b_{3} b_{4} a_{5}^{-1}+a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1} a_{5}^{-1} .
\end{aligned}
$$

Since Trace A has 10 terms and the Chebyshev polynomial $T_{n}(t)$ has degree n, one would expect $T_{n}(\operatorname{Trace} A)$ to have about 10^{n} terms. However, when q^{2} is a primitive n-root of unity, many cancellations occur and only 10 terms remain. In fact

$$
\begin{aligned}
T_{n}(\operatorname{Trace} A)= & a_{1}^{n} a_{2}^{n} a_{3}^{n} a_{4}^{n} a_{5}^{n}+a_{1}^{n} a_{2}^{n} a_{3}^{n} b_{4}^{n} b_{5}^{n}+a_{1}^{n} b_{2}^{n} b_{3}^{n} a_{4}^{n} a_{5}^{n}+a_{1}^{n} b_{2}^{n} b_{3}^{n} b_{4}^{n} b_{5}^{n} \\
& +a_{1}^{n} b_{2}^{n} a_{3}^{-n} a_{4}^{-n} b_{5}^{n}+b_{1}^{n} a_{2}^{-n} b_{3}^{n} a_{4}^{n} a_{5}^{n}+b_{1}^{n} a_{2}^{-n} b_{3}^{n} b_{4}^{n} b_{5}^{n} \\
& +b_{1}^{n} a_{2}^{-n} a_{3}^{-n} a_{4}^{-n} b_{5}^{n}+a_{1}^{-n} a_{2}^{-n} b_{3}^{n} b_{4}^{n} a_{5}^{-n}+a_{1}^{-n} a_{2}^{-n} a_{3}^{-n} a_{4}^{-n} a_{5}^{-n} \\
= & \operatorname{Trace} A^{(n)}
\end{aligned}
$$

where

$$
A^{(n)}=\left(\begin{array}{cc}
a_{1}^{n} & b_{1}^{n} \\
0 & a_{1}^{-n}
\end{array}\right)\left(\begin{array}{cc}
a_{2}^{n} & b_{2}^{n} \\
0 & a_{2}^{-n}
\end{array}\right)\left(\begin{array}{cc}
a_{3}^{n} & 0 \\
b_{3}^{n} & a_{3}^{-n}
\end{array}\right)\left(\begin{array}{cc}
a_{4}^{n} & b_{4}^{n} \\
0 & a_{4}^{-n}
\end{array}\right)\left(\begin{array}{cc}
a_{5}^{n} & 0 \\
b_{5}^{n} & a_{5}^{-n}
\end{array}\right)
$$

is obtained from A by replacing each a_{i}, b_{i} with a_{i}^{n}, b_{i}^{n}.
When q is transcendental, there are only very few cancellations and Proposition 6.2 shows that $T_{n}(\operatorname{Trace} A)$ is a sum of exactly $(5+\sqrt{24})^{n}+$ $(5-\sqrt{24})^{n}>9.89^{n}$ monomials. This explicit count is based on a positivity result (Proposition 6.1) which may be of independent interest.

Similarly, the example of Equation (0.2) is provided by applying Theorem 0.1 to the matrix $A=\left(\begin{array}{cc}a_{1} & b_{1} \\ 0 & a_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}a_{2} & 0 \\ b_{2} & a_{2}^{-1}\end{array}\right)$, setting $X=a_{1} a_{2}$ and $Y=b_{1} b_{2}$, and replacing q with \sqrt{q}.

The proof of Theorem 0.1 essentially has two parts. The first step is representation theoretic, and connects $T_{n}(\operatorname{Trace} A)$ to the action of the matrix A on the space $\mathcal{A}[X, Y]^{q}$ of polynomials in q-commuting variables X and Y and with coefficients in the algebra \mathcal{A}. This is a relatively easy adaptation to our context of a deep but classical result in the representation theory of the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, the Clebsch-Gordan Decomposition. The author is here grateful to the referee for pointing out the reference [9], where a different proof of Corollary 4.12 can be found; see Remark 4.13. The second step is a simple computation of traces for this action of A on $\mathcal{A}[X, Y]^{q}$, which is much simpler than the original arguments of [6].

Among the hypotheses of Theorem 0.1, some are more natural than others. The q-commutativity relations $b_{i} a_{i}=q a_{i} b_{i}$ are essentially mandated by the connection of the objects considered to the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and its dual Hopf algebra SL_{2}^{q}. Similarly, the requirement that the matrices A_{i} be triangular is deeply tied to the structure of the Lie group $\mathrm{SL}_{2}(\mathbb{C})$ and the quantum group $\mathrm{U}_{q}\left(\mathfrak{S l}_{2}\right)$ (and their Borel subgroups/subalgebras). The commutativity hypothesis that a_{i} and b_{i} commute with a_{j} and b_{j} whenever $i \neq j$ is less critical, and was introduced here to define Trace $A_{1} A_{2} \ldots A_{k} \in \mathcal{A}$ (and the product matrix $A_{1} A_{2} \ldots A_{k} \in \mathrm{SL}_{2}^{q}(\mathcal{A})$) in a straightforward way. In fact, it is possible to define such a trace without these commutativity properties, but this requires using the cobraiding of the Hopf algebra SL_{2}^{q} as well as additional data that is reminiscent of the original topological context. This was implicitly done in [5] for the Kauffman bracket skein algebra of a surface, but a quick comparison between the formulas of [5, Lem. 21] and [11, Cor. VIII.7.2] should make it clear that these arguments can be expanded to a more representation theoretic framework. The cancellations of Theorem 0.1 then extend to this generalized setup, as in [6].

1. The equation $(X+Y)^{n}=X^{n}+Y^{n}$

In spite of the first sentence of this article, most of our students do know the Binomial Formula, which says that

$$
\begin{aligned}
& (X+Y)^{n} \\
& =X^{n}+\binom{n}{1} X^{n-1} Y++\binom{n}{2} X^{n-2} Y^{2}+\cdots+\binom{n}{n-1} X Y^{n-1}+Y^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} X^{n-k} Y^{k}
\end{aligned}
$$

where $\binom{n}{k}$ is the binomial coefficient

$$
\binom{n}{k}=\frac{n(n-1)(n-2) \ldots(n-k+2)(n-k+1)}{k(k-1)(k-2) \ldots 21}
$$

If we are working in a ring R with characteristic n and if n is prime (which in particular occurs when R is a field), then $n=0$ in R while $k(k-1)(k-2) \ldots 21 \neq 0$ for every $k<n$. It follows that $\binom{n}{k}=0$ whenever $0<k<n$, so that the Frobenius relation

$$
\begin{equation*}
(X+Y)^{n}=X^{n}+Y^{n} \tag{0.1}
\end{equation*}
$$

holds in this case.
Note that the hypothesis that the characteristic n is prime is really necessary. For instance, in the ring $\mathbb{Z} / 4$ of characteristic 4 ,

$$
(X+Y)^{4}=X^{4}+6 X^{2} Y^{2}+Y^{4} \neq X^{4}+Y^{4}
$$

A less well-known occurrence of Equation (0.1) involves variables X and Y that q-commute, in the sense that $Y X=q X Y$ for some $q \in \mathbb{C}$. The Quantum Binomial Formula (see for instance [11, §IV.2]) then states that

$$
\begin{align*}
& (X+Y)^{n} \\
& =X^{n}+\binom{n}{1}_{q} X^{n-1} Y++\binom{n}{2}_{q} X^{n-2} Y^{2}+\cdots+\binom{n}{n-1}_{q} X Y^{n-1}+Y^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k}_{q} X^{n-k} Y^{k} \tag{1.1}
\end{align*}
$$

where $\binom{n}{k}_{q}$ is the quantum binomial coefficient

$$
\binom{n}{k}_{q}=\frac{(n)_{q}(n-1)_{q}(n-2)_{q} \ldots(n-k+2)_{q}(n-k+1)_{q}}{(k)_{q}(k-1)_{q}(k-2)_{q} \ldots(2)_{q}(1)_{q}}
$$

defined by the quantum integers

$$
(j)_{q}=\frac{q^{j}-1}{q-1}=1+q+q^{2}+\cdots+q^{j-1} .
$$

We state the following property as a lemma, as we will frequently need to refer to it.

Lemma 1.1. - If q is a primitive n-root of unity, in the sense that $q^{n}=1$ and $q^{k} \neq 1$ whenever $0<k<n$, the quantum binomial coefficient $\binom{n}{k}_{q}$ is equal to 0 for every k with $0<k<n$.

Proof. - Since q is a primitive n-root of unity, $(n)_{q}=\frac{q^{n}-1}{q-1}=0$ while $(k)_{q}=\frac{q^{k}-1}{q-1} \neq 0$ whenever $0<k<n$. The result follows.

Corollary 1.2. - If $Y X=q X Y$ with $q \in \mathbb{C}$ a primitive n-root of unity, the Frobenius relation

$$
\begin{equation*}
(X+Y)^{n}=X^{n}+Y^{n} \tag{0.1}
\end{equation*}
$$

holds.

As in the characteristic n case, it is necessary that q be a primitive $n-$ root of unity. For instance, when $Y X=-X Y, q=-1$ is a (non-primitive) 4 -root of unity and $(X+Y)^{4}=X^{4}+2 X^{2} Y^{2}+Y^{4} \neq X^{4}+Y^{4}$.

We will now discuss generalizations of Equation (0.1) arising from properties of the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. As indicated in the introduction, we will express these properties in terms of 2-by-2 matrices with coefficients in an algebra \mathcal{A}.

Incidentally, all algebras considered in this article will be over \mathbb{C}. Other fields could be used, but the need for primitive n-roots of unity make this convention more natural.

We begin with the classical case of the algebra $\mathcal{A}=\mathbb{C}$, and of the Lie group $\mathrm{SL}_{2}(\mathbb{C})$.

2. The classical action of $\mathrm{SL}_{2}(\mathbb{C})$ on $\mathbb{C}[X, Y]$

The special linear group of order 2 is the group

$$
\mathrm{SL}_{2}(\mathbb{C})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ; a, b, c, d \in \mathbb{C}, a d-b c=1\right\}
$$

of 2-by-2 matrices with determinant 1 . It has a left action on the plane \mathbb{C}^{2}, and therefore a right action by precomposition on the algebra

$$
\begin{aligned}
\mathbb{C}[X, Y] & =\left\{\text { polynomial functions on } \mathbb{C}^{2}\right\} \\
& =\left\{\text { polynomials } \sum_{i=0}^{m} \sum_{j=0}^{n} a_{i j} X^{i} Y^{j} ; a_{i j} \in \mathbb{C}\right\}
\end{aligned}
$$

of polynomials in the variables X and Y. More precisely, the action of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{C})$ on $\mathbb{C}[X, Y]$ is such that

$$
P(X, Y)\left(\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right)=P(a X+b Y, c X+d Y)
$$

for every polynomial $P(X, Y) \in \mathbb{C}[X, Y]$.
This defines a map

$$
\rho: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[X, Y])
$$

from $\mathrm{SL}_{2}(\mathbb{C})$ to the algebra of \mathbb{C}-linear maps $\mathbb{C}[X, Y] \rightarrow \mathbb{C}[X, Y]$.
We collect a few elementary properties in the following lemma.

Lemma 2.1.

(1) For every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}), \rho\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}[X, Y])$ is also an algebra endomorphism of $\mathbb{C}[X, Y]$.
(2) The map ρ is valued in the group Aut $_{\mathbb{C}}(\mathbb{C}[X, Y])$ of linear automorphisms of $\mathbb{C}[X, Y]$, and induces a group antihomomorphism $\rho: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \operatorname{Aut}_{\mathbb{C}}(\mathbb{C}[X, Y])$, in the sense that

$$
\rho\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right)=\rho\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \circ \rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C})$.
(3) If $\mathbb{C}[X, Y]_{n}=\left\{\sum_{i+j=n} a_{i j} X^{i} Y^{j} ; a_{i j} \in \mathbb{C}\right\} \cong \mathbb{C}^{n+1}$ denotes the vector space of homogeneous polynomials of degree n, the representation ρ restricts to a finite-dimensional representation

$$
\rho_{n}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \operatorname{Aut}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{n}\right) \cong \operatorname{Aut}_{\mathbb{C}}\left(\mathbb{C}^{n+1}\right)
$$

The order reversal in the second conclusion reflects the fact that $\mathrm{SL}_{2}(\mathbb{C})$ acts on $\mathbb{C}[X, Y]$ on the right. We could easily turn ρ into a group homomorphism by composing it with any of the standard antiautomorphisms of $\mathrm{SL}_{2}(\mathbb{C})$, such as $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{\mathrm{t}}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ or $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, and many authors do this. For this reason, we will refer to ρ and its restrictions ρ_{n} as representations of $\mathrm{SL}_{2}(\mathbb{C})$.

A classical property is that, up to isomorphism, the ρ_{n} form the collection of all irreducible representations of $\mathrm{SL}_{2}(\mathbb{C})$.

3. The quantum plane and $\mathrm{SL}_{2}^{q}(\mathcal{A})$

For a nonzero number $q \in \mathbb{C}-\{0\}$, the quantum plane is the algebra $\mathbb{C}[X, Y]^{q}$ defined by two generators X and Y, and by the relation $Y X=q X Y$. Namely, the elements of $\mathbb{C}[X, Y]^{q}$ are polynomials $P(X, Y)=$ $\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i j} X^{i} X^{j}$ that are multiplied using the relation $Y X=q X Y$.

If we want to keep the property that the matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ act as algebra homomorphisms on $\mathbb{C}[X, Y]^{q}$, we need that

$$
\begin{aligned}
(c X+d Y)(a X+b Y) & =q(a X+b Y)(c X+d Y) \\
\text { and }(b X+d Y)(a X+c Y) & =q(a X+c Y)(b X+d Y)
\end{aligned}
$$

to preserve the relation $Y X=q X Y$. Identifying the coefficients of $X^{2}, X Y$ and Y^{2}, this would require

$$
\begin{array}{rlrl}
b a & =q a b & d b & =q b d \\
c a & =q a c & & =c b \tag{3.1}\\
& d c & =q c d & a d-q^{-1} b c
\end{array}=d a-q b c
$$

which is clearly impossible if $q \neq 1$ and a, b, c, d commute with each other. This leads us to the following definition (see for instance [11, Chap. IV] for more background).

Given an algebra \mathcal{A} over \mathbb{C}, let $\operatorname{SL}_{2}^{q}(\mathcal{A})$ denote the set of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a, b, c, d \in \mathcal{A}$ satisfy the relations of (3.1), as well as

$$
\begin{equation*}
a d-q^{-1} b c=1 \tag{3.2}
\end{equation*}
$$

More formally, let SL_{2}^{q} be the algebra defined by generators a, b, c, d and by the relations of (3.1) and (3.2). Then $\mathrm{SL}_{2}^{q}(\mathcal{A})$ can be interpreted as the set of all algebra homomorphisms $\mathrm{SL}_{2}^{q} \rightarrow \mathcal{A}$. The elements of $\mathrm{SL}_{2}^{q}(\mathcal{A})$ are called the \mathcal{A}-points of SL_{2}^{q}.

Unlike $\mathrm{SL}_{2}(\mathbb{C})$, the set $\mathrm{SL}_{2}^{q}(\mathcal{A})$ is far from being a group. It only comes with a partially defined multiplication. Indeed, if $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ and $\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$, the usual formula

$$
\left(\begin{array}{ll}
a & b \tag{3.3}\\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right)
$$

gives an element of $\mathrm{SL}_{2}^{q}(\mathcal{A})$ only under additional hypotheses on the entries of these matrices, for instance if a, b, c, d commute with $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$. This partially defined multiplication has an identity element $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in \operatorname{SL}_{2}^{q}(\mathcal{A})$. However, the operation of passing to the inverse somewhat misbehaves in the sense that the formal inverse $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\left(\begin{array}{cc}d & -q b \\ -q^{-1} & c \\ a\end{array}\right)$ of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ is an element of $\mathrm{SL}_{2}^{q^{-1}}(\mathcal{A})=\operatorname{SL}_{2}^{q}\left(\mathcal{A}^{\mathrm{op}}\right)$ instead of $\mathrm{SL}_{2}^{q}(\mathcal{A})$; here $\mathcal{A}^{\mathrm{op}}$ is the opposite algebra of the algebra \mathcal{A}, consisting of the vector space \mathcal{A} endowed
with the new multiplication $*_{\text {op }}$ defined by the property that $a *_{\text {op }} b=b a$ for every $a, b \in \mathcal{A}$. In general, the formula (3.3) gives a globally defined multiplication $\mathrm{SL}_{2}(\mathcal{A}) \otimes \mathrm{SL}_{2}(\mathcal{B}) \rightarrow \mathrm{SL}_{2}(\mathcal{A} \otimes \mathcal{B})$ for any two algebras \mathcal{A} and \mathcal{B}.

In order to generalize to $\mathrm{SL}_{2}^{q}(\mathcal{A})$ the action of $\mathrm{SL}_{2}(\mathbb{C})$ on $\mathbb{C}[X, Y]$, we introduce the quantum \mathcal{A}-plane as the \mathcal{A}-algebra $\mathcal{A}[X, Y]^{q}=\mathcal{A} \otimes \mathbb{C}[X, Y]^{q}$. In practice the elements of $\mathcal{A}[X, Y]^{q}$ are polynomials

$$
P(X, Y)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i j} X^{i} X^{j}
$$

with coefficients $a_{i j} \in \mathcal{A}$, and are algebraically manipulated using the relation $Y X=q X Y$ while the variables X and Y commute with all elements of \mathcal{A}.

The relations defining $\mathrm{SL}_{2}^{q}(\mathcal{A})$ are specially designed that an \mathcal{A}-point of SL_{2}^{q} acts as an algebra homomorphism on the quantum \mathcal{A}-plane $\mathcal{A}[X, Y]^{q}$, by the same formula (2.1) as in the commutative plane. More precisely, if End $_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)$ denotes the space of \mathcal{A}-linear maps $\mathcal{A}[X, Y]^{q} \rightarrow \mathcal{A}[X, Y]^{q}$, we can define a map

$$
\rho: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)
$$

such that

$$
\rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\sum_{i, j} a_{i j} X^{i} Y^{j}\right)=\sum_{i, j} a_{i j}(a X+b Y)^{i}(c X+d Y)^{j}
$$

for every polynomial $\sum_{i, j} a_{i j} X^{i} Y^{j} \in \mathcal{A}_{q}[X, Y]$.
The map ρ satisfies the following elementary properties.

Lemma 3.1.

(1) For every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$, the restriction $\mathbb{C}[X, Y]^{q} \rightarrow \mathcal{A}[X, Y]^{q}$ of the \mathcal{A}-linear map $\rho\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)$ is a \mathbb{C}-algebra homomorphism.
(2) For each n, the map $\rho\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)$ respects the space $\mathcal{A}[X, Y]_{n}^{q}=\mathcal{A} \otimes \mathbb{C}[X, Y]_{n}^{q}$ of homogeneous polynomials of degree n in X and Y with coefficients in \mathcal{A}. As a consequence, ρ induces by restriction a map

$$
\rho_{n}: \mathrm{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{n}^{q}\right)
$$

(3) If a, b, c, d commute with $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ (so that the product $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)=\left(\begin{array}{cc}a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\ c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ makes sense $)$,

$$
\rho\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right)=\rho\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \circ \rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Remark 3.2. - The first conclusion of Lemma 3.1 can be rephrased by saying that, for every $P, Q \in \mathbb{C}[X, Y]^{q}$,

$$
\rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(P Q)=\rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(P) \rho\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(Q)
$$

in $\mathcal{A}[X, Y]^{q}$. However, note that this property does not always hold for P, $Q \in \mathcal{A}[X, Y]^{q}$, so that the \mathcal{A}-linear map $\rho\left(\begin{array}{cc}a & b \\ c & d\end{array}\right): \mathcal{A}[X, Y]^{q} \rightarrow \mathcal{A}[X, Y]^{q}$ is not necessarily an \mathcal{A}-algebra homomorphism.

4. Traces and Chebyshev polynomials

4.1. Traces

Traces can misbehave in the noncommutative context. However, we are interested in endomorphisms of $\mathcal{A}[X, Y]_{n}^{q}=\mathcal{A} \otimes \mathbb{C}[X, Y]_{n}^{q}$, which have a natural trace.

To emphasize the key property needed, let V be a finite dimensional vector space over \mathbb{C}, let \mathcal{A} be an algebra over \mathbb{C}, and consider an \mathcal{A}-linear map $f \in \operatorname{End}_{\mathcal{A}}(\mathcal{A} \otimes V)$. The trace of f is defined as

$$
\text { Trace } f=\sum_{i=0}^{n} a_{i i} \in \mathcal{A}
$$

where, if $e_{0}, e_{1}, \ldots, e_{n}$ is a basis for the \mathbb{C}-vector space V, the coefficients $a_{i j} \in \mathcal{A}$ are defined by the property that $f\left(e_{j}\right)=\sum_{i=0}^{n} a_{i j} e_{i}$ in $\mathcal{A} \otimes V$ for every $j=0,1, \ldots, n$.

The usual commutative proof immediately extends to this context to give:
Lemma 4.1. - The trace Trace $f \in \mathcal{A}$ is independent of the choice of the basis $e_{0}, e_{1}, \ldots, e_{n}$ for the \mathbb{C}-vector space V.

Note that this property would be false if we only required $e_{0}, e_{1}, \ldots, e_{n}$ to be a basis for the \mathcal{A}-module $\mathcal{A} \otimes V \cong \mathcal{A}^{n+1}$.

For practice, let us carry out a few elementary computations for the representations $\rho_{n}: \mathrm{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{n}^{q}\right)$ of Lemma 3.1.

For $n=1$, consider $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ and its image $\rho_{1}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in$ $\operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{1}^{q}\right)$. The polynomials X, Y form a basis for $\mathbb{C}[X, Y]_{1}^{q}$. Since $\rho_{1}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(X)=a X+b Y$ and $\rho_{1}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)(Y)=c X+d Y$ we conclude that Trace $\rho_{1}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is equal to $a+d$, namely to what we have implicitly called Trace $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in the introduction.

For $n=2$, an elementary computation gives

$$
\begin{aligned}
& \rho_{2}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(X^{2}\right)=(a X+b Y)^{2} \quad=a^{2} X^{2}+\left(1+q^{2}\right) a b X Y+b^{2} Y^{2} \\
& \rho_{2}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(X Y)=(a X+b Y)(c X+d Y)=a c X^{2}+(a d+q b c) X Y+b d Y^{2} \\
& \rho_{2}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(Y^{2}\right)=(c X+d Y)^{2} \quad=c^{2} X^{2}+\left(1+q^{2}\right) c d X Y+d^{2} Y^{2}
\end{aligned}
$$

so that

$$
\text { Trace } \rho_{2}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a^{2}+(a d+q b c)+d^{2} \quad \begin{aligned}
& \\
&=a^{2}+a d+d a+d^{2}-1 \\
&=(a+d)^{2}-1
\end{aligned}
$$

by remembering that $d a-q b c=1$ from the definition of $\mathrm{SL}_{2}^{q}(\mathcal{A})$.
For $n=3$, a longer but similar first step gives that
Trace $\rho_{3}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{aligned}
& =a^{3}+\left(a^{2} d+q\left(1+q^{2}\right) a b c\right)+\left(a\left(1+q^{2}\right) b c d+a d^{2}\right)+d^{3} \\
& =a^{3}+a^{2} d+a d a+q^{2} a d a-a-q^{2} a+d a d+q^{2} d a d-d-q^{2} d+a d^{2}+d^{3}
\end{aligned}
$$

using again the property that $d a-q b c=1$.
Since $q b c=d a-1$ and $b c a=q^{2} a b c$, we have that $d a^{2}-a=q^{2} a d a-q^{2} a$. Similarly, because $d b c=q^{2} b c d, d^{2} a-a=q^{2} d a d-q^{2} d$. Substituting these values in our first expression for Trace $\rho_{3}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ gives

Trace $\rho_{3}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a^{3}+a^{2} d+a d a+d a^{2}+d a d+d^{2} a+a d^{2}+d^{3}-2 a-2 d$

$$
=(a+d)^{3}-2(a+d)
$$

In all three cases, we have been able to express the trace Trace $\rho_{n}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ as a polynomial in Trace $\left(\begin{array}{lll}a & b \\ c & d\end{array}\right)=a+d$. We will see in Corollary 4.12 that this is a general phenomenon. Part of the purpose in the above calculations was to let the reader experience the fact that this property is not that easy to check by bare-hand computations, which justifies the introduction of the more theoretical constructions of Section 4.3 and Section 4.4 below.

4.2. Chebyshev polynomials

We will encounter two types of Chebyshev polynomials. The (normalized) Chebyshev polynomials of the first kind are the polynomials $T_{n}(t) \in \mathbb{Z}[t]$ recursively defined by

$$
\begin{align*}
T_{n+1}(t) & =t T_{n}(t)-T_{n-1}(t) \\
T_{1}(t) & =t \tag{4.1}\\
T_{0}(t) & =2 .
\end{align*}
$$

The (normalized) Chebyshev polynomials of the second kind $S_{n}(t) \in \mathbb{Z}[t]$ are remarkably similar, and defined by

$$
\begin{align*}
& S_{n+1}=t S_{n}(t)-S_{n-1}(t) \\
& S_{1}(t)=t \tag{4.2}\\
& S_{0}(t)=1
\end{align*}
$$

In particular, in addition to $T_{0}(t)=2, S_{0}(t)=1$ and $T_{1}(t)=S_{1}(t)=t$,

$$
\begin{array}{ll}
T_{2}(t)=t^{2}-2 & S_{2}(t)=t^{2}-1 \\
T_{3}(t)=t^{3}-3 t & S_{3}(t)=t^{3}-2 t \\
T_{4}(t)=t^{4}-4 t^{2}+2 & S_{4}(t)=t^{4}-3 t^{2}+1 \\
T_{5}(t)=t^{5}-5 t^{3}+5 t & S_{5}(t)=t^{5}-4 t^{3}+3 t \\
T_{6}(t)=t^{6}-6 t^{4}+9 t^{2}-2 & S_{6}(t)=t^{6}-5 t^{4}+6 t^{2}-1
\end{array}
$$

Lemma 4.2. - The two types of Chebyshev polynomials are related by the property that

$$
T_{n}(t)=S_{n}(t)-S_{n-2}(t)
$$

for every $n \geqslant 2$
Proof. - This is an immediate consequence of the fact that the $T_{n}(t)$ and $S_{n}(t)$ satisfy the same linear recurrence relation, and of the initial conditions.

The following classical properties connect the Chebyshev polynomials $T_{n}(t)$ and $S_{n}(t)$ to the group $\mathrm{SL}_{2}(\mathbb{C})$.

Lemma 4.3. - For every $A \in \mathrm{SL}_{2}(\mathbb{C})$,

$$
\begin{aligned}
& T_{n}(\operatorname{Trace} A)=\operatorname{Trace} A^{n} \\
& S_{n}(\operatorname{Trace} A)=\operatorname{Trace} \rho_{n}(A)
\end{aligned}
$$

where $\rho_{n}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \operatorname{End}\left(\mathbb{C}[X, Y]_{n}\right)$ is the $(n+1)$-dimensional representation of Section 2.

Proof. - From the Cayley-Hamilton Theorem (or inspection)

$$
A^{2}-(\text { Trace } A) A+\mathrm{Id}=0
$$

for every $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C})$. Multiplying both sides by A^{n-1} and taking the trace, we see that Trace A^{n} satisfies the same recurrence relation

$$
\text { Trace } A^{n+1}=(\operatorname{Trace} A)\left(\text { Trace } A^{n}\right)-\operatorname{Trace} A^{n-1}
$$

as $T_{n}(\operatorname{Trace} A)$, as well as the same initial values for $n=0$ and $n=1$. It follows that Trace $A^{n}=T_{n}$ (Trace A) for every n.

For the property that $S_{n}(\operatorname{Trace} A)=\operatorname{Trace} \rho_{n}(A)$, which is not needed in this article, we can just refer to the special case $q=1$ of Corollary 4.12 below.

Note the following closed form expression for the Chebyshev polynomial $T_{n}(t) \in \mathbb{Z}[t]$.

Lemma 4.4.

$$
T_{n}(t)=\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)^{n}+\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)^{n}
$$

Proof. - Let $A \in \mathrm{SL}_{2}(\mathbb{C})$ be a matrix such that Trace $A=t$. If $t^{2}-4 \neq$ 0 , the characteristic polynomial $\lambda^{2}-t \lambda+1$ of A has two distinct roots $\frac{t \pm \sqrt{t^{2}-4}}{2}$, which consequently are the eigenvalues of A. Then A^{n} has eigenvalues $\left(\frac{t \pm \sqrt{t^{2}-4}}{2}\right)^{n}$ and, by Lemma 4.3,

$$
T_{n}(t)=\text { Trace } A^{n}=\left(\frac{t+\sqrt{t^{2}-4}}{2}\right)^{n}+\left(\frac{t-\sqrt{t^{2}-4}}{2}\right)^{n}
$$

By continuity, the property also holds when $t^{2}-4=0$.

4.3. The Hopf algebras SL_{2}^{q} and $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$

For most of the article, we are trying to keep the exposition at an elementary level in order to make the algebra more intuitive and to emphasize its connection with geometry. However, we now need deeper algebraic concepts and constructions, which will enable us to apply the well-known ClebschGordan Decomposition for $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ (Theorem 4.8) to obtain a similar statement (Proposition 4.11) for the set $\mathrm{SL}_{2}^{q}(\mathcal{A})$ of 2 -by- 2 matrices that we are interested in. We follow here the conventions of [11, Chap. VI-VII].

We already encountered the \mathbb{C}-algebra SL_{2}^{q}, defined by generators a, b, c, d and by the relations of (3.1)-(3.2). In particular, $\mathrm{SL}_{2}^{q}(\mathcal{A})$ is the set of homomorphisms from SL_{2}^{q} to the algebra \mathcal{A}.

A better known object is the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, which is a deformation of the enveloping algebra of the Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$ of $\mathrm{SL}_{2}(\mathbb{C})$; see $[7,8,10,12]$. Recall that $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is defined by generators E, F, K, K^{-1} and by the relations

$$
\begin{array}{rlrl}
K K^{-1} & =K^{-1} K=1 & K E=q^{2} E K \\
E F-F E & =\frac{K-K^{-1}}{q-q^{-1}} & & K F=q^{-2} F K \tag{4.3}
\end{array}
$$

This is a Hopf algebra, whose comultiplication $\Delta: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes$ $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, counit $\varepsilon: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbb{C}$ and antipode map $S: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ are respectively determined by the properties that

$$
\begin{array}{lll}
\Delta(E)=E \otimes K+1 \otimes E & \varepsilon(E)=0 & S(E)=-E K^{-1} \\
\Delta(F)=F \otimes 1+K^{-1} \otimes F & \varepsilon(F)=0 & S(F)=-K F \\
\Delta(K)=K \otimes K & \varepsilon(K)=1 & S(K)=K^{-1}
\end{array}
$$

Similarly, SL_{2}^{q} is a Hopf algebra with comultiplication $\Delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes$ SL_{2}^{q}, counit $\varepsilon: \mathrm{SL}_{2}^{q} \rightarrow \mathbb{C}$ and antipode $S: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{SL}_{2}^{q}$ given by

$$
\begin{array}{lll}
\Delta(a)=a \otimes a+b \otimes c & \varepsilon(a)=1 & S(a)=d \\
\Delta(b)=a \otimes b+b \otimes d & \varepsilon(b)=0 & S(b)=-q b \\
\Delta(c)=c \otimes a+d \otimes c & \varepsilon(c)=0 & S(c)=-q^{-1} c \\
\Delta(d)=c \otimes b+d \otimes d & \varepsilon(d)=1 & S(d)=a .
\end{array}
$$

When $q=1$, the algebra SL_{2}^{1} is just the algebra of regular (= polynomial) functions $\mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathbb{C}$ on the algebraic group $\mathrm{SL}_{2}(\mathbb{C})$. The comultiplication $\Delta: \mathrm{SL}_{2}^{1} \rightarrow \mathrm{SL}_{2}^{1} \otimes \mathrm{SL}_{2}^{1}$ then is the algebra homomorphism induced by the group multiplication $\mathrm{SL}_{2}(\mathbb{C}) \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$, the counit $\varepsilon: \mathrm{SL}_{2}^{1} \rightarrow \mathbb{C}$ is induced by the map $\{*\} \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ sending $*$ to the identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and the antipode $S: \mathrm{SL}_{2}^{1} \rightarrow \mathrm{SL}_{2}^{1}$ is induced by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}$.

Similarly, as $q \rightarrow 1$, the quantum group $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ converges to the enveloping algebra $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ of the Lie algebra of $\mathrm{SL}_{2}(\mathbb{C})$, by consideration of $H=\frac{K-K^{-1}}{q-q^{-1}}$.

The relationship between SL_{2}^{q} and $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ comes in the form of a linear pairing

$$
\begin{array}{rlc}
\langle\cdot, \cdot\rangle: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{SL}_{2}^{q} & \longrightarrow & \mathbb{C} \\
U \otimes \alpha & \longmapsto\langle U, \alpha\rangle \tag{4.4}
\end{array}
$$

determined by the properties that

$$
\begin{align*}
& \langle E, a\rangle=0 \quad\langle E, b\rangle=1 \quad\langle E, c\rangle=0 \quad\langle E, d\rangle=0 \\
& \langle F, a\rangle=0 \quad\langle F, b\rangle=0 \quad\langle F, c\rangle=1 \quad\langle F, d\rangle=0 \tag{4.5}\\
& \langle K, a\rangle=q \quad\langle K, b\rangle=0 \quad\langle K, c\rangle=0 \quad\langle K, d\rangle=q^{-1}
\end{align*}
$$

and

$$
\begin{align*}
& \langle U, \alpha \beta\rangle=\sum_{(U)}\left\langle U^{\prime}, \alpha\right\rangle\left\langle U^{\prime \prime}, \beta\right\rangle \tag{4.6}\\
& \langle U V, \alpha\rangle=\sum_{(\alpha)}\left\langle U, \alpha^{\prime}\right\rangle\left\langle V, \alpha^{\prime \prime}\right\rangle \tag{4.7}
\end{align*}
$$

for every $\alpha, \beta \in \mathrm{SL}_{2}^{q}$ and $U, V \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, using Sweedler's notation that

$$
\begin{aligned}
\Delta(U) & =\sum_{(U)} U^{\prime} \otimes U^{\prime \prime} \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \\
\text { and } \Delta(\alpha) & =\sum_{(\alpha)} \alpha^{\prime} \otimes \alpha^{\prime \prime} \in \mathrm{SL}_{2}^{q} \otimes \mathrm{SL}_{2}^{q}
\end{aligned}
$$

for the comultiplications of SL_{2}^{q} and $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. See Lemma 4.6 for an interpretation of the formulas of (4.5), and see [8, 19, 20] and [11, §VII.4] for details.

In particular, the duality $\langle\cdot, \cdot\rangle$ induces a linear map $\delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$ from SL_{2}^{q} to the dual of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. We will need the following property.

Lemma 4.5 (Takeuchi [20]). - The above duality map $\delta: \mathrm{SL}_{2}^{q} \rightarrow$ $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$ is injective.

This is analogous to the property that, because the Lie group $\mathrm{SL}_{2}(\mathbb{C})$ is connected, a regular function on $\mathrm{SL}_{2}(\mathbb{C})$ is completely determined by its derivatives and higher derivatives at the identity element.

In general, the representation theory of a Lie algebra is significantly easier to analyze than that of the corresponding Lie group. The same phenomenon in the quantum world is one of the reasons why $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ is more popular than SL_{2}^{q}.

In particular, there is an action $\sigma: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathbb{C}[X, Y]^{q} \rightarrow \mathbb{C}[X, Y]^{q}$ of $\mathrm{U}_{q}\left(\mathfrak{S l}_{2}\right)$ over the quantum plane $\mathbb{C}[X, Y]^{q}$ by "quantum derivation", defined by the property that

$$
\begin{align*}
\sigma\left(E \otimes X^{k} Y^{l}\right) & =[l]_{q} X^{k+1} Y^{l-1} \\
\sigma\left(K \otimes X^{k} Y^{l}\right) & =q^{k-l} X^{k} Y^{l} \tag{4.8}
\end{align*}
$$

where $[k]_{q}$ denotes the other type of quantum integer

$$
[k]_{q}=\frac{q^{k}-q^{-k}}{q-q^{-1}}=q^{k-1}+q^{k-3}+\cdots+q^{-k+3}+q^{-k+1}=q^{-k+1}(k)_{q^{2}} .
$$

This action restricts to the space of homogeneous polynomials of degree n, and gives an ($n+1$)-dimensional representation

$$
\sigma_{n}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{n}^{q}\right)
$$

for every n.
When q is not a root of unity, the σ_{n} essentially realize all irreducible finite-dimensional representations of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, up to isomorphism. To describe all irreducible finite-dimensional representations of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, one just need one more family of similar representations σ_{n}^{\prime}, related to σ_{n} by a simple sign twist. See for instance [11, §VI.2].

Similarly, the representation $\rho: \mathrm{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)$ of Section 3 comes from a coaction

$$
\tau: \mathbb{C}[X, Y]^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]^{q}
$$

defined by the property that

$$
\tau(P(X, Y))=P(a \otimes X+b \otimes Y, c \otimes X+d \otimes Y)
$$

for every polynomial $P(X, Y) \in \mathbb{C}[X, Y]^{q}$. Indeed, if $A \in \operatorname{SL}_{2}^{q}(\mathcal{A})$ is considered as an algebra homomorphism $A: \mathrm{SL}_{2}^{q} \rightarrow \mathcal{A}$, then $\rho(A) \in$ $\operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]^{q}\right)$ is clearly the \mathcal{A}-linear extension of the \mathbb{C}-linear map $(A \otimes$ $\left.\operatorname{Id}_{\mathbb{C}[X, Y]^{q}}\right) \circ \tau: \mathbb{C}[X, Y]^{q} \rightarrow \mathcal{A}[X, Y]^{q}$.

The following statement relates the duality $\langle\cdot, \cdot\rangle$ of (4.4) to the $2-$ dimensional representation $\sigma_{1}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{1}^{q}\right)$.

Lemma 4.6. - For every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, the matrix of $\sigma_{1}(U) \in$ $\operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{1}^{q}\right)$ in the basis $\{X, Y\}$ is

$$
\sigma_{1}(U)=\left(\begin{array}{ll}
\langle U, a\rangle & \langle U, b\rangle \\
\langle U, c\rangle & \langle U, d\rangle
\end{array}\right),
$$

where a, b, c, d are the generators of SL_{2}^{q}.
Proof. - The property holds for $U=E, F$ or $K^{ \pm 1}$ by inspection in (4.5), since $\sigma_{1}(E)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \sigma_{1}(F)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $\sigma_{1}(K)=\left(\begin{array}{cc}q & 0 \\ 0 & q^{-1}\end{array}\right)$ in the basis $\{X, Y\}$. It then holds for any product of these generators by combining the fact that σ_{1} is an algebra homomorphism, the compatibility of the duality $\langle\cdot, \cdot\rangle$ with the multiplications and comultiplications given by (4.7), and the definition of the comultiplication $\Delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathrm{SL}_{2}^{q}$.

We now show that the duality $\langle\cdot, \cdot\rangle$ connects the action of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ on $\mathbb{C}[X, Y]^{q}$ to the coaction of SL_{2}^{q}.

To see this, we first rewrite the action $\sigma: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathbb{C}[X, Y]^{q} \rightarrow \mathbb{C}[X, Y]^{q}$ as a linear map $\Sigma: \mathbb{C}[X, Y]^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*} \otimes \mathbb{C}[X, Y]^{q}$.

Lemma 4.7. - The action $\Sigma: \mathbb{C}[X, Y]^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*} \otimes \mathbb{C}[X, Y]^{q}$, coaction $\tau: \mathbb{C}[X, Y]^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]^{q}$ and duality map $\delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$ are related by the property that the diagram

is commutative. Namely, $\Sigma=\left(\delta \otimes \operatorname{Id}_{\mathbb{C}[X, Y]^{q}}\right) \circ \tau$.
Proof. - The property is equivalent to the commutativity of the diagram

To simplify the formulas, write $\varphi=\operatorname{Id}_{\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)} \otimes \tau$ and $\psi=\langle\cdot, \cdot\rangle \otimes \mathrm{Id}_{\mathbb{C}[X, Y]^{q}}$. We need to prove that

$$
\begin{equation*}
\psi \circ \varphi(U \otimes P(X, Y))=\sigma(U \otimes P(X, Y)) \tag{4.9}
\end{equation*}
$$

for every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and $P(X, Y) \in \mathbb{C}[X, Y]^{q}$.
We first consider the case where $P(X, Y)=X$. Then,

$$
\begin{aligned}
\psi \circ \varphi(U \otimes X) & =\psi(U \otimes a \otimes X+U \otimes b \otimes Y) \\
& =\langle U, a\rangle X+\langle U, b\rangle Y \\
& =\sigma_{1}(U)(X)=\sigma(U \otimes X)
\end{aligned}
$$

by Lemma 4.6. So, the property of (4.9) holds for $P(X, Y)=X$ and every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

An almost identical argument shows that (4.9) holds for $P(X, Y)=Y$ and every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. As a consequence, (4.9) holds for every $P(X, Y) \in$ $\mathbb{C}[X, Y]_{1}^{q}$ and $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

We now claim that, if (4.9) holds for $P(X, Y)$ and $Q(X, Y)$ and every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, then it holds for the product $P(X, Y) Q(X, Y)$ and every $U \in$ $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

A fundamental property of the action σ is that, in the terminology of [11, $\S V .6]$, it makes $\mathbb{C}[X, Y]^{q}$ a module algebra over $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. This means that, in addition to making $\mathbb{C}[X, Y]^{q}$ a module over the algebra $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, σ satisfies the "quantum product rule" that

$$
\begin{equation*}
\sigma(U \otimes P(X, Y) Q(X, Y))=\sum_{(U)} \sigma\left(U^{\prime} \otimes P(X, Y)\right) \sigma\left(U^{\prime \prime} \otimes Q(X, Y)\right) \tag{4.10}
\end{equation*}
$$

using Sweedler's notation that $\Delta(U)=\sum_{(U)} U^{\prime} \otimes U^{\prime \prime}$. See [11, §VII.3].
Now,

$$
\begin{aligned}
\psi \circ \varphi(U \otimes & P(X, Y) Q(X, Y)) \\
& =\psi(U \otimes P(a \otimes X+b \otimes Y) Q(a \otimes X+b \otimes Y)) \\
& =\sum_{(U)} \psi\left(U^{\prime} \otimes P(a \otimes X+b \otimes Y)\right) \psi\left(U^{\prime \prime} \otimes Q(a \otimes X+b \otimes Y)\right) \\
& =\sum_{(U)} \sigma\left(U^{\prime} \otimes P(X, Y)\right) \sigma\left(U^{\prime \prime} \otimes Q(X, Y)\right) \\
& =\sigma(U \otimes P(X, Y) Q(X, Y)),
\end{aligned}
$$

where the second equality comes from (4.6), the third equality reflects our hypothesis that $P(X, Y)$ and $Q(X, Y)$ satisfy (4.9) for every $U^{\prime \prime \prime} \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, and the fourth equality results from (4.10). This proves our claim that (4.9) holds for $P(X, Y) Q(X, Y)$ and for every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.

This inductive step proves that (4.9) holds in all cases, and concludes the proof of Lemma 4.7.

4.4. The Clebsch-Gordan Decomposition for SL_{2}^{q} and $\mathrm{SL}_{2}^{q}(\mathcal{A})$

A great feature of Hopf algebras is that their comultiplication Δ enables one to take the tensor product of two representations.

For $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, the Quantum Clebsch-Gordan Decomposition expresses the action of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ on the tensor product $\mathbb{C}[X, Y]_{m}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q}$ as a direct sum of (irreducible) representations over $\mathbb{C}[X, Y]_{m+n-2 k}^{q}$ with $0 \leqslant k \leqslant \inf \{m, n\}$.

We state here the result for the case we need, when $m=1$. Recall that the action of $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ on $\mathbb{C}[X, Y]^{q}$ restricts to an algebra homomorphism
$\sigma_{n}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{n}^{q}\right)$ for every n. Also, the tensor product

$$
\begin{aligned}
& \sigma_{1} \otimes \sigma_{n}: \mathrm{U}_{q}\left(\mathfrak{s l} l_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q}\right) \\
&=\operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{1}^{q}\right) \otimes \operatorname{End}_{\mathbb{C}}\left(\mathbb{C}[X, Y]_{n}^{q}\right)
\end{aligned}
$$

is defined by the property that

$$
\sigma_{1} \otimes \sigma_{n}(U)=\sum_{(U)} \sigma_{1}\left(U^{\prime}\right) \otimes \sigma_{n}\left(U^{\prime \prime}\right)
$$

for every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, using Sweedler's notation that $\Delta(U)=\sum_{(U)} U^{\prime} \otimes U^{\prime \prime}$.
Theorem 4.8 (Clebsch-Gordan Decomposition for $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$). - When q is not a k-root of unity with $k \leqslant n$, there exists a \mathbb{C}-linear isomorphism $\varphi: \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q}$ such that the diagram

$$
\begin{aligned}
& \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \longrightarrow \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \\
& \varphi \mid \cong \cong \\
& \bigoplus \xlongequal{\sigma_{1} \otimes \sigma_{n}(U)} \\
& \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q} \frac{\sigma_{n+1}(U) \oplus \sigma_{n-1}(U)}{\longrightarrow} \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q}
\end{aligned}
$$

commutes for every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$.
See $[12,13,21]$, and $[11, \S$ VII.7] for a proof.
We now consider the coaction $\tau: \mathbb{C}[X, Y]^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]^{q}$, and more precisely its restriction $\tau_{n}: \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q}$.

Tensor products of coactions are much simpler to define, and

$$
\tau_{1} \otimes \tau_{n}(P \otimes Q)=\tau_{1}(P) \otimes \tau_{n}(Q) \in \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q}
$$

for every $P \in \mathbb{C}[X, Y]_{1}^{q}$ and $Q \in \mathbb{C}[X, Y]_{n}^{q}$.
We now use the duality $\langle\cdot, \cdot\rangle$ to deduce the following result from Theorem 4.8.

Proposition 4.9 (Clebsch-Gordan Decomposition for SL_{2}^{q}). - Suppose that q is not a k-root of unity with $k \leqslant n$, and consider the \mathbb{C}-linear isomorphism $\varphi: \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q}$ of Theorem 4.8. Then, the diagram

$$
\begin{aligned}
& \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \xrightarrow[\tau_{1} \otimes \tau_{n}]{\longrightarrow} \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]_{1}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q} \\
& \varphi \mid \cong \\
& \cong \cong \operatorname{Id}_{\mathrm{SL}_{2}^{q} \otimes \varphi} \\
& \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q} \frac{\tau_{n+1} \oplus \tau_{n-1}}{\longrightarrow} \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q}
\end{aligned}
$$

commutes, in the sense that $\left(\operatorname{Id}_{\mathrm{SL}_{2}^{q}} \otimes \varphi\right) \circ\left(\tau_{1} \otimes \tau_{n}\right)=\left(\tau_{n+1} \oplus \tau_{n-1}\right) \circ \varphi$

Proof. - To simplify the notation, set $V_{k}=\mathbb{C}[X, Y]_{k}^{q}$. Then the commutative diagram of Lemma 4.7 restricts for each k to a commutative diagram

where Σ_{k} is related to the action $\sigma_{k}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V_{k}\right)$ by the property that, for each $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and $P \in V_{k}$, the element $\sigma_{k}(U)(P) \in V_{k}$ is obtained by evaluating $\Sigma_{k}(P) \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*} \otimes V_{k}$ at U.

In the diagram

we want to show that the left-hand parallelogram commutes. Here, $\Sigma_{1} \otimes \Sigma_{n}$ is defined to be related to the tensor product $\sigma_{1} \otimes \sigma_{n}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V_{1} \otimes V_{n}\right)$ by the property that, for each $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right), P_{1} \in V_{1}$ and $P_{n} \in V_{n}$, the element $\sigma_{1} \otimes \sigma_{n}(U)\left(P_{1} \otimes P_{n}\right) \in V_{1} \otimes V_{n}$ is obtained by evaluating $\Sigma_{1} \otimes \Sigma_{n}\left(P_{1} \otimes P_{n}\right) \in$ $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*} \otimes V_{1} \otimes V_{n}$ at U. The map $\Sigma_{n+1} \oplus \Sigma_{n-1}$ is similarly associated to the direct sum $\sigma_{n+1} \oplus \sigma_{n-1}: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V_{n+1} \oplus V_{n-1}\right)$.

Because of the way $\Sigma_{1} \otimes \Sigma_{n}$ and $\Sigma_{n+1} \oplus \Sigma_{n-1}$ are respectively associated to $\sigma_{1} \otimes \sigma_{n}$ and $\sigma_{n+1} \oplus \sigma_{n-1}$, Theorem 4.8 shows that the outer parallelogram of (4.12) commutes, in the sense that

$$
\left(\operatorname{Id}_{\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}} \otimes \varphi\right) \circ\left(\Sigma_{1} \otimes \Sigma_{n}\right)=\left(\Sigma_{n+1} \oplus \Sigma_{n-1}\right) \circ \varphi
$$

The lower triangle

of (4.12) commutes by an immediate application of (4.11).
The commutativity of the upper triangle requires more thought, because tensor products of actions of algebras are more complicated than direct sums.

Lemma 4.10. - The diagram

commutes.
Proof. - Because of the relationships between $\Sigma_{1} \otimes \Sigma_{n}$ and the action $\sigma_{1} \otimes \sigma_{n}$, and between the map $\delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$ and the duality $\langle\cdot, \cdot\rangle: \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{SL}_{2}^{q} \rightarrow \mathbb{C}$, it suffices to show that

commutes for every $U \in \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$. Here, for a vector space V, we shorten the notation and write $\langle U\rangle:, \mathrm{SL}_{2}^{q} \otimes V \rightarrow V$ for the map that we previously denoted by $\langle U,\rangle \otimes \operatorname{Id}_{V}$.

This property is an immediate consequence of the fact (4.6)-(4.7) that $\langle\cdot, \cdot\rangle$ establishes a duality between multiplications and comultiplications. Indeed, given two polynomials $P_{1} \in V_{1}$ and $P_{n} \in V_{n}$,

$$
\begin{aligned}
\sigma_{1} \otimes \sigma_{n}(U)\left(P_{1} \otimes P_{n}\right) & =\sum_{(U)} \sigma_{1}\left(U^{\prime}\right)\left(P_{1}\right) \otimes \sigma_{n}\left(U^{\prime \prime}\right)\left(P_{n}\right) \\
& =\sum_{(U)}\left\langle U^{\prime}, \tau_{1}\left(P_{1}\right)\right\rangle \otimes\left\langle U^{\prime \prime}, \tau_{n}\left(P_{n}\right)\right\rangle \\
& =\left\langle U, \tau_{1}\left(P_{1}\right) \otimes \tau_{n}\left(P_{n}\right)\right\rangle
\end{aligned}
$$

where the first equality reflects the definition of $\sigma_{1} \otimes \sigma_{2}$, the second equality comes from Lemma 4.7 (or (4.11)), and the third equality follows from (4.6).

The proves the commutativity of (4.13), and therefore Lemma 4.10.
We are now ready to conclude the proof of Proposition 4.9. We proved that, in the diagram (4.12), the outer parallelogram and the two upper and lower triangles commute. By Lemma 4.5, the map $\delta: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)^{*}$ is injective. It easily follows that the left-hand parallelogram

commutes. This is exactly what we needed to prove.
After this long digression through the Hopf algebras SL_{2}^{q} and $\mathrm{U}_{q}\left(\mathfrak{s l}_{2}\right)$, we now return to our original topic of interest, namely the set $\mathrm{SL}_{2}^{q}(\mathcal{A})$ of \mathcal{A}-points of SL_{2}^{q} for some algebra \mathcal{A}.

The representation $\rho_{n}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{n}^{q}\right)$ is related to the coaction $\tau_{n}: \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes \mathbb{C}[X, Y]_{n}^{q}$ by the property that, if an $\mathcal{A}-$ point $A \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ is considered as an algebra homomorphism $A: \mathrm{SL}_{2}^{q} \rightarrow \mathcal{A}$, then $\rho_{n}(A) \in \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{n}^{q}\right)$ is the \mathcal{A}-linear extension of the \mathbb{C}-linear map $\left(A \otimes \operatorname{Id}_{\mathbb{C}[X, Y]_{n}^{q}}\right) \circ \tau: \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathcal{A}[X, Y]_{n}^{q}$.

Proposition 4.11. - When q is not a k-root of unity with $k \leqslant n$, the representation

$$
\rho_{1} \otimes_{\mathcal{A}} \rho_{n}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{1}^{q} \otimes_{\mathcal{A}} \mathcal{A}[X, Y]_{n}^{q}\right)
$$

is isomorphic over \mathbb{C} to the direct sum $\rho_{n+1} \oplus \rho_{n-1}$ of the representations $\rho_{n+1}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}\left(\mathcal{A}[X, Y]_{n+1}^{q}\right)$ and $\rho_{n-1}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}\left(\mathcal{A}[X, Y]_{n-1}^{q}\right)$. Namely, there exists a \mathbb{C}-linear isomorphism

$$
\varphi: \mathbb{C}[X, Y]_{1}^{q} \otimes_{\mathbb{C}} \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q},
$$

inducing an \mathcal{A}-linear isomorphism

$$
\operatorname{Id}_{\mathcal{A}} \otimes_{\mathbb{C}} \varphi: \mathcal{A}[X, Y]_{2}^{q} \otimes_{\mathcal{A}} \mathcal{A}[X, Y]_{n}^{q} \rightarrow \mathcal{A}[X, Y]_{n+1}^{q} \oplus \mathcal{A}[X, Y]_{n-1}^{q}
$$

such that the diagram

$$
\begin{aligned}
& \mathcal{A}[X, Y]_{1}^{q} \otimes_{\mathcal{A}} \mathcal{A}[X, Y]_{n}^{q} \xrightarrow{\rho_{1}(A) \otimes_{\mathcal{A}} \rho_{n}(A)} \longrightarrow \mathcal{A}[X, Y]_{1}^{q} \otimes_{\mathcal{A}} \mathcal{A}[X, Y]_{n}^{q} \\
& \mathrm{Id}_{\mathcal{A}} \otimes \mathbb{C} \varphi \cong \\
& \cong \cong \operatorname{Id}_{\mathcal{A}} \otimes \mathbb{C} \varphi \\
& \mathcal{A}[X, Y]_{n+1}^{q} \oplus \mathcal{A}[X, Y]_{n-1}^{q} \xrightarrow[\rho_{n+1}(A) \oplus \rho_{n-1}(A)]{\longrightarrow} \mathcal{A}[X, Y]_{n+1}^{q} \oplus \mathcal{A}[X, Y]_{n-1}^{q}
\end{aligned}
$$

commutes for every $A \in \mathrm{SL}_{2}^{q}(\mathcal{A})$.

Proof. - This is an immediate consequence of Proposition 4.9 and of the relationship between the coactions $\tau_{k}: \mathbb{C}[X, Y]_{k}^{q} \rightarrow \mathrm{SL}_{2}^{q} \otimes_{\mathbb{C}} \mathbb{C}[X, Y]_{k}^{q}$ and the \mathcal{A}-linear maps $\rho_{k}(A) \in \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{k}^{q}\right)$.

The fact that the isomorphism $\mathcal{A}[X, Y]_{1}^{q} \otimes_{\mathcal{A}} \mathcal{A}[X, Y]_{n}^{q} \rightarrow \mathcal{A}[X, Y]_{n+1}^{q} \oplus$ $\mathcal{A}[X, Y]_{n-1}^{q}$ between $\rho_{1} \otimes_{\mathcal{A}} \rho_{n}$ and $\rho_{n+1} \oplus \rho_{n-1}$ comes from a \mathbb{C}-linear isomorphism $\mathbb{C}[X, Y]_{1}^{q} \otimes_{\mathbb{C}} \mathbb{C}[X, Y]_{n}^{q} \rightarrow \mathbb{C}[X, Y]_{n+1}^{q} \oplus \mathbb{C}[X, Y]_{n-1}^{q}$ will be crucial for our consideration of traces in the next section.

4.5. The trace of $\rho_{n}(A)$ for $A \in \mathrm{SL}_{2}^{q}(\mathcal{A})$

After the hard work of Section 4.3 and Section 4.4, we now have appropriate tools to compute for $A \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ the trace of $\rho_{n}(A)$ in terms of the trace of A. The few computations that we did at the end of Section 4.1 should convince the reader that this result would be hard to obtain without the heavy machinery of Sections 4.3-4.4.

Corollary 4.12. - For every $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}^{q}(\mathcal{A})$,

$$
\text { Trace } \rho_{n}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=S_{n}(a+d)
$$

where S_{n} is the n-th Chebyshev polynomial of the second kind.
Proof. - The property makes sense for all q, but we first restrict attention to the case where q is not a root of unity in order to apply Proposition 4.11.

Consider $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$. By Proposition 4.11, the \mathcal{A}-linear maps $\rho_{1}(A) \otimes_{\mathcal{A}} \rho_{n}(A)$ and $\rho_{n+1}(A) \oplus \rho_{n-1}(A)$ are isomorphic over \mathbb{C}. By Lemma 4.1, they consequently have the same trace. Therefore,

$$
\begin{aligned}
\left(\text { Trace } \rho_{1}(A)\right)\left(\text { Trace } \rho_{n}(A)\right) & =\operatorname{Trace}\left(\rho_{1}(A) \otimes_{\mathcal{A}} \rho_{n}(A)\right) \\
& =\operatorname{Trace}\left(\rho_{n+1}(A) \oplus \rho_{n-1}(A)\right) \\
& =\operatorname{Trace}\left(\rho_{n+1}(A)\right)+\operatorname{Trace}\left(\rho_{n-1}(A)\right)
\end{aligned}
$$

and Trace $\rho_{n}(A)$ therefore satisfies the same recurrence relation (4.1)-(4.2) as the Chebyshev polynomials.

For $n=0, \rho_{0}(A)=\operatorname{Id}_{\mathcal{A}}$ and Trace $\rho_{0}(A)=1$. By definition of the Chebyshev polynomial $S_{n}(t)$ in (4.2), it follows that

$$
\text { Trace } \rho_{n}(A)=S_{n}\left(\text { Trace } \rho_{1}(A)\right)
$$

We already computed Trace $\rho_{1}(A)$ in Section 4.1. If $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, then $\rho_{1}(A)$ has matrix $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ in the \mathbb{C}-basis $\{X, Y\}$ for $\mathcal{A}[X, Y]_{1}^{q}=\mathcal{A} \otimes \mathbb{C}[X, Y]_{1}^{q}$.
(Note that this is the transpose matrix.) It follows that Trace $\rho_{1}(A)=a+d$, which concludes our computation when q is not a root of unity.

The case where q is a root of unity follows from this generic case by continuity. To justify this continuity argument for an arbitrary algebra \mathcal{A}, first consider the case when $\mathcal{A}=\mathrm{SL}_{2}^{q}$, where we can make sense of continuity with respect to q (for instance by considering SL_{2}^{q} as an algebra over $\mathbb{C}\left[q, q^{-1}\right]$). The algebra SL_{2}^{q} admits a tautological $\mathrm{SL}_{2}^{q}-$ point $I \in \mathrm{SL}_{2}^{q}\left(\mathrm{SL}_{2}^{q}\right)$, defined by the identity algebra homomorphism $I: \mathrm{SL}_{2}^{q} \rightarrow \mathrm{SL}_{2}^{q}$. Then, Trace $\rho_{n}(I)=$ $S_{n}($ Trace $I) \in \mathrm{SL}_{2}^{q}$ for every q by continuity from the case where q is not a root of unity.

For a general algebra \mathcal{A} and an \mathcal{A}-point $A \in \mathrm{SL}_{2}^{q}(\mathcal{A})$, a little thought will convince the reader that Trace $\rho_{n}(A) \in \mathcal{A}$ is the image of Trace $\rho_{n}(I) \in \mathrm{SL}_{2}^{q}$ under the algebra homomorphism $A: \mathrm{SL}_{2}^{q} \rightarrow \mathcal{A}$; in particular, Trace $A=$ $A($ Trace $I)$ by specialization to the case $n=1$. Then,

$$
\begin{aligned}
\operatorname{Trace} \rho_{n}(A) & =A\left(\operatorname{Trace} \rho_{n}(I)\right)=A\left(S_{n}(\operatorname{Trace} I)\right) \\
& =S_{n}(A(\text { Trace } I))=S_{n}(\text { Trace } A)
\end{aligned}
$$

for every q, using the fact that A is an algebra homomorphism for the third equality.

Remark 4.13. - The author is grateful to the referee for pointing out the reference [9], which provides a brute force proof of Corollary 4.12. The result of [9] has the advantage of holding for the more general case of $\operatorname{SL}_{n}^{q}(\mathcal{A})$.

5. Miraculous cancellations

We now prove the main result of this article, namely Theorem 0.1 which we rephrase as Theorem 5.1 below. Although we just encountered Chebyshev polynomials $S_{n}(t)$ of the second kind, the property involves the Chebyshev polynomials $T_{n}(t)$ of the first kind.

Note that, if an \mathcal{A}-point $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ of SL_{2}^{q} is upper triangular, namely is such that $c=0$, then necessarily $d=a^{-1}$ by the quantum determinant relation $a d-q^{-1} b c=1$ of Relation (3.2). As a consequence, A can be written as $A=\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right)$ with $b a=q a b$. Similarly, any lower triangular element of $\mathrm{SL}_{2}^{q}(\mathcal{A})$ is of the form $\left(\begin{array}{cc}a & 0 \\ b & a^{-1}\end{array}\right)$ with $b a=q a b$.

Theorem 5.1. - Let $A_{1}, A_{2}, \ldots, A_{k} \in \operatorname{SL}_{2}^{q}(\mathcal{A})$ be \mathcal{A}-points of SL_{2}^{q} such that:
(1) each A_{i} is triangular of the form $\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$ for some a_{i}, $b_{i} \in \mathcal{A}\left(\right.$ with $\left.b_{i} a_{i}=q a_{i} b_{i}\right) ;$
(2) a_{i} and b_{i} commute with a_{j} and b_{j} whenever $i \neq j$, so that we can make sense of the product $A_{1} A_{2} \ldots A_{n} \in \operatorname{SL}_{2}^{q}(\mathcal{A})$.

Then, if q^{2} is a primitive n-root of unity,

$$
T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k-1} A_{k}\right)=\operatorname{Trace} A_{1}^{(n)} A_{2}^{(n)} \ldots A_{k-1}^{(n)} A_{k}^{(n)}
$$

where, for each $i, A_{i}^{(n)}=\left(\begin{array}{cc}a_{i}^{n} & b_{i}^{n} \\ 0 & a_{i}^{-n}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i}^{n} & 0 \\ b_{i}^{n} & a_{i}^{-n}\end{array}\right)$ is the \mathcal{A}-point of $\mathrm{SL}_{2}^{q^{n^{2}}}$ obtained from $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$ by replacing a_{i} and b_{i} with their powers a_{i}^{n} and b_{i}^{n}, respectively.

Note that $b_{i}^{n} a_{i}^{n}=q^{n^{2}} a_{i}^{n} b_{i}^{n}$ since $b_{i} a_{i}=q a_{i} b_{i}$. Also, $q^{n^{2}}$ is equal to ± 1 since $q^{2 n}=1$, and is always +1 when n is even.

Proof. - For notational convenience, we will reverse the indexing and prove the equivalent statement that

$$
\begin{equation*}
T_{n}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right)=\operatorname{Trace} A_{k}^{(n)} A_{k-1}^{(n)} \ldots A_{2}^{(n)} A_{1}^{(n)} \tag{5.1}
\end{equation*}
$$

For this, we will use Lemma 4.2 and Corollary 4.12, so that

$$
\begin{aligned}
& T_{n}\left(\text { Trace } A_{k} A_{k-1} \ldots A_{2} A_{1}\right) \\
& \quad=S_{n}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right)-S_{n-2}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right) \\
& \quad=\operatorname{Trace} \rho_{n}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right)-\operatorname{Trace} \rho_{n-2}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right)
\end{aligned}
$$

for the representations $\rho_{m}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{m}^{q}\right)$ of Section 3.
We first compute these traces.
When A_{i} is lower triangular, the image of $X^{n-u} Y^{u} \in \mathcal{A}[X, Y]_{n}^{q}$ under $\rho_{n}\left(A_{i}\right)$ is

$$
\begin{aligned}
\rho_{n}\left(A_{i}\right)\left(X^{n-u} Y^{u}\right) & =\rho_{n}\left(\begin{array}{cc}
a_{i} & 0 \\
b_{i} & a_{i}^{-1}
\end{array}\right)\left(X^{n-u} Y^{u}\right)=\left(a_{i} X\right)^{n-u}\left(b_{i} X+a_{i}^{-1} Y\right)^{u} \\
& =a_{i}^{n-u} X^{n-u} \sum_{v=0}^{u}\binom{u}{v}_{q^{2}} b_{i}^{u-v} X^{u-v} a_{i}^{-v} Y^{v} \\
& =\sum_{v=0}^{u}\binom{u}{v}_{q^{2}} q^{-v(u-v)} a_{i}^{n-u-v} b_{i}^{u-v} X^{n-v} Y^{v}
\end{aligned}
$$

using the Quantum Binomial Formula (1.1) of Section 1. In particular, if we express $\rho_{n}\left(A_{i}\right)$ in the basis $\left\{X^{n-u} Y^{u} ; u=0,1, \ldots, n\right\}$ for $\mathcal{A}[X, Y]_{n}^{q}$, the entries of the corresponding matrix are

$$
\rho_{n}\left(A_{i}\right)_{v u}= \begin{cases}\binom{u}{v}_{q^{2}} q^{-v(u-v)} a_{i}^{n-u-v} b_{i}^{u-v} & \text { if } v \leqslant u \tag{5.2}\\ 0 & \text { if } v>u\end{cases}
$$

Note that this matrix is upper triangular.

Similarly, when A_{i} is upper triangular,

$$
\begin{aligned}
\rho_{n}\left(A_{i}\right)\left(X^{n-u} Y^{u}\right) & =\rho_{n}\left(\begin{array}{cc}
a_{i} & b_{i} \\
0 & a_{i}^{-1}
\end{array}\right)\left(X^{n-u} Y^{u}\right)=\left(a_{i} X+b_{i} Y\right)^{n-u}\left(a_{i}^{-1} Y\right)^{u} \\
& =\sum_{v=u}^{n}\binom{n-u}{n-v}_{q^{2}} q^{-u(v-u)} a_{i}^{n-u-v} b_{i}^{v-u} X^{n-v} Y^{v}
\end{aligned}
$$

and

$$
\rho_{n}\left(A_{i}\right)_{v u}= \begin{cases}0 & \text { if } v<u \tag{5.3}\\ \binom{n-u}{n-v}_{q^{2}} q^{-u(v-u)} a_{i}^{n-u-v} b_{i}^{v-u} & \text { if } v \geqslant u\end{cases}
$$

In particular,

$$
\begin{align*}
& \operatorname{Trace} \rho_{n}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right) \\
& \quad \begin{aligned}
& =\operatorname{Trace} \rho_{n}\left(A_{1}\right) \circ \rho_{n}\left(A_{2}\right) \circ \ldots \circ \rho_{n}\left(A_{k-1}\right) \circ \rho_{n}\left(A_{k}\right) \\
& =\sum_{u_{1}, u_{2}, \ldots, u_{k} \in\{0, \ldots, n\}} \rho_{n}\left(A_{1}\right)_{u_{1} u_{2}} \rho_{n}\left(A_{2}\right)_{u_{2} u_{3}} \ldots \\
& \ldots \rho_{n}\left(A_{k-1}\right)_{u_{k-1} u_{k}} \rho_{n}\left(A_{k}\right)_{u_{k} u_{1}}
\end{aligned}
\end{align*}
$$

and
Trace $\rho_{n-2}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right)$

$$
\begin{align*}
&=\sum_{v_{1}, v_{2}, \ldots, v_{k} \in\{0, \ldots, n-2\}} \rho_{n-2}\left(A_{1}\right)_{v_{1} v_{2}} \rho_{n-2}\left(A_{2}\right)_{v_{2} v_{3}} \ldots \\
& \ldots \rho_{n-2}\left(A_{k-1}\right)_{v_{k-1} v_{k}} \rho_{n-2}\left(A_{k}\right)_{v_{k} v_{1}} \tag{5.5}
\end{align*}
$$

where the terms $\rho_{n}\left(A_{i}\right)_{v u}$ are given by Equations (5.2) and (5.3).
We distinguish three types of terms in the sum of Equation (5.4), according to the corresponding indices $u_{1}, u_{2}, \ldots, u_{k} \in\{0, \ldots, n\}$:
(i) no u_{i} is equal to 0 or n;
(ii) some but not all u_{i} are equal to 0 or n;
(iii) all u_{i} are equal to 0 or n;

We begin with the first type.
Lemma 5.2. - If no u_{i} is equal to 0 or n, the term

$$
U_{n}\left(u_{1}, \ldots, u_{k}\right)=\rho_{n}\left(A_{1}\right)_{u_{1} u_{2}} \rho_{n}\left(A_{2}\right)_{u_{2} u_{3}} \ldots \rho_{n}\left(A_{k-1}\right)_{u_{k-1} u_{k}} \rho_{n}\left(A_{k}\right)_{u_{k} u_{1}}
$$

of Equation (5.4) corresponding to $u_{1}, u_{2}, \ldots, u_{k} \in\{1, \ldots, n-1\}$ is equal to the term

$$
\begin{aligned}
& U_{n-2}\left(v_{1}, \ldots, v_{k}\right) \\
& \quad=\rho_{n-2}\left(A_{1}\right)_{v_{1} v_{2}} \rho_{n-2}\left(A_{2}\right)_{v_{2} v_{3}} \ldots \rho_{n}\left(A_{k-1}\right)_{v_{k-1} v_{k}} \rho_{n-2}\left(A_{k}\right)_{v_{k} v_{1}}
\end{aligned}
$$

of Equation (5.5) corresponding to the indices $v_{1}, v_{2}, \ldots, v_{k} \in\{0, \ldots, n-2\}$ with $v_{i}=u_{i}-1$.

Proof. - Set $u_{k+1}=u_{1}$ and $v_{k+1}=v_{1}$ to introduce uniformity in the notation.

If A_{i} is lower triangular, Equation (5.2) gives

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}= \begin{cases}\binom{u_{i+1}}{u_{i}}_{q^{2}} q^{-u_{i}\left(u_{i+1}-u_{i}\right)} a_{i}^{n-u_{i+1}-u_{i}} b_{i}^{u_{i+1}-u_{i}} & \text { if } u_{i} \leqslant u_{i+1} \\ 0 & \text { if } u_{i}>u_{i+1}\end{cases}
$$

while, using the property that $v_{i}=u_{i}-1$,

$$
\begin{aligned}
& \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}} \\
& \quad= \begin{cases}\binom{u_{i+1}-1}{u_{i}-1}_{q^{2}} q^{-\left(u_{i}-1\right)\left(u_{i+1}-u_{i}\right)} a_{i}^{n-u_{i+1}-u_{i}} b_{i}^{u_{i+1}-u_{i}} & \text { if } u_{i} \leqslant u_{i+1} \\
0 & \text { if } u_{i}>u_{i+1}\end{cases}
\end{aligned}
$$

Since $\binom{u}{v}_{q^{2}}=\frac{(u)_{q^{2}}}{(v)_{q^{2}}}\binom{u-1}{v-1}_{q^{2}}$, it follows that

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}=\frac{\left(u_{i+1}\right)_{q^{2}}}{\left(u_{i}\right)_{q^{2}}} q^{u_{i}-u_{i+1}} \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}}
$$

when A_{i} is lower triangular.
Similarly, when A_{i} is upper triangular,

$$
\begin{aligned}
& \rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}} \\
& \quad= \begin{cases}0 & \text { if } u_{i}<u_{i+1} \\
\binom{n-u_{i+1}}{n-u_{i}}_{q^{2}} q^{-u_{i+1}\left(u_{i}-u_{i+1}\right)} a_{i}^{n-u_{i+1}-u_{i}} b_{i}^{u_{i}-u_{i+1}} & \text { if } u_{i} \geqslant u_{i+1} .\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}} \\
& \quad= \begin{cases}0 & \text { if } u_{i}<u_{i+1} \\
\binom{n-u_{i+1}-1}{n-u_{i}-1}_{q^{2}} q^{-\left(u_{i+1}-1\right)\left(u_{i}-u_{i+1}\right)} a_{i}^{n-u_{i+1}-u_{i}} b_{i}^{u_{i}-u_{i+1}} & \text { if } u_{i} \geqslant u_{i+1},\end{cases}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}} & =\frac{\left(n-u_{i+1}\right)_{q^{2}}}{\left(n-u_{i}\right)_{q^{2}}} q^{u_{i+1}-u_{i}} \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}} \\
& =\frac{-q^{-2 u_{i+1}}\left(u_{i+1}\right)_{q^{2}}}{-q^{-2 u_{i}}\left(u_{i}\right)_{q^{2}}} q^{u_{i+1}-u_{i}} \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}} \\
& =\frac{\left(u_{i+1}\right)_{q^{2}}}{\left(u_{i}\right)_{q^{2}}} q^{u_{i}-u_{i+1}} \rho_{n-2}\left(A_{i}\right)_{v_{i} v_{i+1}}
\end{aligned}
$$

using the property that

$$
(n-u)_{q^{2}}=\frac{q^{2 n-2 u}-1}{q^{2}-1}=-q^{-2 u} \frac{q^{2 u}-1}{q^{2}-1}=-q^{-2 u}(u)_{q^{2}}
$$

since $q^{2 n}=1$.
As a consequence, we get the same formula whether A_{i} is upper or lower triangular. Taking the product over all i,

$$
U_{n}\left(u_{1}, \ldots, u_{k}\right)=U_{n-2}\left(v_{1}, \ldots, v_{k}\right) \prod_{i=1}^{k} \frac{\left(u_{i+1}\right)_{q^{2}}}{\left(u_{i}\right)_{q^{2}}} q^{u_{i}-u_{i+1}}=U_{n-2}\left(v_{1}, \ldots, v_{k}\right)
$$

where the second equality comes from the fact that $u_{k+1}=u_{1}$. This proves Lemma 5.2.

Lemma 5.3. - If some but not all indices u_{i} are equal to 0 or n, the term

$$
U_{n}\left(u_{1}, \ldots, u_{k}\right)=\rho_{n}\left(A_{1}\right)_{u_{1} u_{2}} \rho_{n}\left(A_{2}\right)_{u_{2} u_{3}} \ldots \rho_{n}\left(A_{k-1}\right)_{u_{k-1} u_{k}} \rho_{n}\left(A_{k}\right)_{u_{k} u_{1}}
$$ of Equation (5.4) corresponding to $u_{1}, u_{2}, \ldots, u_{k} \in\{0, \ldots, n\}$ is equal to 0 .

Proof. - This is a consequence of Lemma 1.1, which says that, because q^{2} is a primitive n-root of unity, the quantum binomial coefficient $\binom{n}{u}_{q^{2}}$ is equal to 0 for $0<u<n$.

For convenience, set $u_{k+1}=u_{1}$ as in the proof of Lemma 5.2. By hypothesis, there is then an index i such that $0<u_{i}<n$ and $u_{i+1}=0$ or n.

Consider first the case when $0<u_{i}<n$ and $u_{i+1}=0$. If A_{i} is lower triangular, then $\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}=0$ by Equation (5.2), and consequently $U_{n}\left(u_{1}, \ldots, u_{k}\right)=0$. Otherwise, Equation (5.3) gives

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}=\binom{n}{n-u_{i}}_{q^{2}} a_{i}^{n-u_{i}} b_{i}^{u_{i}}=0
$$

by Lemma 1.1. This proves that $U_{n}\left(u_{1}, \ldots, u_{k}\right)=0$ in this case.
Similarly, if $0<u_{i}<n$ and $u_{i+1}=n$, Equation (5.3) immediately shows that $U_{n}\left(u_{1}, \ldots, u_{k}\right)=0$ when A_{i} is upper triangular, and otherwise gives

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}=\binom{n}{u_{i}}_{q^{2}} q^{-u_{i}\left(n-u_{i}\right)} a_{i}^{-u_{i}} b_{i}^{n-u_{i}}=0
$$

by Lemma 1.1, again proving that $U_{n}\left(u_{1}, \ldots, u_{k}\right)=0$.
Lemmas 5.2 and 5.3 show that, when computing

$$
\begin{aligned}
& T_{n}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right) \\
& \quad=\operatorname{Trace} \rho_{n}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right)-\operatorname{Trace} \rho_{n-2}\left(A_{k} A_{k-1} \ldots A_{2} A_{1}\right)
\end{aligned}
$$

using the expressions of Equations (5.4)-(5.5), the only terms left are

$$
\sum_{u_{1}, u_{2}, \ldots, u_{k} \in\{0, n\}} \rho_{n}\left(A_{1}\right)_{u_{1} u_{2}} \rho_{n}\left(A_{2}\right)_{u_{2} u_{3}} \ldots \rho_{n}\left(A_{k-1}\right)_{u_{k-1} u_{k}} \rho_{n}\left(A_{k}\right)_{u_{k} u_{1}}
$$

where

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}= \begin{cases}a_{i}^{n} & \text { if } u_{i}=u_{i+1}=0 \\ b_{i}^{n} & \text { if } u_{i}=0 \text { and } u_{i+1}=n \\ 0 & \text { if } u_{i}=n \text { and } u_{i+1}=0 \\ a_{i}^{-n} & \text { if } u_{i}=u_{i+1}=n\end{cases}
$$

if A_{i} is lower triangular, and

$$
\rho_{n}\left(A_{i}\right)_{u_{i} u_{i+1}}= \begin{cases}a_{i}^{n} & \text { if } u_{i}=u_{i+1}=0 \\ 0 & \text { if } u_{i}=0 \text { and } u_{i+1}=n \\ b_{i}^{n} & \text { if } u_{i}=n \text { and } u_{i+1}=0 \\ a_{i}^{-n} & \text { if } u_{i}=u_{i+1}=n\end{cases}
$$

if A_{i} is upper triangular.
As a consequence, comparing the general case to the case $n=1$,

$$
\begin{aligned}
& T_{n}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right)= \sum_{u_{1}, u_{2}, \ldots, u_{k} \in\{0,1\}} \rho_{1}\left(A_{1}^{(n)}\right)_{u_{1} u_{2}} \rho_{1}\left(A_{2}^{(n)}\right)_{u_{2} u_{3}} \ldots \\
& \ldots \rho_{1}\left(A_{k-1}^{(n)}\right)_{u_{k-1} u_{k}} \rho_{1}\left(A_{k}^{(n)}\right)_{u_{k} u_{1}} \\
&=\operatorname{Trace} \rho_{1}\left(A_{k}^{(n)} A_{k-1}^{(n)} \ldots A_{2}^{(n)} A_{1}^{(n)}\right)
\end{aligned}
$$

where $A_{i}^{(n)}=\left(\begin{array}{cc}a_{i}^{n} & b_{i}^{n} \\ 0 & a_{i}^{-n}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i}^{n} & 0 \\ b_{i}^{n} & a_{i}^{-n}\end{array}\right)$ is obtained from $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$ by replacing a_{i} and b_{i} with a_{i}^{n} and b_{i}^{n}, respectively.

We already observed that, for an \mathcal{A}-point $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}^{q}(\mathcal{A})$, the matrix of $\rho_{1}(A)$ in the basis $\{X, Y\}$ for $\mathbb{C}[X, Y]_{1}^{q}$ is the transpose $\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)$, so that Trace $\rho_{1}(A)=a+d=$ Trace A. It follows that

$$
\begin{aligned}
T_{n}\left(\operatorname{Trace} A_{k} A_{k-1} \ldots A_{2} A_{1}\right) & =\operatorname{Trace} \rho_{1}\left(A_{k}^{(n)} A_{k-1}^{(n)} \ldots A_{2}^{(n)} A_{1}^{(n)}\right) \\
& =\operatorname{Trace} A_{k}^{(n)} A_{k-1}^{(n)} \ldots A_{2}^{(n)} A_{1}^{(n)}
\end{aligned}
$$

This is exactly the relation (5.1) that we wanted to prove, which concludes the proof of Theorem 5.1.

6. A positivity property

Many fewer cancellations occur when q is not a root of unity. This can be precisely quantified by using a certain positivity property for $T_{n}\left(\right.$ Trace $\left.A_{1} A_{2} \ldots A_{k}\right)$.

Let $A_{1} A_{2} \ldots A_{k}$ be a product of triangular matrices $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{ll}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right) \in \mathrm{SL}_{2}^{q}(\mathcal{A})$ satisfying the hypotheses of Theorems 0.1 or 5.1 , except that we are not requiring q to be a root of unity. Then, Trace $A_{1} A_{2} \ldots A_{k}$ can be written as a sum of monomials $\prod_{i=1}^{k} c_{i}$ with $c_{i} \in\left\{a_{i}, b_{i}, a_{i}^{-1}\right\}$ and therefore, for every polynomial $P(t) \in \mathbb{Z}[t]$ with integer coefficients, $P\left(\right.$ Trace $\left.A_{1} A_{2} \ldots A_{k}\right)$ can be written as a sum of monomials of the form $\pm q^{\xi} \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$ with integer powers $\xi, \alpha_{i}, \beta_{i} \in \mathbb{Z}$ (with $\left.\beta_{i} \geqslant 0\right)$.

The following result states that, when $P(t)$ is one of the Chebyshev polynomials $S_{n}(t)$ or $T_{n}(t)$, the signs \pm can always be taken to be + .

Proposition 6.1. - Under the hypotheses of Theorems 0.1 or 5.1 but without any assumption on the parameter $q \in \mathbb{C}-\{0\}$, the evaluations $S_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)$ and $T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right) \in \mathcal{A}$ of the Chebyshev polynomials can be written as a sum of positive monomials of the form $+q^{\xi} \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$ with integer powers $\xi, \alpha_{i}, \beta_{i} \in \mathbb{Z}$.

Proof. - The case of $S_{n}(t)$ is relatively simple. We computed

$$
S_{n}\left(\text { Trace } A_{1} A_{2} \ldots A_{k}\right)=\operatorname{Trace} \rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)
$$

in the course of the proof of Theorem 5.1. In particular, Equations (5.2)(5.4) show that, with no assumption on q, Trace $\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)$ is a sum of positive monomials $+q^{\xi} \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$. Indeed, it is well-known (and also follows from the Quantum Binomial Formula (1.1)) that the quantum binomial coefficients $\binom{u}{v}_{q^{2}}$ are polynomials in q^{2} with nonnegative integer coefficients.

The proof for $T_{n}(t)$ is more elaborate. We want to show that, when computing
$T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)=\operatorname{Trace} \rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)-\operatorname{Trace} \rho_{n-2}\left(A_{1} A_{2} \ldots A_{k}\right)$, each monomial of Trace $\rho_{n-2}\left(A_{1} A_{2} \ldots A_{k}\right)$ cancels out with a monomial of Trace $\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)$; this can be seen as a weaker form of Lemma 5.2. For this, we will give a different computation of Trace $\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)$.

This computation goes back to the principles underlying the Quantum Binomial Formula. Let $\mathbb{C}\langle X, Y\rangle$ be the free algebra generated by the set $\{X, Y\}$. Namely, $\mathbb{C}\langle X, Y\rangle$ consists of all formal polynomials $P(X, Y)$ in noncommutating variables X and Y, and these polynomials are multiplied without simplifications. In particular, the quantum plane $\mathbb{C}[X, Y]^{q}$ is the quotient
of $\mathbb{C}\langle X, Y\rangle$ by the ideal generated by $Y X-q X Y$, which gives a natural projection $\pi: \mathbb{C}\langle X, Y\rangle \rightarrow \mathbb{C}[X, Y]^{q}$.

Similarly, consider $\mathcal{A}\langle X, Y\rangle=\mathcal{A} \otimes \mathbb{C}\langle X, Y\rangle$, and the projection $\mathrm{Id}_{\mathcal{A}} \otimes \pi$ which we will also denote as $\pi: \mathcal{A}\langle X, Y\rangle \rightarrow \mathcal{A}[X, Y]^{q}$ for short.

Let $\mathcal{A}\langle X, Y\rangle_{n}$ be the linear subspace of $\mathcal{A}\langle X, Y\rangle$ consisting of all homogeneous polynomials of degree n. Namely, $\mathcal{A}\langle X, Y\rangle_{n}$ consists of all finite sums

$$
P(X, Y)=\sum_{u} \alpha_{u} Z_{u 1} Z_{u 2} \ldots Z_{u n}
$$

where the coefficients α_{u} are in \mathcal{A} and where each variable $Z_{u v}$ is equal to X or to Y. In particular, $\mathcal{A}\langle X, Y\rangle_{n}$ is isomorphic to $\mathcal{A}^{2^{n}}$ as an \mathcal{A}-module. For comparison, remember that $\mathcal{A}[X, Y]_{n}^{q}$ is isomorphic to \mathcal{A}^{n+1}.

The representation $\rho_{n}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}[X, Y]_{n}^{q}\right)$ lifts to a representation $\widehat{\rho}_{n}: \operatorname{SL}_{2}^{q}(\mathcal{A}) \rightarrow \operatorname{End}_{\mathcal{A}}\left(\mathcal{A}\langle X, Y\rangle_{n}\right)$ defined by the property that

$$
\widehat{\rho}_{n}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(P(X, Y))=P(a X+b Y, c X+d Y)
$$

for every homogeneous polynomial $P(X, Y) \in \mathcal{A}\langle X, Y\rangle$ of degree n in the noncommuting variables X and Y (and with coefficients in \mathcal{A}).

To give a more combinatorial description of this action, note that every element of $\mathcal{A}\langle X, Y\rangle_{n}$ can be uniquely written as a sum of monomials $\alpha Z_{1} Z_{2} \ldots Z_{n}$ where $\alpha \in \mathcal{A}$ and each $Z_{u} \in\{X, Y\}$. Then, $\hat{\rho}_{n}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right) \in \mathcal{A}\langle X, Y\rangle_{n}$ is the sum of all monomials $\alpha^{\prime} Z_{1}^{\prime} Z_{2}^{\prime} \ldots Z_{n}^{\prime}$ obtained from $\alpha Z_{1} Z_{2} \ldots Z_{n}$ by replacing each Z_{u} with:

- either $a X$ or $b Y$, if $Z_{u}=X$;
- either $c X$ or $d Y$, if $Z_{u}=Y$,
(and pushing all coefficients of \mathcal{A} to the front).
As a consequence,

$$
\begin{aligned}
& \widehat{\rho}_{n}\left(A_{1} A_{2} \ldots A_{k}\right)\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right) \\
& \quad=\widehat{\rho}_{n}\left(A_{k}\right) \circ \widehat{\rho}_{n}\left(A_{k-1}\right) \circ \ldots \circ \widehat{\rho}_{n}\left(A_{1}\right)\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right)
\end{aligned}
$$

can be described as follows. Let $\mathcal{M}\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right)$ be the set of all sequences $M=\left(M_{i}\right)_{i=0,1, \ldots, k}$ of monomials $M_{i}=\alpha_{i} Z_{i 1} Z_{i 2} \ldots Z_{i n} \in \mathcal{A}\langle X, Y\rangle_{n}$ such that
(1) $M_{0}=\alpha Z_{1} Z_{2} \ldots Z_{n}$;
(2) M_{i} is obtained from M_{i-1} by replacing each $Z_{(i-1) u}$ with

- $a_{i} X$ or $b_{i} Y$ if $Z_{(i-1) u}=X$ and $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$;
- $a_{i}^{-1} Y$ if $Z_{(i-1) u}=Y$ and $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$;
- $a_{i} X$ if $Z_{(i-1) u}=X$ and $A_{i}=\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$;
- $b_{i} X$ or $a_{i}^{-1} Y$ if $Z_{(i-1) u}=Y$ and $A_{i}=\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$.

Then, as we expand $\widehat{\rho}_{n}\left(A_{1} A_{2} \ldots A_{k}\right)\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right) \in \mathcal{A}\langle X, Y\rangle_{n}$, we see that its decomposition into monomials is given by

$$
\widehat{\rho}_{n}\left(A_{1} A_{2} \ldots A_{k}\right)\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right)=\sum_{M \in \mathcal{M}\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right)} M_{k}
$$

where M_{k} is the last term of the sequence

$$
M=\left(M_{i}\right)_{i=0,1, \ldots, k} \in \mathcal{M}\left(\alpha Z_{1} Z_{2} \ldots Z_{n}\right)
$$

As a consequence, if we use the same notation for the monomial $X^{n-u} Y^{u}=X \ldots X Y \ldots Y \in \mathcal{A}\langle X, Y\rangle_{n}$ and for its image $X^{n-u} Y^{u} \in \mathcal{A}[X, Y]_{n}^{q}$ under the projection $\pi: \mathcal{A}\langle X, Y\rangle_{n} \rightarrow \mathcal{A}[X, Y]_{n}^{q}$,

$$
\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)\left(X^{n-u} Y^{u}\right)=\sum_{M \in \mathcal{M}\left(X^{n-u} Y^{u}\right)} \pi\left(M_{k}\right) .
$$

Finally, let $\mathcal{M}^{\prime}\left(X^{n-u} Y^{u}\right)$ be the set of monomial sequences $M \in$ $\mathcal{M}\left(X^{n-u} Y^{u}\right)$ whose contribution $\pi\left(M_{k}\right)$ belongs to $\mathcal{A} X^{n-u} Y^{u}$. For such a monomial sequence $M=\left(M_{i}\right)_{i=0,1, \ldots, k}$, let $\alpha\left(M_{k}\right) \in \mathcal{A}$ be the coefficient such that $\pi\left(M_{k}\right)=\alpha\left(M_{k}\right) X^{n-u} Y^{u}$. We can then compute the trace of $\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)$ by using the basis $\left\{X^{n-u} Y^{u} ; u=0,1, \ldots, n\right\}$ for $\mathbb{C}[X, Y]_{n}^{q}$ and $\mathcal{A}[X, Y]_{n}^{q}=\mathcal{A} \otimes \mathbb{C}[X, Y]_{n}^{q}$, which gives

$$
\begin{equation*}
\text { Trace } \rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)=\sum_{u=0}^{n} \sum_{M \in \mathcal{M}^{\prime}\left(X^{n-u} Y^{u}\right)} \alpha\left(M_{k}\right) \tag{6.1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\text { Trace } \rho_{n-2}\left(A_{1} A_{2} \ldots A_{k}\right)=\sum_{v=0}^{n-2} \sum_{M \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v}\right)} \alpha\left(M_{k}\right) \text {. } \tag{6.2}
\end{equation*}
$$

The expression (6.1) for Trace $\rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)$ was obtained by using the basis $\left\{X^{n-u} Y^{u} ; u=0,1, \ldots, n\right\}$ for $\mathcal{A}[X, Y]_{n}^{q}$. For comparison with (6.2), it is more convenient to use the other basis $\left\{X^{n}, Y^{n}\right\} \cup\left\{X^{n-v-2} Y^{v} X Y ; v=\right.$ $0,1, \ldots, n-2\}$ for $\mathcal{A}[X, Y]_{n}^{q}$. This gives the expression

$$
\begin{align*}
\operatorname{Trace} \rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)= & \sum_{M^{\prime} \in \mathcal{M}^{\prime}\left(X^{n}\right)} \alpha\left(M_{k}^{\prime}\right)+\sum_{M^{\prime} \in \mathcal{M}^{\prime}\left(Y^{n}\right)} \alpha\left(M_{k}^{\prime}\right) \\
& +\sum_{v=0}^{n-2} \sum_{M^{\prime} \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v} X Y\right)} \beta\left(M_{k}^{\prime}\right) \tag{6.3}
\end{align*}
$$

where, for $M^{\prime}=\left(M_{i}^{\prime}\right)_{i=0,1, \ldots, k} \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v} X Y\right)$, the coefficient $\beta\left(M_{k}^{\prime}\right) \in$ \mathcal{A} is defined by the property that $\pi\left(M_{k}^{\prime}\right)=\beta\left(M_{k}^{\prime}\right) X^{n-v-2} Y^{v} X Y$.

Note that, because of the commutativity and q-commutativity properties of the quantities a_{i}, b_{i}, X, Y, all terms $\alpha\left(M_{k}\right)$ and $\beta\left(M_{k}^{\prime}\right)$ in (6.2)-(6.3) are positive monomials of the form $+q^{\xi} \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$ with $\xi, \alpha_{i}, \beta_{i} \in \mathbb{Z}$ and $\beta_{i} \geqslant 0$.

We now compare (6.2) and (6.3). Every monomial sequence $M=$ $\left(M_{i}\right)_{i=0,1, \ldots, k} \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v}\right)$ gives rise to a monomial sequence $M^{\prime} \in$ $\mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v} X Y\right)$ defined by the property that $M_{i}^{\prime}=M_{i} X Y$ for every i. Indeed, rewriting

$$
M_{i}^{\prime}=M_{i}\left(a_{i} X\right)\left(a_{i}^{-1} Y\right)
$$

shows that $M^{\prime}=\left(M_{i}^{\prime}\right)_{i=0,1, \ldots, k}$ really satisfies the inductive property defining $\mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v} X Y\right)$. In addition, when $M^{\prime} \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v} X Y\right)$ is thus associated to $M \in \mathcal{M}^{\prime}\left(X^{n-v-2} Y^{v}\right)$,

$$
\pi\left(M_{k}^{\prime}\right)=\pi\left(M_{k} X Y\right)=\pi\left(M_{k}\right) \pi(X) \pi(Y)=\alpha\left(M_{k}\right) X^{n-v-2} Y^{v} X Y
$$

so that $\beta\left(M_{k}^{\prime}\right)=\alpha\left(M_{k}\right)$.
Therefore, when computing
$T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)=\operatorname{Trace} \rho_{n}\left(A_{1} A_{2} \ldots A_{k}\right)-\operatorname{Trace} \rho_{n-2}\left(A_{1} A_{2} \ldots A_{k}\right)$, every monomial $\alpha\left(M_{k}\right)$ occurring in (6.2) cancels out with a monomial $\beta\left(M_{k}^{\prime}\right)$ of (6.3). It follows that $T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)$ is the sum of the remaining coefficients $\alpha\left(M_{k}\right)$ and $\beta\left(M_{k}^{\prime}\right)$ of (6.3). We already observed that these monomials are positive, which concludes the proof of Proposition 6.1.

Proposition 6.1 enables us to precisely determine the number of monomials in T_{n} (Trace $\left.A_{1} A_{2} \ldots A_{k}\right)$ under the hypothesis that there are no extraneous simplifications. This means that q is transcendental and, since we can always assume that the algebra \mathcal{A} is generated by the entries a_{i}, b_{i} of the matrices A_{i}, that \mathcal{A} is the algebra defined by the generators $a_{i}^{ \pm 1}, b_{i}$ and by the relations that $b_{i} a_{i}=q a_{i} b_{i}$ and that a_{i}, b_{i} commute with a_{j}, b_{j} whenever $i \neq j$. In other words, \mathcal{A} is the algebra $\bigotimes_{i=1}^{k} \mathbb{C}\left[a_{i}^{ \pm 1}, b_{i}\right]^{q}$.

In this case, every element of $\mathcal{A}=\bigotimes_{i=1}^{k} \mathbb{C}\left[a_{i}^{ \pm 1}, b_{i}\right]^{q}$ has a unique decomposition as a sum of monomials $\xi \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$ with $\xi \in \mathbb{C}, \alpha_{i} \in \mathbb{Z}, \beta_{i} \in \mathbb{Z}$ and $\beta_{i} \geqslant 0$.

Proposition 6.2. - Suppose that q is transcendental, and that $\mathcal{A}=$ $\bigotimes_{i=1}^{k} \mathbb{C}\left[a_{i}^{ \pm 1}, b_{i}\right]^{q}$. Let triangular matrices $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ or $\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right) \in$ $\mathrm{SL}_{2}^{q}(\mathcal{A})$ be given for $i=1,2, \ldots, k$, and consider the positive integer $t_{0}=$ $\operatorname{Trace} A_{1}^{(0)} A_{2}^{(0)} \ldots A_{k}^{(0)}$ where $A_{i}^{(0)}=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$ if $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & a_{i}^{-1}\end{array}\right)$ and $A_{i}^{(0)}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
if $A_{i}=\left(\begin{array}{cc}a_{i} & 0 \\ b_{i} & a_{i}^{-1}\end{array}\right)$. Then, for every $n, T_{n}\left(\right.$ Trace $\left.A_{1} A_{2} \ldots A_{k}\right)$ is the sum of exactly

$$
T_{n}\left(t_{0}\right)=\left(\frac{t_{0}+\sqrt{t_{0}^{2}-4}}{2}\right)^{n}+\left(\frac{t_{0}-\sqrt{t_{0}^{2}-4}}{2}\right)^{n}
$$

positive monomials of the form $+q^{\xi} \prod_{i=1}^{k} a_{i}^{\alpha_{i}} b_{i}^{\beta_{i}}$ with $\xi, \alpha_{i}, \beta_{i} \in \mathbb{Z}$ and $\beta_{i} \geqslant 0$.

Proof. - We already proved in Proposition 6.1 that $T_{n}\left(\right.$ Trace $\left.A_{1} A_{2} \ldots A_{k}\right)$ is a sum of monomials of the type indicated. The only issue is to count their number.

Because of the positive signs, the number of these monomials can be computed by letting q and the a_{i}, b_{i} tend to 1 . Under this limiting process, Trace $A_{1} A_{2} \ldots A_{k}$ approaches t_{0}, and the number of monomials in the expansion for $T_{n}\left(\operatorname{Trace} A_{1} A_{2} \ldots A_{k}\right)$ is therefore equal to $T_{n}\left(t_{0}\right)$.

The formula $T_{n}\left(t_{0}\right)=\left(\frac{t_{0}+\sqrt{t_{0}^{2}-4}}{2}\right)^{n}+\left(\frac{t_{0}-\sqrt{t_{0}^{2}-4}}{2}\right)^{n}$ is provided by Lemma 4.4.

Bibliography

[1] F. Bonahon \& J.-P. Otal, "Scindements de Heegaard des espaces lenticulaires", C. R. Math. Acad. Sci. Paris 294 (1982), no. 17, p. 585-587.
[2] -, "Scindements de Heegaard des espaces lenticulaires", Ann. Sci. Éc. Norm. Supér. 16 (1983), no. 3, p. 451-466.
[3] , "Variétés hyperboliques à géodésiques arbitrairement courtes", Bull. Lond. Math. Soc. 20 (1988), no. 3, p. 255-261.
[4] , "Laminations mesurées de plissage des variétés hyperboliques de dimension 3", Ann. Math. 160 (2004), no. 3, p. 1013-1055.
[5] F. Bonahon \& H. Wong, "Quantum traces for representations of surface groups in $\mathrm{SL}_{2}(\mathbb{C}) "$, Geom. Topol. 15 (2011), no. 3, p. 1569-1615.
[6] - , "Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations", Invent. Math. 204 (2016), no. 1, p. 195-243.
[7] V. G. Drinfeld, "Hopf algebras and the quantum Yang-Baxter equation", Dokl. Akad. Nauk SSSR 283 (1985), no. 5, p. 1060-1064.
[8] ——, "Quantum groups", in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, 1986), American Mathematical Society, 1987, p. 798820.
[9] S. Garoufalidis, T. T. Q. Lê \& D. Zeilberger, "The quantum MacMahon master theorem", Proc. Natl. Acad. Sci. USA 103 (2006), no. 38, p. 13928-13931.
[10] M. Jimbo, "A q-difference analogue of $\mathrm{U}(\mathfrak{g})$ and the Yang-Baxter equation", Lett. Math. Phys. 10 (1985), no. 1, p. 63-69.
[11] C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer, 1995, xii +531 pages.

Miraculous cancellations for quantum SL_{2}
[12] A. N. Kirillov \& N. Y. Reshetikhin, "Representations of the algebra $\mathrm{U}_{q}(\mathrm{sl}(2)), q-$ orthogonal polynomials and invariants of links", in Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Advanced Series in Mathematical Physics, vol. 7, World Scientific, 1989, p. 285-339.
[13] H. T. Koelink \& T. H. Koornwinder, "The Clebsch-Gordan coefficients for the quantum group $\mathrm{S}_{\mu} \mathrm{U}(2)$ and q-Hahn polynomials", Indag. Math. 51 (1989), no. 4, p. 443-456.
[14] Y. I. Manin, "Some remarks on Koszul algebras and quantum groups", Ann. Inst. Fourier 37 (1987), no. 4, p. 191-205.
[15] -, Quantum groups and noncommutative geometry, Université de Montréal, 1988, vi +91 pages.
[16] N. Y. Reshetikhin, L. A. Takhtadzhyan \& L. D. Faddeev, "Quantization of Lie groups and Lie algebras", Algebra Anal. 1 (1989), no. 1, p. 178-206.
[17] N. Y. Reshetikhin \& V. G. Turaev, "Ribbon graphs and their invariants derived from quantum groups", Commun. Math. Phys. 127 (1990), no. 1, p. 1-26.
[18] - "Invariants of 3-manifolds via link polynomials and quantum groups", Invent. Math. 103 (1991), no. 3, p. 547-597.
[19] M. Takeuchi, "Hopf algebra techniques applied to the quantum group $\mathrm{U}_{q}(\mathfrak{s l}(2))$ ", in Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), Contemporary Mathematics, vol. 134, American Mathematical Society, 1992, p. 309-323.
[20] , "Some topics on $\mathrm{GL}_{q}(n) "$, J. Algebra 147 (1992), no. 2, p. 379-410.
[21] L. L. Vaksman, " q-analogues of Clebsch-Gordan coefficients, and the algebra of functions on the quantum group $\mathrm{SU}(2) "$, Dokl. Akad. Nauk SSSR 306 (1989), no. 2, p. 269-271.
[22] E. Witten, "Quantum field theory and the Jones polynomial", Commun. Math. Phys. 121 (1989), no. 3, p. 351-399.

[^0]: (1) Department of Mathematics, University of Southern California, Los Angeles CA 90089-2532, U.S.A. - fbonahon@usc.edu

 This work was partially supported by the grants DMS-1406559 and DMS-1711297 from the U.S. National Science Foundation.

