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Conformal Invariants of 3-Braids and Counting
Functions (∗)

Burglind Jöricke (1)

ABSTRACT. — We consider a conformal invariant of braids, the extremal length
with totally real horizontal boundary values Λtr. The invariant descends to an in-
variant of elements of Bn⧸Zn, the braid group modulo its center. We prove that the
number of elements of B3⧸Z3 of positive Λtr grows exponentially. The estimate ap-
plies to obtain effective finiteness theorems in the spirit of the geometric Shafarevich
conjecture over Riemann surfaces of second kind. As a corollary we obtain another
proof of the exponential growth of the number of conjugacy classes of B3⧸Z3 with
positive entropy not exceeding Y .

In the paper [8] a conformal braid invariant is defined, the extremal length
with totally real horizontal boundary values Λtr. Unlike the entropy the in-
variant Λtr distinguishes in many cases the elements of a conjugacy class of
braids. Both invariants, Λtr and the entropy, do not change under multipli-
cation by an element of the center of the braid group, hence, they descend
to invariants of Bn⧸Zn, the Artin braid group Bn modulo its center Zn. We
prove in this paper that the number of elements of B3⧸Z3 with positive Λtr
not exceeding a positive number Y grows exponentially. As a corollary we
obtain another proof of the exponential growth of the number of conjugacy
classes of elements of B3⧸Z3 that have positive entropy not exceeding Y .
Our proof does not use deep techniques from Teichmüller theory.

The first result that states exponential growth of the entropy counting
function is due to Veech [11]. More precisely, he considered conjugacy classes
of pseudo-Anosov elements of the mapping class group of a closed Riemann
surface S, maybe with distinguished points En, with hyperbolic universal
covering of S \ En, and proved that the number of classes with entropy not
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exceeding a positive number Y , grows exponentially in Y . Notice that the
3-braids with positive entropy are exactly the 3-braids that correspond to
pseudo-Anosov elements of the mapping class group of the three-punctured
complex plane. The precise asymptotic for the entropy counting function is
given by Eskin and Mirzakhani [3] for closed Riemann surfaces of genus at
least 2. Both papers, [3] and [11], use deep techniques of Teichmüller theory,
in particular, they are based on the study of the Teichmüller flow.

The growth estimates for the counting function related to the extremal
length allow to obtain effective finiteness theorems in the spirit of the Geo-
metric Shafarevich Conjecture for the case when the base manifold is of
second kind ([9]).

Before defining the extremal length with totally real horizontal boundary
values we recall some facts. We consider an n-braid as a homotopy class of
loops with base point in the symmetrized configuration space. More detailed,
let Cn(C) def= {(z1, . . . , zn) ∈ Cn : zj ̸= zk if j ̸= k} be the configuration
space of n particles moving in the complex plane without collision. The
symmetric group Sn acts on Cn(C). The quotient Cn(C)⧸Sn is called the
symmetrized configuration space. Its elements En are unordered tuples of n
pairwise disjoint elements of C, which are denoted by En = {z1, . . . , zn}. We
also consider En as subset of C consisting of n points.

We identify Bn with the fundamental group π1(Cn(C)⧸Sn, En) of the
symmetrized configuration space with base point En ∈ Cn(C)⧸Sn. Recall
that there is an isomorphism Bn ∋ b → m(b) ∈ M(D; ∂D, En) from the Artin
braid group Bn of n-braids with base point En onto the group M(D; ∂D, En)
of isotopy classes of self-homeomorphisms of the closed disc D, which fix
the boundary circle pointwise and the set En setwise. The points of En

may be permuted. The pure braid group PBn with base point En is the
group of braids that correspond to homeomorphisms which fix En pointwise.
Further, there is a bijective correspondence between elements b ∈ Bn⧸Zn

and isotopy classes m∞(b) of orientation preserving self-homeomorphisms
of the Riemann sphere P1 with set of distinguished points En ∪ {∞}, more
precisely the homeomorphisms contained in m∞(b) fix ∞ and map the set
En (the base point) onto itself (maybe, with a permutation of the elements
of En).

Notice that each self-homeomorphism of a punctured Riemann surface
S \ En extends to a self-homeomorphism of the closed surface S that fixes
the set of distinguished points En. We will identify self-homeomorphisms of
punctured surfaces with self-homeomorphisms of closed surfaces with distin-
guished points.
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The real configuration space Cn(R) is defined in the same way as the
complex configuration space Cn(C) with C replaced by R. The totally real
subspace Cn(R)⧸Sn of the symmetrized configuration space Cn(C)⧸Sn

is connected and simply connected. Take a base point En ∈ Cn(R)⧸Sn.
The Artin braid group Bn

∼= π1( Cn(C)⧸Sn , En ) is isomorphic to the
relative fundamental group π1( Cn(C)⧸Sn , Cn(R)⧸Sn ). The elements of
the latter group are homotopy classes of arcs in Cn(C)⧸Sn with endpoints
in Cn(R)⧸Sn .

The isomorphism between π1( Cn(C)⧸Sn , Cn(R)⧸Sn ) and the Artin
braid group with generators σj , j = 1, . . . , n − 1, is given as follows. Take
any arc γ : [0, 1] → Cn(C)⧸Sn with endpoints in Cn(R)⧸Sn that represents
an element of the relative fundamental group π1( Cn(C)⧸Sn , Cn(R)⧸Sn ).
Associate to the arc γ its lift γ̃ = (γ̃1, . . . , γ̃n) : [0, 1] → Cn(C) for which
γ̃1(0) < . . . < γ̃n(0). For j = 1, . . . , n − 1, the isomorphism maps the gen-
erator σj to the homotopy class of arcs in Cn(C)⧸Sn with endpoints in
Cn(R)⧸Sn, whose associated lift is represented by the following mapping.
The mapping moves the points γ̃j(0) and γ̃j+1(0) with uniform speed in pos-
itive direction along a half-circle with center at the point 1

2 (γ̃j(0)+ γ̃j+1(0)),
and fixes γ̃j′(0) for all j′ ̸= j, j + 1.

Let R be an open rectangle in the complex plane C. Speaking about
rectangles we will always have in mind rectangles with sides parallel to the
coordinate axes. Denote the length of the horizontal sides of R by b and the
length of the vertical sides by a. (For instance, we may consider R = {z =
x + iy : 0 < x < b, 0 < y < a }.) The extremal length of R introduced by
Ahlfors [2] equals λ(R) = a

b .

Let b ∈ Bn be a braid. Denote its image under the isomorphism from
Bn to the relative fundamental group π1( Cn(C)⧸Sn , Cn(R)⧸Sn ) by btr.
For a rectangle R as above let f : R → Cn(C)⧸Sn be a mapping which
admits a continuous extension to the closure R (denoted again by f) which
maps the (open) horizontal sides into Cn(R)⧸Sn . We say that the mapping
represents btr if for each maximal vertical line segment contained in R (i.e.
for R intersected with any vertical line in C) the restriction of f to the
closure of the line segment represents btr.

The definition of the extremal length of an n-braid with totally real hor-
izontal boundary values is the following ([7, 8]).

Definition 1. — Let b ∈ Bn be an n-braid. The extremal length Λtr(b)
with totally real horizontal boundary values is defined as

Λtr(b) = inf
{

λ(R) :
R a rectangle which admits a holomorphic map to

Cn(C)⧸Sn that represents btr

}
.
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We recall that the centralizer Zn of the Artin braid group Bn is the
subgroup generated by the element ∆2

n with

∆n
def= (σ1 σ2 . . . σn−1) (σ1 σ2 . . . σn−2) . . . (σ1 σ2) σ1.

The invariant Λtr does not change under multiplication by ∆n (see e.g. [8,
Lemma 1]), and, hence, it is an invariant on Bn⧸Zn.

Our results concern the case n = 3. The bounds in the main theorems
can be improved. For the sake of simplicity of the proof we restrict our-
selves to these estimates. We consider first the pure braid group modulo its
center, PB3⧸Z3, which is a free group in two generators σ2

j⧸Z3, j = 1, 2.
The counting function NΛ

PB3
(Y ), Y ∈ (0, ∞), is defined as follows. For each

positive parameter Y the value of NΛ
PB3

(Y ) is equal to the number of ele-
ments b ∈ PB3⧸Z3 with 0 < Λtr(b) ⩽ Y . Note that here we count elements
of PB3⧸Z3 rather than conjugacy classes of such elements. We wish to
point out that (with the mentioned choice of the generators) the condition
Λtr(b) > 0 excludes exactly the classes in PB3⧸Z3 of the even powers σ2k

j

of the standard generators of the braid group B3 (see [8, Theorem 1]).

Theorem 2. — For all positive numbers Y ⩾ 600 log 8 the inequality
1
2 exp

(
Y

900

)
⩽ NΛ

PB3
(Y ) ⩽ 1

2e6πY (1)

holds. The upper bound is true for all Y > 0.

Consider arbitrary 3-braids. The counting function NΛ
B3

(Y ), Y ∈ (0, ∞),
is defined as the number of elements b ∈ B3⧸Z3 with 0 < Λtr(b) ⩽ Y . Note
that the condition Λtr(b) > 0 excludes exactly the elements b ∈ B3⧸Z3 that
are represented by b = σk

j ∆ℓ
3 for j = 1 or 2, and ℓ = 0 or 1. (See Lemma 8

and Theorem 9 below.)

Theorem 3. — For any positive number Y ⩾ 600 log 8 the inequality
1
2 exp

(
Y

900

)
⩽ NΛ

B3
(Y ) ⩽ 4e6πY (2)

holds. The upper bound is true for all Y > 0.

The entropy h(b) of braids b ∈ Bn is defined as the infimum over the
topological entropy of all homeomorphisms in the mapping class m(b) corre-
sponding to b. For the definition of the topological entropy and elementary
properties see [1]. The entropy h(b) does not change under conjugation and
does not change under multiplication by an element of the center of the braid
group. Moreover, the entropy of a braid b is equal to the infimum of entropies
of the elements of the mapping class m∞(b) that is associated to the image
of b in B3⧸Zn (for a proof see [5]). We will speak about the entropy of a
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braid, or about the entropy of an element of Bn⧸Zn or about the entropy
of the conjugacy class of such elements.

The entropy of mapping classes of compact surfaces of genus at least 2
was first treated in the Astérisque volume [4] dedicated to Thurston’s the-
ory of surface homeomorphisms. Thurston gave a classification of mapping
classes on closed or punctured Riemann surfaces of genus g with n ⩾ 0 punc-
tures. Here 2g − 2 + n > 0, so that the universal covering of the Riemann
surface is the upper half-plane. According to Thurston a finite non-empty
set of mutually disjoint closed Jordan curves C = {C1, . . . , Cα} on a closed
or punctured Riemann surface S is called admissible if no Ci is homotopic
to a point in S, or to a puncture, or to a Cj with i ̸= j. Thurston calls an
isotopy class of self-homeomorphisms of S reducible if there exists an admis-
sible system of curves C = {C1, . . . , Cα} on S so that some homeomorphism
in the class (and, hence each homeomorphism in the class) maps C to an
isotopic system of curves. In this case we say that C reduces the class. If
there is no such system the class is called irreducible. Thurston proved that
an isotopy class of homeomorphisms is irreducible if and only if it (more pre-
cisely, its extension to the closed Riemann surface) either contains a periodic
homeomorphism or it contains a so called pseudo-Anosov homeomorphism.
Periodic self-homeomorphisms of closed Riemann surfaces (maybe, with dis-
tinguished points) have zero entropy, pseudo-Anosov homeomorphisms have
positive entropy.

We will also call a braid reducible, irreducible, periodic, or pseudo-Anosov
if its image in Bn⧸Zn corresponds to a class containing a reducible, irre-
ducible, periodic, or pseudo-Anosov homeomorphism, respectively.

Notice that the reducible elements of B3⧸Z3 are exactly the conjugates
of powers of σ1⧸Z3. It is known that their entropy equals zero (for a proof
see e.g. [8, Theorem 2]). Since periodic elements of B3⧸Z3 have zero entropy,
the pseudo-Anosov 3-braids are exactly the 3-braids of positive entropy.

The entropy counting function N entr
Bn

(Y ), Y > 0, for n-braids is defined
as the number of conjugacy classes of pseudo-Anosov elements of Bn⧸Zn

with entropy not exceeding Y . For 3-braids the value N entr
B3

(Y ), Y > 0, is
also the number of conjugacy classes of elements of B3⧸Z3 with positive
entropy not exceeding Y . The following theorem is a corollary of Theorem 3.

Theorem 4. — For any number Y ⩾ 600π log 8 the estimate

1
2 exp

(
Y

900π

)
⩽ N entr

B3
(Y ) ⩽ 4e12Y (3)

holds. The upper bound holds for all positive Y .
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We will first prove Theorem 2. Notice that for each element b of the pure
braid group modulo its center PB3⧸Z3 there is a unique element b ∈ PB3
that represents b and can be written as reduced word in σ2

1 and σ2
2 . Indeed,

this representative b of b is determined by the property that the linking
number between the first and the third strand equals zero. Multiplying an
arbitrary element b ∈ b with a suitable power of ∆2

3 one obtaines the required
element. Assigning to each element b ∈ PB3⧸Z3 the mentioned element we
obtain an isomorphism to the free group in two generators σ2

1 and σ2
2 , or,

equivalently to the fundamental group π1(C \ {−1, 1}, 0) of the twice punc-
tured complex plane with base point 0 with generators a1 and a2 which
correspond to σ2

1 and σ2
2 , respectively. Representatives of a1 surround −1

counterclockwise and representatives of a2 surround 1 counterclockwise. If no
confusion arises we will identify an element of PB3⧸Z3 ∼= π1(C \ {−1, 1}, 0)
with the corresponding reduced word in the generators a1 and a2, or, eqiva-
lently, with the corresponding reduced word in σ2

1 and σ2
2 .

The proof of Theorem 2 uses the syllable decomposition of words w ∈
π1(C \ {−1, 1}, 0) introduced in [7, 8]. It is defined as follows. Write a word
w ∈ π1(C \ {−1, 1}, 0) in reduced form w = ak1

j1
ak2

j2
. . . , and call the akl

jl
the

terms of w. The syllables are of two kinds. First, each term aki
ji

with |ki| ⩾ 2 is
a syllable (we call it a syllable of first type). Secondly, any maximal sequence
of consecutive terms aki

ji
for which |ki| = 1 and all ki have the same sign is a

syllable (we call it a syllable of second kind). This gives a uniquely defined
decomposition into syllables. The degree or length of the syllable is the sum
of absolute values of the exponents of terms appearing in the syllable. We
make the convention that the number of syllables of the identity equals zero.

For a non-trivial word w ∈ π1(C\{−1, 1}, 0) ∼= PB3⧸Z3 we put L−(w) def=∑
log(3dk) and L+(w) def=

∑
log(4dk), where each sum runs over the degrees

dk of all syllables of w.

The main ingredient of the proof is the following lemma.

Lemma 5. — Let N
L−
PB3

be the function whose value at any Y > 0 is
the number of reduced words w ∈ π1(C \ {−1, 1}, 0), w ̸= Id, for which
L−(w) ⩽ Y . The following inequality

N
L−
PB3

(Y ) ⩽ 1
2e3Y (4)

holds.

We need some preparation for the proof of Lemma 5. Consider all finite tu-
ples (d1, . . . , dj), where j ⩾ 1 is any natural number (depending on the tuple)
and the dk ⩾ 1 are natural numbers. Before proving Lemma 5 we estimate for
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Y > 0 the number N∗(eY ) of different ordered tuples (d1, d2, . . . , dj) (with
varying j) that may serve as the degrees of the syllables of words (counted
from left to right) with

∑j
1 log(3dk) ⩽ Y . Put X = eY . Then N∗(X) is the

number of distinct tuples with
∏

(3dk) ⩽ X.

Fix a natural number j. Denote by N∗
j (X), X ⩾ 1, the number of tuples

(d1, . . . , dj) for which
∏j

1(3dk) ⩽ X. The number is not zero if and only if
j ⩽ log X

log 3 . For X ⩾ 1 the equality

N∗(X) =
∑

j∈Z: 1⩽j⩽ log X
log 3

N∗
j (X) (5)

holds.

Notice first that N∗
1 (X) = [ X

3 ], where [x] denotes the largest integer not
exceeding the positive number x. Indeed we are looking for the number of
d1’s for which 1 ⩽ d1 ⩽ X

3 .

The value of N∗
j for j ⩾ 2 is estimated by the following lemma. Notice

that the lemma holds also for j = 1 if in the inequality (6) we define 0! def= 1.

Lemma 6. — Let j ⩾ 2. Then N∗
j (X) = 0 for X < 3j. For X ⩾ 3j

N∗
j (X) ⩽ 1

(j − 1)!
1
3

(
2
3

)j−1
X

(
log
(

1
3

(
2
3

)j−1
X

))j−1

. (6)

Proof. — The number N∗
2 (X) is the number of tuples (d1, d2) for which

3d1 · 3d2 ⩽ X. Since d1d2 ⩾ 1, N∗
2 (X) = 0 for X < 32. If X ⩾ 32 the

inequality d1 ⩽ X
9 holds, and for given d1 the number d2 runs through all

natural numbers with 1 ⩽ d2 ⩽ X
9d1

. Hence, for X ⩾ 32

N∗
2 (X) ⩽

∑
k∈Z: 1⩽k⩽ X

32

X

32k
. (7)

Put a = X
32 and k′ = k

a . Since for positive numbers k′ and α with k′ > α the
inequality 1

k′ ⩽ 1
α

∫ k′

k′−α
dx
x holds we obtain

N∗
2 (X) ⩽

∑
k′∈ 1

aZ: 1
a⩽k′⩽1

1
k′

⩽ 2a

∫ 1

1
2a

dx

x
= 2a log(2a) = 1

3 · 2
3X · log

(
1
3 · 2

3X

)
. (8)

For j ⩾ 3 we provide induction using the following fact. Let 0 < x < 1.
Then for any positive integer j the value

( (− log x)j

x

)′ = − (− log x)j−1

x2 (j−log x)
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is negative. Hence, for k′ ∈ (0, 1) and 0 < α < k′

1
k′ (− log(k′))j ⩽

1
α

∫ k′

k′−α

(− log x)j

x
dx . (9)

We saw that the lemma is true for j = 2. Suppose it is true for j. Prove
that then it holds for j + 1. The number N∗

j+1(X) is the number of tuples
(d1, . . . , dj+1) for which 3d1 · . . . · 3dj+1 ⩽ X. Hence, N∗

j+1(X) = 0 if X <

3j+1. If X ⩾ 3j+1, then d1 ⩽ X
3j+1 and for given d1 the tuples (d2, . . . , dj+1)

run through all tuples with 3d2 · . . . · 3dj+1 ⩽ X
3d1

. Hence, for X ⩾ 3j+1

N∗
j+1(X) =

∑
k∈Z: 1⩽k⩽ X

3j+1

N∗
j

(
X

3k

)

⩽
∑

k∈Z: 1⩽k⩽ X

3j+1

1
(j − 1)!

1
3

(
2
3

)j−1
X

3k

(
log
(

1
3

(
2
3

)j−1
X

3k

))j−1

. (10)

Put a = 1
9 ( 2

3 )j−1X and k′ = k
a . Then

N∗
j+1(X) ⩽ 1

(j − 1)!
∑

k′∈ 1
aZ: 1

a⩽k′⩽ 1
2j−1

1
k′

(
log
(

1
k′

))j−1

⩽
1

(j − 1)!2a

∫ 1
2j−1

1
2a

1
x

(− log x)j−1dx

⩽
1

(j − 1)!2a

∫ 1

1
2a

1
x

(− log x)j−1dx

= (−1)j−1 1
(j − 1)!2a

1
j

(log x)j |11
2a

. (11)

We obtain

N∗
j+1(X) ⩽ 1

j! 2a
(
log(2a)

)j = 1
j!

1
3

(
2
3

)j

X

(
log
(

1
3

(
2
3

)j

X

))j

. (12)

Lemma 6 is proved. □

Lemma 6 implies the following upper bound for N∗.

Lemma 7. — For X < 3 the function N∗(X) vanishes. Moreover, for
any positive number X

N∗(X) ⩽
(

X

3

) 5
3

. (13)
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Proof of Lemma 7. — Since all N∗
j (X) vanish for X < 3 the value N∗(X)

vanishes for such X. For X ⩾ 3, (5) and Lemma 6 imply

N∗(X) ⩽
∑

j∈Z; 1⩽j⩽ log X
log 3

1
(j − 1)!

1
3

(
2
3

)j−1
X

(
log
(

1
3

(
2
3

)j−1
X

))j−1

⩽
1
3X

∑
j∈Z: 1⩽j⩽ log X

log 3

1
(j − 1)!

(
2
3 log

(
1
3X

))j−1

⩽
1
3X exp

(
2
3 log

(
1
3X

))
=
(

X

3

) 5
3

. (14)

Lemma 7 is proved. □

Proof of Lemma 5. — We assume that [ Y
log 3 ] ⩾ 1. Otherwise N∗(eY )

vanishes, and therefore N
L−
PB3

(Y ) = 0, and the inequality is satisfied. We will
use the notation N

L−
j (Y ), j ⩾ 1, for the number of different reduced words

w in π1(C \ {−1, 1}, 0) that consist of j syllables and satisfy the inequal-
ity L−(w) =

∑j
k=1 log(3dk) ⩽ Y . Then N

L−
PB3

(Y ) =
∑j0

j=1 N
L−
j (Y ) with

j0
def= [ Y

log 3 ]. We will estimate N
L−
j (Y ) by N∗

j (X) with X = eY . Recall that
N∗(eY ) is the number of different tuples (d1, . . . , dj) with dk ⩾ 1 for which∏j

k=1(3dk) ⩽ eY .

For this purpose we take a tuple (d1, . . . , dj) and estimate the number of
different reduced words with tuple of lengths of syllables (from left to right)
equal to (d1, . . . , dj). The first syllable can be of type (1) or of type (2). The
type of the syllable and the first letter of the syllable (which may be a±1

1
or a±1

2 ) together with its length completely determine the syllable. Hence,
there are at most 8 different choices for the first syllable if we require the
syllable to have exactly degree d1. For all other syllables the first letter of the
syllable cannot be a±1

i if the last letter in the preceding syllable is a±1
i for

the same ai. Hence, for all but the first syllable there are at most 4 choices
given the degree of the syllable and the preceding syllable.

We showed that for all j = 1, . . . , j0 = [ Y
log 3 ], and each tuple (d1, . . . , dj),

there are at most 2 · 4j different reduced words with tuple of lengths of
syllables equal to (d1, . . . , dj). Hence, for Y ⩾ log 3 the number N

L−
PB3

(Y )
of reduced words w ∈ π1(C \ {−1, 1}, 0), w ̸= Id, with

∏j0
1 (3dk) ⩽ exp(Y )

equals

N
L−
PB3

(Y ) =
j0∑

j=1
N

L−
j (Y ) ⩽

j0∑
j=1

2 · 4j0N∗
j (eY ) = 2 · 4j0 · N∗(eY ). (15)
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Using the inequality j0 ⩽ Y
log 3 and Lemma 7 with X = eY we obtain the

requested estimate by the value

2 · 3− 5
3 exp

((
log 4
log 3 + 5

3

)
Y

)
<

1
2 exp(3Y ). (16)

We used the inequalities ( log 4
log 3 +( 5

3 )) < 2.93 and 4·3− 5
3 < 0.65 < 1. Lemma 5

is proved. □

Proof of Theorem 2. — We need the following inequality (see [8, Theo-
rem 1])

1
2π

L−(w) ⩽ Λtr(w) ⩽ 300L+(w) (17)

which holds for all reduced words w representing elements in PB3⧸Z3 ∼=
π1(C \ {−1, 1}, 0) that are not equal to a power of a1 or of a2 or to the
identity (equivalently, for which Λtr(w) > 0).

The inequality (17) implies the inclusion {w : 0 < Λtr(w) ⩽ Y } ⊂ {w ̸=
Id : L−(w) ⩽ 2πY }. We obtain the inequality NΛ

PB3
(Y ) ⩽ N

L−
PB3

(2πY ) and
by Lemma 5 the right hand side of this inequality does not exceed 1

2 e6πY .
This gives the upper bound.

The lower bound is obtained as follows. Consider all reduced words in
π1(C \ {−1, 1}, 0) of the form

a2k1
1 a2k2

2 . . . (18)
where each ki is equal to 1 or −1. If j is the number of syllables (i.e the
number of the aki

i ) of a word w of the form (18), then Λtr(w) ⩽ 300L+(w) =
300j log 8. Consider the words of the mentioned form for which j = j0

def=
[ Y

300 log 8 ]. Since j0 must be at least equal to 2 we get the condition Y ⩾
600 log 8. For the chosen j0 the extremal length of the considered words does
not exceed Y . The number of different words of such kind is 2j0 = 2[ Y

300 log 8 ] ⩾
exp(log 2 · ( Y

300 log 8 − 1)) = 1
2 exp(Y log 2

300·3 log 2 ) = 1
2 exp( Y

900 ). Theorem 2 is
proved. □

Consider now arbitrary elements of the braid group modulo its center
B3⧸Z3 and their extremal length with totally real horizontal boundary val-
ues.

We need the following lemma and theorem from [8] which are formulated
in terms of braids.

Lemma 8 ([8, Lemma 2]). — Any braid b ∈ B3 which is not a power of
∆3 can be written in a unique way in the form

σk
j b1 ∆ℓ

3 (19)
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where j = 1 or j = 2, k ̸= 0 is an integer, ℓ is a (not necessarily even)
integer, and b1 is a word in σ2

1 and σ2
2 in reduced form. If b1 is not the

identity, then the first term of b1 is a non-zero even power of σ2 if j = 1,
and the first term of b1 is a non-zero even power of σ1 if j = 2.

For an integer l ̸= 0 we put q(l) = l if l is even, and for odd l we denote
by q(l) the even integer neighbour of l that is closest to zero. In other words,
q(l) = l if l ̸= 0 is even, and for each odd integer l , q(l) = l − sgn(l), where
sgn(l) for a non-zero integer number l equals 1 if l is positive, and −1 if l is
negative. For a braid of form (19) we put ϑ(b) def= σ

q(k)
j b1. The pure braid

ϑ(b) can be written as a word in σ2
1 and σ2

2 . It is clear that ϑ(b∆3) = ϑ(b)
for b ∈ B3. For b ∈ B3⧸Z3 the value ϑ(b) is well-defined by the relation
ϑ(b) def= ϑ(b) for any b ∈ B3 representing b. The following theorem holds.

Theorem 9 ([8, Theorem 3]). — Let b ∈ B3 be a (not necessarily pure)
braid which is not a power of ∆3, and let w be the reduced word in σ2

1 and
σ2

2, that represents ϑ(b). Then
1

2π
L−(w) ⩽ Λtr(b) ⩽ 300 · L+(w) ,

except in the case when b = σk
j ∆ℓ

3, where j = 1 or j = 2, k ̸= 0 is an integral
number, and ℓ is an arbitrary integer. In this case Λtr(b) = 0.

Proof of Theorem 3. — Take any element of PB3⧸Z3. Choose its unique
representative that can be written as a reduced word w in σ2

1 and σ2
2 . We

describe now all elements b of B3⧸Z3 with ϑ(b) = w. If w ̸= Id these are
the elements represented by the following braids. If the first term of w is σ2k

j

with k ̸= 0, then the possibilities are b = w∆ℓ
3 with ℓ = 0 or 1, b = σsgn k

j w∆ℓ
3

with ℓ = 0 or 1, or b = σ±1
j′ w∆ℓ

3 with ℓ = 0 or 1 and σj′ ̸= σj . Hence, for
w ̸= Id there are 8 possible choices of elements b ∈ B3⧸Z3 with ϑ(b) = w.
By Theorem 9 the set of b ∈ B3⧸Z3 with 0 < Λtr(b) ⩽ Y is contained in
the set of b ∈ B3⧸Z3 with ϑ(b) = w ̸= Id, L−(w) ⩽ 2πY . We obtain

NΛ
B3

(Y ) ⩽ 8N
L−
PB3

(2πY ). (20)

By Lemma 5 we obtain NΛ
B3

(Y ) ⩽ 4e6πY .

Since each pure 3-braid is also an element of the braid group B3 the lower
bound of Theorem 2 provides also a lower bound for Theorem 3. Theorem 3
is proved. □

We prepare the proof of Theorem 4. A reduced word w ̸= Id representing
an element of PB3⧸Z3 is called cyclically reduced, if either the word consists
of a single term, or it has at least two terms and the first and the last term
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of the word are powers of different generators. Each reduced word which is
not the identity is conjugate to a cyclically reduced word.

A cyclically reduced word w representing an element of PB3⧸Z3 is called
cyclically syllable reduced, if either the word consists of a single term, or
all terms enter with equal power +1 or −1 (in these two cases the word
consists of a single syllable), or the first and the last term of the word do
not enter with equal power +1 or −1 (in this case the word contains at
least two syllables). Each cyclically reduced word which is not the identity
is conjugate to a cyclically syllable reduced word.

For the proof of Theorem 4 we will use the following theorem from [8].

Theorem 10 ([8, Theorem 2]). — Let b ∈ PB3⧸Z3 be represented by a
cyclically syllable reduced word w consisting of more than one syllable. Then

1
2π

L−(w) ⩽ 2
π

h(b̂) ⩽ 300L+(w). (21)

The extremal length in the sense of Ahlfors of a round annulus A = {z ∈
C : r1 < |z| < r2}, 0 ⩽ r1 < r2 ⩽ ∞, equals λ(A) = 2π

log( r2
r1

) . There is

a bijective correspondence between conjugacy classes b̂ of n-braids and free
isotopy classes of loops in Cn(C)⧸Sn.

A continuous mapping f of an annulus A = {z ∈ C : r1 < |z| < r2},

0 ⩽ r1 < r2 ⩽ ∞, into Cn(C)⧸Sn represents a conjugacy class b̂ of n-braids
if for each circle {|z| = ρ} ⊂ A the loop f : {|z| = ρ} → Cn(C)⧸Sn

represents the conjugacy class b̂. The extremal length Λ(̂b) of b̂ is defined as
Λ(̂b) = infA∈A λ(A), where A denotes the set of all annuli which admit a
holomorphic mapping into Cn(C)⧸Sn that represents b̂. By [5] and [6] the
entropy of a conjugacy class of n-braids b̂ equals h(̂b) = π

2 Λ(̂b). The equality
h(b̂) = h(̂b) holds for any braid b representing b (see e.g. [5, 6]).

Proof of the upper bound of Theorem 4. — We represent each conjugacy
class b̂ of elements of B3⧸Z3 by a conjugacy class b̂ of elements of B3. To
each conjugacy class b̂ of elements of B3 with h(̂b) > 0 and each positive
number ε we will associate a braid b ∈ B3 that represents b̂ such that the
inequality

Λtr(b) <
2
π

h(̂b) + ε (22)

holds. For this purpose we represent the conjugacy class b̂ of b by a holomor-
phic map g : A → C3(C)⧸S3 from an annulus A of extremal length

λ(A) <
2
π

h(̂b) + ε (23)
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to the symmetrized configuration space. By Lemma 8 of [9] each loop that
represents b̂ intersects the smooth real hypersurface

H def=

{z1, z2, z3} ∈ C3(C)⧸S3 :
the three points z1, z2, z3

are contained in a real line
in the complex plane

 (24)

of C3(C)⧸S3. By the Holomorphic Transversality Theorem [10] we may as-
sume, after shrinking A (keeping inequality (23)) and approximating g, that
g is holomorphic in a neighbourhood A′ of the closure A of A and is transver-
sal to H. Hence, L

def= {z ∈ A′ : g(z) ∈ H} is a smooth real submanifold of
A′ of real dimension 1. Moreover, L contains an arc L0 ⊂ A with endpoints
on different boundary circles of A.

The set A \ L0 is a curvilinear rectangle. By this we man that the set
admits a conformal mapping ω onto a rectangle R = {z = x + iy ∈ C :
0 < x < 1, 0 < y < a} of extremal length a with the following properties.
Consider a lift (A \ L0)˜ of the set A \ L0 to the universal covering of A
and denote the projection map by p. The lift of the mapping ω extends to a
homeomorphism from the closure of (A \ L0)˜ in the universal covering of A
onto the closure R of R such that the two components of p−1(∂A \ L0) are
mapped to the open vertical sides of the rectangle and the two components
of p−1(L0) are mapped to the open horizontal sides of the rectangle.

The extremal length λ(A \ L0) is defined as the extremal length a of
the rectangle R. The inequality λ(A \ L0) ⩽ λ(A) holds (see [2], or [9,
inequality (12)], or [8, Proof of the lower bound in Theorem 2]).

We may assume that L0 contains a point z0 for which g(z0) is con-
tained in the real subspace C3(R)⧸S3, and, moreover, for some label {g1(z0),
g2(z0), g3(z0)} of the points of g(z0) the equalities g1(z0) = 0, g3(z0) = 1
hold. To see this we will use the following notation. Let A be a complex affine
mapping, i.e. A(ζ) = α ζ + β, ζ ∈ C, where α and β are complex numbers,
α ̸= 0. For a point E ∈ C3(C)⧸S3 we denote by A(E) the triple of points in
C that is obtained by applying A to each of the three points of E.

Recall that g(L0) ⊂ H. Take any point z0 ∈ L0 ∩ A. Label the points
of g(z0) in any way by g1(z0), g2(z0), and g3(z0). We denote by Az0 the
complex affine mapping ζ → ζ−g1(z0)

g3(z0)−g1(z0) , ζ ∈ C. Consider the mapping
z → Az0(g(z)), z ∈ A, which assigns to each point z ∈ A the point in
C3(C)⧸S3 that is obtained by applying the complex affine mapping Az0 to
g(z). Then Az0(g(z0)) =

{
0, g2(z0)−g1(z0)

g3(z0)−g1(z0) , 1
}

is contained in C3(R)⧸S3, and
has the required form.
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Since the set of complex affine mappings (with the topology of C∗ ×C) is
connected, the mapping Az0g is free isotopic to g on A, hence also represents
b̂. Replacing if necessary g by Az0g, we assume now that g(z0) ∈ C3(R)⧸S3,
and has the required form.

Take the lift of the mapping g | A\L0 to a mapping (g1, g2, g3) : A\L0 →
C3(C) for which the continuous extension (g1(z0), g2(z0), g3(z0)) to z0 in
clockwise direction satisfies g1(z0) = 0 and g3(z0) = 1. We consider the
mapping z → α(z)ζ + β(z) def= Az(g(z)), z ∈ A \ L0, which is obtained by
applying the variable complex affine mapping Az, Az(ζ) = ζ−g1(z)

g3(z)−g1(z) , to
g(z). Use the notation gA(z) for the mapping Az(g(z)), z ∈ A \ L0. The
value of this mapping for each z ∈ A \ L0 is the triple

{
0, g2(z)−g1(z)

g3(z)−g1(z) , 1
}

.
Hence, the continuous extension of this mapping to each of the strands of L0
takes values in the real subspace C3(R)⧸S3 of the symmetrized configuration
space, and therefore the holomorphic mapping gA ◦ ω−1 on R represents an
element of the relative fundamental group π1(C3(C)⧸S3, C3(R)⧸S3).

Take a curve γ : [0, 1] → A with γ(0) = γ(1) = z0 that intersects L0
only at z0 and represents the counterclockwise generator of the fundamen-
tal group of A. The mapping g ◦ γ represents a braid b ∈ b̂ and also an
element in the relative fundamental group π1(C3(C)⧸S3, C3(R)⧸S3). The
mapping gA ◦ γ | (0, 1) extends continuously to the closed interval [0, 1]. The
extension (denoted by gA◦γ) represents an element of the relative fundamen-
tal group π1(C3(C)⧸S3, C3(R)⧸S3). By the construction of gA the equality
gA ◦ γ(0) = g ◦ γ(0) holds, and the two elements of the relative fundamental
group represented by g ◦ γ and by gA ◦ γ differ by a finite number of half-
twists. For the conformal mapping ω : A \ L0 → R and the extremal length
a of the rectangle R the map z → e

π
a ω(z), z ∈ A \ L0, represents a half-twist.

For k ∈ Z we consider the mapping gk,ω(z) def= ek π
a ω(z)gA(z) from A \ L0 to

C3(C)⧸S3. It has totally real horizontal boundary values. There exists an
integer number k such that g ◦ γ and gk,ω ◦ γ represent the same element of
π1(C3(C)⧸S3, C3(R)⧸S3). Hence, the mapping gk,ω ◦ ω−1 : R → C3(C)⧸S3
represents the element btr of the relative fundamental group that corresponds
to the braid b ∈ b̂ represented by g ◦ γ. Since λ(R) = a = λ(A \ L0) ⩽ λ(A)
we obtained Λtr(b) ⩽ λ(A) < 2

π h(̂b) + ε.

We achieved the following. For each conjugacy class b̂ of 3-braids with
h(̂b) > 0 we obtained a braid b ∈ b̂ such that Λtr(b) < 2

π h(̂b) + ε for the a
priori given small positive number ε. For each integer number l the equalities
h(b̂∆2l

3 ) = h(̂b) and Λtr(b∆2l
3 ) = Λtr(b) hold. Hence, the number of conjugacy

classes b̂ of B3⧸Z3 of positive entropy not exceeding Y does not exceed
the number of elements b ∈ B3⧸Z3 with Λtr(b) < 2

π Y + ε. In other words,
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N entr
B3

(Y ) ⩽ NΛ
B3

( 2
π Y +ε). Since for ε we may take any a priory given positive

number, Theorem 3 implies

N entr
B3

(Y ) ⩽ NΛ
B3

(
2
π

Y

)
⩽ 4e12Y . (25)

We obtained the upper bound. □

For obtaining the lower bound we need the following preparations.

Lemma 11. — Suppose b1 and b2 are elements of the free group Fn in
n generators, that are both represented by cyclically reduced words. Then b1
and b2 are conjugate if and only if the word representing b2 is obtained from
the word representing b1 by a cyclic permutation of terms.

Proof. — It is enough to prove the following statement. If under the con-
ditions of the lemma b2 = w−1b1w for an element w ∈ F2, w ̸= Id, then
b2 = w′−1b′

1w′ where b′
1 is represented by a cyclically reduced word that is

obtained from the reduced word representing b1 by a cyclic permutation of
terms, and w′ is represented by a reduced word which has less terms than
the word representing w.

This statement is proved as follows. Write w = w1w′ where w1 ∈ Fn is
represented by the first term of the word representing w, and b1 = a′B′

1a′′

where a′ and a′′ are represented by the first and the last term, respectively,
of the word that represents b1. Then b2 = w′−1w−1

1 a′B′
1a′′w1w′. If both

relations w−1
1 a′ ̸= Id and a′′w1 ̸= Id were true, then the first and the last

term of the reduced word representing b2 would be a power of the same
generator of Fn, which contradicts the fact that b2 can be represented by a
cyclically reduced word. If either w−1

1 a′ = Id or a′′w1 = Id, then the reduced
words representing b′

1
def= w−1

1 a′B′
1a′′w1 and b1 are cyclic permutations of

each other. Hence, the statement is true. □

Lemma 12. — The following equalities hold.
∆3σ1 = σ2∆3 ,

∆3σ2 = σ1∆3 ,

σ−1
1 (σ−4

2 ∆4
3)σ1 = σ2

2σ2
1σ2

2σ2
1 ,

σ−1
2 (σ−4

1 ∆4
3)σ2 = σ2

1σ2
2σ2

1σ2
2 .

(26)

Proof. — The third equality is obtained as follows

σ−1
1 (σ−4

2 ∆4
3)σ1 = σ−1

1 σ−1
2 ∆2

3σ−2
2 ∆2

3σ−1
2 σ1

= (σ−1
1 σ−1

2 )(σ2σ1σ2)(σ2σ1σ2)σ−1
2 σ−1

2 (σ2σ1σ2)(σ2σ1σ2)σ−1
2 σ1

= σ2
2σ2

1σ2
2σ2

1 . (27)
The fourth equality is obtained by conjugating the third equality by ∆3. □
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Recall that each braid β ∈ B3 can be written uniquely in the form β =
σk

j β1∆ℓ
3 for an integer number ℓ, a number j = 1, 2, a number k = 0, 1, and

a braid β1 that can be written as a reduced word in σ2
1 and σ2

2 . Consider
two elements b1 and b2 of PB3⧸Z3 ⊂ B3⧸Z3. We identify PB3⧸Z3 with
the free group F2 in two generators a1 and a2.

Lemma 13. — Suppose both, b1 and b2, are of the form

a±2
1 a±2

2 · · · a±2
1 a±2

2 or a±2
2 a±2

1 · · · a±2
2 a±2

1 , (28)

with a positive number of terms, and the reduced word representing b1 has
at least four terms. Then b2 cannot be conjugated to b1 by an element β of
B3⧸Z3 that can be represented by a braid β = σjβ1∆ℓ

3 with some j and ℓ
and β1 being a word in σ2

1 and σ2
2.

Proof. — Indeed, suppose the contrary,

b1 = β−1b2β (29)

with β represented by β = σjβ1∆ℓ
3, where ℓ = 0, 1, and β1 ∈ PB3 is a

word in σ2
1 and σ2

2 . For j = 1, 2, we let bj be the representative of bj which
can be written as reduced word in σ2

1 and σ2
2 . By (26) there is an integer

number n such that the braid b′
2

def= σ−1
j b2σj∆2n

3 is a product of a posi-
tive even number of factors which either have alternately the form σ±4

1 and
(σ2

2σ2
1σ2

2σ2
1)±1, or they have alternately the form σ±4

2 and (σ2
1σ2

2σ2
1σ2

2)±1.
The braid β1∆ℓ

3b1∆−ℓ
3 β−1

1 can also be written as reduced word in σ2
1 and σ2

2 .
Hence, by (29) the two braids b′

2 and β1∆ℓ
3b1∆−ℓ

3 β−1
1 must be equal.

Identify σ2
1 with the generator a1 and σ2

2 with the generator a2 of the free
group F2. The braid b′

2 is the product of at least two factors equal to a±2
1 and

(a1a2a1a2)±1 alternately, or it is the product of at least two factors equal
to a±2

2 and (a2a1a2a1)±1 alternately. Hence, the reduced word representing
b′

2 contains at least 4 terms, and out of four consecutive terms at least two
terms appear with power +1 or −1.

Indeed, put A = a1a2a1a2. Replace in the product Aℓ1a±2
1 Aℓ2 with ℓ1 =

0, ±1, ℓ2 = 0, ±1, each factor Aℓ1 by the reduced word in a1, a2, representing
it. We obtain a (possibly not reduced) word in a1, a2. If ℓ1 = 0 or ℓ1 = 1,
and ℓ2 = 0 or −1, the word is already reduced. If ℓ1 = −1, and ℓ2 = 0 or
−1, the reduced word representing the product, consists of the first three
letters of the word representing A−1 = Aℓ1 , a non-trivial power of a1 and
all letters of the word representing Aℓ2 . If ℓ1 = 0 or ℓ1 = 1, and ℓ2 = 1,
the reduced word representing the product, consists of all letters of the word
representing Aℓ1 , a non-trivial power of a1 and the last three letters of the
word representing A = Aℓ2 . Finally, if ℓ1 = −1 and ℓ2 = 1 then the reduced
word representing the product, consists of the first three letters of the word

– 1338 –



Conformal Invariants of 3-Braids and Counting Functions

representing A−1 = Aℓ1 , a non-trivial power of a1 and the last three letters
of the word representing A = Aℓ2 . Hence, the reduced word representing b′

2
contains for each factor Aℓj in the whole product at least the two middle
letters of the word representing the Aℓj . The case, when b′

2 is the product
of a2a1a2a1 and a2

2 is obtained by replacing the role of the generators a1
and a2.

Since the braid ∆ℓ
3b1∆−ℓ

3 can be represented by a word of the form (28)
with at least four terms, we arrived at the following conjugation problem in
the free group F2. We have an element B1 ∈ F2 of the from (28) with at
least 4 terms, and an element B2 ∈ F2 written as reduced word with at least
4 terms, such that in each tuple of four consecutive terms there are at least
two terms that appear with power +1 or −1. Then there is no element of F2
that conjugates B1 to B2.

To prove the statement we assume the contrary. Suppose the reduced
word ak1

j1
. . . akℓ

jℓ
representing B2 is not cyclically reduced. Identify each term

a
kℓ′
jℓ′ of the word with the element of F2 represented by it. The conjugate

(ak1
j1

)−1B2ak1
j1

can be represented by a reduced word for which the consec-
utive sequence of all terms except perhaps the last is also a consecutive
sequence of terms of the reduced word representing B2. Continue consecu-
tively in this way with the a

kℓ′
jℓ′ until we arrive at an element B′

2 ∈ F2 that
can be represented by a cyclically reduced word. The sequence of all consec-
utive terms except perhaps the last of this cyclically reduced word is also a
sequence of consecutive terms of the reduced word representing B2.

Since B′
2 is conjugate to B1 by an element of F2 and both are represented

by cyclically reduced words, the representing words have the same number
of terms (see Lemma 11). By the assumption for B1 the number of terms is
at least 4. Then the words B′

2 and B2 have at least 3 consecutive terms in
common. Therefore B′

2 contains a term that appears with power ±1 which
is a contradiction. The lemma is proved. □

Proof of the lower bound of Theorem 4. — Consider the elements of
b ∈ PB3⧸Z3 ⊂ B3⧸Z3 which can be represented by words of the form

w = a±2
1 a±2

2 · · · a±2
1 a±2

2 (30)
in the generators a1 and a2 of PB3⧸Z3 with at least 4 terms. We denote
the number of syllables (in this case the number of the terms aki

i ) of the
word (30) by 2j. Since each word w of form (30) is cyclically syllable reduced,
Theorem 10 implies that the entropy h(b̂) of the conjugacy class of the
element b ∈ PB3⧸Z3 represented by w satisfies the inequality

h(b̂) ⩽ 300π

2 L+(w) = π

2 · 300 · 2j · log 8 . (31)
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Take j = j′
0

def= [ Y
300π log 8 ]. For this choice of j′

0 the inequality π
2 ·300L+(w) ⩽

Y holds. Since we required that the number of syllables 2j′
0 is at least 4, we

get the condition Y ⩾ 600π log 8. The number of different words of such kind
equals 22j′

0 .

We prove now that the number of different conjugacy classes of B3⧸Z3
that can be represented by elements in PB3 corresponding to words (30)
with 2j′

0 syllables is not smaller than 22j′
0

2j′
0

. It is enough to prove the following
claim. For each element b ∈ PB3⧸Z3 of form (30) the number of elements
of PB3⧸Z3 of form (30) that are conjugate to b by an element of B3⧸Z3
does not exceed 2j′

0.

Suppose two elements b1 and b2 of PB3⧸Z3 ⊂ B3⧸Z3 are represented by
a word of form (30) and belong to the same conjugacy class, i.e. b2 = βb1β−1

for an element β ∈ B3⧸Z3. Then by Lemma 13 the element β is represented
by an element β = β1∆ℓ

3 in B3 with β1 being a word in σ2
1 and σ2

2 and
ℓ = 0, 1. Put b′

1 = ∆3
ℓb1∆3

−ℓ for the element ∆3 = ∆3⧸Z3. Then b′
1

is represented by a word of form (28). If ℓ = 0 then the first terms of the
reduced words representing b′

1 and b1 are powers of the same generator
aj , if ℓ = 1 then the first terms of the reduced words representing b′

1 and
b1 are powers of different generators. By Lemmas 11 and 12 the reduced
word representing the element β1b′

1β−1
1 is obtained from the reduced word

representing b′
1 by a cyclic permutation of terms. Thus, either the reduced

word representing b2 is obtained by an even cyclic permutation of terms of
the reduced word representing b1, or by an odd cyclic permutation of the
terms of the reduced word representing ∆3b1∆3

−1. Hence the number of
different elements of PB3⧸Z3 that can be represented by words of form (30)
and are obtained from b1 by conjugation with an element of B3⧸Z3 does
not exceed the number of cyclic permutations of 2j′

0 letters, i.e. 2j′
0. (Notice,

that e.g. by cyclically permuting the terms of a word with symmetries we
may sometimes arrive at the same word.)

We proved that the number of different conjugacy classes of PB3⧸Z3

represented by words of form (30) is not smaller than 22j′
0

2j′
0

.

We obtain

N entr
B3

(Y ) ⩾ 22j′
0

2j′
0

. (32)

Notice that 2j

j ⩾ 2 for natural j. Indeed, the function x → 2x

x increases for
x ⩾ 2 (since ( 2x

x )′ = − 2x

x2 + 2x log 2
x , and log 2 > 0.6) and for j = 1 and 2 the

– 1340 –



Conformal Invariants of 3-Braids and Counting Functions

expression equals 2). Hence, 22j

2j ⩾ 2j . Hence, for Y ⩾ 600π log 8

N entr
B3

(Y ) ⩾ 2j′
0 ⩾

1
22

Y
300π log 8

= 1
2 exp

(
Y log 2

300π log 8

)
= 1

2 exp
(

Y

900π

)
. (33)

The lower bound of the theorem is proved. □
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