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The flatness of the O-module of smooth functions and
integral representation (∗)

Mats Andersson (1)

ABSTRACT. — We give a proof of the well-known fact that the O-module E of
smooth functions is flat by means of residue theory and integral formulas. A variant
of the proof gives a similar result for classes of functions of lower regularity. We also
prove a Briançon–Skoda type theorem for ideals of the form Ea, where a is an ideal
in O.

RÉSUMÉ. — Nous donnons une preuve du fait bien connu que le O-module E des
fonctions lisses est plat au moyen de la théorie des résidus et des formules intègrales.
Une variante de la preuve donne une résultat similaire pour classes de fonctions de
moindre régularité. Nous prouvons également un théorème de type Briançon-Skoda
pour des idéaux de la forme Ea, où a est un idéal dans O.

1. Introduction

Let X be a complex manifold of dimension n with structure sheaf O of
holomorphic functions, and let E be the analytic sheaf of smooth functions.
It is well-known, and first proved by Malgrange already in the ’60s, [14],
that E is a flat O-module; that is, an exact sequence of O-modules remains
exact when tensored by E . It is enough to prove, see Section 2.1, noting that
E⊕m = E ⊗O O⊕m: If

O⊕m2 f2−→ O⊕m1 f1−→ O⊕m0 (1.1)

is exact, then the induced sequence

E⊕m2 f2−→ E⊕m1 f1−→ E⊕m0 (1.2)
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is exact, that is, locally there is a smooth solution to f2ψ = ϕ for each
smooth ϕ such that f1ϕ = 0. It is in fact enough to check the case when
m0 = 1.

Our first aim of this note is to give a proof based on residue theory and
an integral formula that provides the desired smooth solution ψ. The idea to
use integral formulas to find holomorphic solutions to this kind of equations,
often referred to as division problems, was introduced by Berndtsson in [11].
It was further developed and adapted for a variety of situtions, see, e.g.,
[2, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18].

One should notice that for instance the O-module C of continuous func-
tions is not flat. Let us consider the simple exact sequence

O f2−→ O⊕2 f1−→ O, (1.3)

in a neighborhood of the origin in C2
x1,x2

, where f1 = (x1, x2) and f2 =
(−x2, x1)t. Observe that C⊕m = C ⊗O O⊕m. The induced sequence C →
C⊕2 → C is not exact. For instance, ϕ = (−x2, x1)t/|x|1/3 is continuous and
f1ϕ = 0 but there is no continuous function ψ such that f2ψ = ϕ; in fact,
since f2 is pointwise injective outside the origin the only possible solution
is ψ = 1/|x|1/3. However, if ϕ is in C1 and f1ϕ = 0, then there is indeed a
continuous solution to f2ψ = ϕ, cf. Example 3.4 below.

Following [8] one can associate a certain current U with (1.1), see Sec-
tion 2.3.

Theorem 1.1. — Assume that (1.1) is exact in a neighborhood of 0 ∈ Cn

and let M be the order of the associated current U .

(i) If ϕ is in E⊕m1 and f1ϕ = 0, then there is ψ in E⊕m2 such that
f2ψ = ϕ.

(ii) If ϕ in Ck+2M+cn ⊗O⊕m1 and f1ϕ = 0, then there is ψ in Ck⊗O⊕m2

such that f2ψ = ϕ. Here cn is a constant that only depends on the
dimension n.

In view of the discussion above, (i) immediately implies that E is a flat
O-module.

The proof of Theorem 1.1 relies on of the construction of weighted integral
representation formulas in [1, 4], the residue currents associated with free
resolutions in [8, Section 5], and the special choice of weight in [2].

The classical Briançon–Skoda theorem, first proved in [19], states that if
a ⊂ O is an ideal and ϕ ∈ O is a function such that

|ϕ| ⩽ C|a|µ+r−1, (1.4)
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where
µ := min(m,n) (1.5)

and m is the minimal number of generators for a, then ϕ is in ar. Here
|a| =

∑
|aj | for a (finite) set aj of generators. Any other set of generators

gives rise to a comparable quantity. By the Nullstellensatz ϕ is in the ideal
ar if it vanishes to a large enough order at the zero set of a. The important
point is that the condition (1.4) is uniform in both a and r (if we replace µ
by n).

There is a purely algebraic formulation in terms of integral closures, see,
e.g., [19], and there are general versions for Noetherian, even non-regular,
rings, [13]. We do not know if there is some kind of algebraic analogue for a
non-Noetherian ring like E . However, we have the following analytic variant
for ideals Ea ⊂ E , where a are ideals in O. Notice that (Ea)r = Ear.

Theorem 1.2. — Assume that ϕ is a germ of a smooth function at 0,
a ⊂ O is an ideal and r is a positive integer. If there are constants Cα such
that

|∂α
z̄ ϕ| ⩽ Cα|a|µ+r−1 (1.6)

for all multi-indices α ⩾ 0, then ϕ is in Ear.

Notice that if a1, . . . , am generate a and ϕ is in Ear, then

ϕ =
∑

|I|=r

ξIa
I1
1 . . . aIm

m ,

where ξI are in E . Noting that |ar| ∼ |a|r, thus

∂̄α
z̄ ϕ =

∑
|I|=r

(∂̄α
z̄ ξI)aI1

1 . . . aIm
m .

Therefore, (1.6) holds for all α with µ = 1, and thus a condition like (1.6) is
necessary.

The plan of this note is as follows. In Section 2 we recall some results
about residue theory and integral representation of solutions to division prob-
lems. In the last sections we provide the proofs of Theorems 1.1 and 1.2.

Ackowledgements

The author would like to thank the referee for careful reading and pointing
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2. Preliminaries

We first recall some material that is basically known, but presented in a
way that is adapted for the proofs in the last two sections.

2.1. Flatness

Let R be a commutative ring and M an R-module. There are many
equivalent statements with the meaning that M is flat. One is the following:

M is flat if and only if J⊗RM → R⊗RM = M is injective for each finitely
generated ideal J ⊂ R.

It is quite easy to see that this holds if and only if for any finite relation∑d
1 rjϕj = 0, where rj ∈ R and ϕj ∈ M , letting ϕ = (ϕ1, . . . , ϕd)t, there are

a finite R-matrix A and a tuple b of elements in M such that ϕ = Ab and
(r1 . . . rd)A = 0.

In our case R is the local Noetherian ring O at some point, and so all
ideals are finitely generated. By Oka’s lemma there is a holomorphic matrix
f2 such that

Rm2 f2−→ Rd (r1...rd)−→ R (2.1)
is exact (in particular, (r1 . . . rd)f2 = 0) in a neighborhood of 0. Thus we are
precisely in the situation in the introduction of this note, with m0 = 1 and
m1 = d, and so the flatness of the O-module E follows from the exactness
of (1.2).

2.2. Integral representation

We first describe the idea in [1] to construct representation formulas for
holomorphic functions in an open set Ω ⊂ Cn. Let z be a fixed point in Ω,
let δz−ζ be interior multiplication by the vector field

2πi
n∑
1

(ζj − zj) ∂

∂ζj
,

and let ∇ζ−z = δζ−z − ∂̄. Notice that ∇ζ−z satisfies Leibniz’ rule
∇ζ−z(α ∧ β) = ∇ζ−zα ∧ β + (−1)deg αα ∧ ∇ζ−zβ. (2.2)

We say that a current g = g0,0 + g1,1 + · · · + gn,n, where lower indices
denote bidegree, is a weight with respect to z if ∇ζ−zg = 0, g is smooth in
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a neighborhood of z and g0,0(z) = 1. If g1 and g2 are weights, and one of
them is smooth, then by (2.2) also g1 ∧ g2 is a weight.

Let b = ∂ζ |ζ − z|2/2πi|ζ − z|2 and for ζ ̸= z consider the form

vz = b

∇ζ−zb
= b+ b ∧ ∂̄ζb+ · · · + b ∧ (∂̄ζb)n−1; (2.3)

in [1] it is called the full Bochner–Martinelli form because the component
vz

n,n−1 of bidegree (n, n − 1) is precisely the classical Bochner–Martinelli
kernel with pole at the point z. It is easy to see that ∇ζ−zv

z = 1. Since vz

is locally integrable it has a natural current extension across z and

∇ζ−zv
z = 1 − [z], (2.4)

where [z] denotes the Dirac measure at z considered as an (n, n)-current,
cf. [1, Section 2].

Proposition 2.1. — Assume that g is a weight with respect to z ∈ Ω
with compact support in Ω. If Φ = Φ0,0 + · · · + Φn,n is a smooth form in Ω
and ∇ζ−zΦ = 0, then

Φ0,0(z) =
∫
g ∧ Φ =

∫
(g ∧ Φ)n,n. (2.5)

In particular the formula holds for Φ = ϕ if ϕ is holomorphic in Ω.

Proof. — Notice that vz ∧ g ∧ Φ is a well-defined current. By (2.2)
and (2.4),

∇ζ−z(vz ∧ g ∧ Φ) = ∇ζ−zv ∧ g ∧ Φ = (1 − [z]) ∧ g ∧ Φ = g ∧ Φ − Φ0,0[z].

For degree reasons it follows that

d(vz ∧ g ∧ Φ)n,n−1 = (g ∧ Φ)n,n − Φ0,0[z]

and so (2.5) follows from Stokes’ theorem. □

Assume that E → Ω is a holomorphic vector bundle, Φ takes values in
E, g takes values in Hom(Eζ , Ez), g is smooth in a neighborhood of z and
g0,0(z) = IEz

. Then the same proof gives (2.5) for these g and Φ.

Example 2.2. — Assume that Ω is the unit ball. If

s = 1
2πi

∂|ζ|2

|ζ|2 − z · ζ̄
,

then δζ−zs = 1 when ζ ̸= z. If

u = s

∇ζ−zs
= s ∧

(
1 + ∂̄s+ · · · + (∂̄s)n−1),
– 5 –
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then ∇ζ−zu = 1 when ζ ̸= z. If χ is a cutoff function in Ω that is 1 in a
neighborhood of the closure of a smaller ball Ω′, then

g = χ− ∂̄χ ∧ u

is a weight with respect to z for each z ∈ Ω′, depends holomorphically on z,
and has compact support in Ω.

2.3. Residues associated with generically exact Hermitian com-
plexes.

Assume that we have a complex

0 −→ EN
fN−→ EN−1

fN−1−→ · · · f3−→ E2
f2−→ E1

f1−→ E0 (2.6)

of Hermitian vector bundles over a complex manifold X. Let us also assume
that (2.6) is pointwise exact in X \Z, where Z is an analytic set of positive
codimension. Let E =

⊕
Ej and f =

⊕
fj , and let ∇f = f − ∂̄. In [8]

were defined currents U and R with components U ℓ
k and Rℓ

k with values in
Hom(Eℓ, Ek) and of bidegree (0, k − ℓ− 1) and (0, k − ℓ), respectively, such
that

∇f ◦ U + U ◦ ∇f = IE −R (2.7)
and R has support on Z. To be precise, one introduces a superstructure on
E ⊕ T ∗Ω so that U , f and ∇f are odd mappings whereas R is even; for
details see [8, Section 2]. However, for the purpose of this paper, the precise
signs are not essential.

It is proved that if ϕ is a holomorphic section of Eℓ such that fℓϕ = 0
and, in addition, Rℓϕ = 0, then locally there is a holomorphic solution to
fℓ+1ψ = ϕ.

Example 2.3. — Let A → X be a Hermitian vector bundle of rank m and
let a be a holomorphic section of its dual. If Ek = ∧kA we get the so-called
Koszul complex by letting fk be interior multiplication δa by a. If Z is the
set where a vanishes, then the complex is exact in Ω \ Z. If σ is the section
of E over X \ Z with pointwise minimal norm such that δaσ = 1, then

U ℓ
k = σ ∧ (∂̄σ)k−ℓ

there. Assume now that a = a0a
′, where a0 is a section of a line bundle

L∗ → X and a′ is a non-vanishing section of A∗ ⊗L. Then σ = σ′/a0, where
σ′ is smooth. Since σ′ ∧ σ′ = 0, thus

U ℓ
k = 1

ak−ℓ
0

σ′ ∧ (∂̄σ′)k−ℓ−1.
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It turns out that U ℓ
k have extensions across Z as principal value currents.

Since R0
k = δaU

0
k+1 − ∂̄U0

k one can check that

R0
k = ∂̄

1
ak

0
∧ σ′ ∧ (∂̄σ′)k−1.

For degree reasons this current must vanish when k > n and since rankA =
m it must vanish if k > m. Using that a0∂̄(1/ak+1

0 ) = ∂̄(1/ak
0) we conclude

that
R0 = ∂̄

1
aµ

0
∧ ω, (2.8)

where ω is a smooth form.

Example 2.4. — Let A → X and a be as in the previous example. If r ⩾ 2
we can construct a similar complex such that E0 = C, E1 = ⊗r

1A and f1 is
δa ⊗ · · · ⊗ δa. For a description of the whole complex, see, e.g., [3, Proof of
Theorem 1.3]. If now a = a0a

′, it follows by considerations as in the previous
example that there is a smooth form ω such that

R0 = ∂̄
1

aµ+r−1
0

∧ ω. (2.9)

2.4. Free resolutions

Assume that we have a sequence (1.1) in a neighborhood of a point 0 ∈
U ⊂ Cn. Let J be the ideal generated by the entries in f1, or equivalently,
the image of the mapping f1 in O. After possibly shrinking U we can extend
to an exact sequence of sheaves

0 −→ O⊕mN
fn−→ O⊕mn−1

fn−1−→ · · ·

· · · f2−→ O⊕m1 f1−→ O⊕m0 −→ O⊕m0/J −→ 0, (2.10)
that is, a free resolution of the O-module Om0/J in U . By Hilbert’s zyzygy
theorem we can assume that N ⩽ n. We have an induced complex of (trivial)
vector bundles (2.6), where rankEk = mk, which is pointwise exact outside
the zero set Z of f1 (if m0 ⩾ 2, then Z is the set where f1 does not have
optimal rank.) Let us equip these vector bundles with any Hermitian metrics,
for instance trivial metrics with respect to global frames, and let R and U be
the associated currents. A main result in [8] is that the exactness of (2.10)
implies that Rℓ = 0 for ℓ ⩾ 1. This in turn implies that if ϕ ∈ O(E0) (and
ϕ is pointwise generically in the image of f1), then f1ψ = ϕ has locally a
holomorphic solution if and only if Rϕ = 0.

Definition 2.5. — Given an exact sequence (1.1) we let M be the min-
imal order of such an associated current U .
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2.5. Hefer mappings

Let us recall the idea from [4] to construct division-interpolation formulas.
Given a generically exact complex like (2.6) in Ω ⊂ Cn and z ∈ Ω one can
locally find a tuple H = (Hℓ

k), where Hℓ
k is a smooth form-valued section of

Hom(Ek,ζ , Eℓ,z), such that Hℓ
k = 0 for k < ℓ, Hℓ

ℓ = IEℓ
when ζ = z, and in

general
∇ζ−zH

ℓ
k = Hℓ

k−1fk − fℓ+1(z)Hℓ+1
k . (2.11)

In fact, if Ω is pseudoconvex, then one can find such an H that depends
holomorphically on both ζ ∈ Ω and z ∈ Ω′ ⊂⊂ Ω. In that case Hℓ

k has
bidegree (k− ℓ, 0). It was proved in [4], see also the proof of Proposition 4.2
in [6], that if U and R are the currents above associated with the Hermitian
complex (2.6), then

f(z)HU +HUf +HR (2.12)
is ∇ζ−z-closed. Let us fix a non-negative integer ℓ and let g′ be the component
of (2.12) with values in Eℓ, that is,

g′ = fℓ+1(z)Hℓ+1U ℓ +HℓU ℓ−1fℓ +HℓRℓ

=
∑

k

fℓ+1(z)Hℓ+1
k U ℓ

k +
∑

k

Hℓ
kU

ℓ−1fℓ +
∑

k

Hℓ
kR

ℓ
k.

Then g′
0,0(z) = IEℓ,z

. If z /∈ Z, then g′(ζ) is smooth in a neighborhood of z,
and hence it is a weight. If g is a weight with compact support and Φ is as
in Proposition 2.1, but taking values in Eℓ, then, since g′ ∧ g is a weight as
well,

Φ0,0(z) =
∫

(g′ ∧ g ∧ Φ)n,n =
∫

(g′Φ ∧ g)n,n. (2.13)

Since (2.13) holds for z ∈ Ω′ \Z, and both sides are smooth in z, we conclude
that (2.13) holds for all z ∈ Ω′. We can write (2.13) as

Φ0,0(z) = fℓ+1(z)
∫

ζ

Hℓ+1U ℓΦ∧g+
∫

ζ

HℓU ℓ−1fℓΦ∧g+
∫

ζ

HℓRℓΦ∧g. (2.14)

If the sheaf complex (2.10) is exact and ℓ ⩾ 1, as mentioned above, then
Rℓ = 0, and hence

Φ0,0(z) = fℓ+1(z)
∫

ζ

Hℓ+1U ℓΦ ∧ g +
∫

ζ

HℓU ℓ−1fℓΦ ∧ g. (2.15)

In particular, if Φ = ϕ is a holomorphic section of Eℓ and fℓϕ = 0, then
the middle term is a holomorphic solution to fℓ+1ψ = ϕ.
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3. Proof of Theorem 1.1

As we have seen the flatness of the O-module E follows from Theo-
rem 1.1(i).

In [14] it is proved that E is a flat Cω-module, where Cω is the sheaf
of real-analytic functions in RN . This result is obtained by a sophisticated
study of local properties of real-analytic functions and goes via formal power
series. The same proof can be applied to O instead of Cω and then gives the
flatness of E as an O-module. One can also derive this statement quite easily
directly from the flatness of E as a Cω-module without reference to the proof
in [14]. The proof of the flatness in this paper is independent of [14] but relies
on the possibility to resolve singularities, i.e., Hironaka’s theorem, which we
need to define the currents we use.

3.1. Proof of Theorem 1.1(i)

Let Ω ⊂ Cn be a neighborhood of 0 where we have the exact com-
plex (1.1). In a possibly smaller neighborhood we can extend to an exact
complex (2.10) that we equip with some Hermitian metrics. Let (2.6) be
the associated generically exact Hermitian complex and let U and R be the
associated currents. Let us identify Ω with the set {(ζ, ζ̄) ∈ C2n; ζ ∈ Ω} and
let Ω̃ be an open neighborhood of Ω in C2n

ζ,ω.

Notice that (2.6) induces a generically exact complex in Ω̃ if we let
f̃ ℓ(ζ, η) := fℓ(ζ). The associated currents Ũ and R̃ are the tensor prod-
ucts U ⊗ 1 and R ⊗ 1. In particular, R̃ℓ = 0 for ℓ ⩾ 1, cf. Section 2.4. We
will use formula (2.15) in Ω̃.

If ϕ is a smooth section of Eℓ in Ω, then let us consider the formal sum

ϕ̃(ζ, ω) =
∑
α⩾0

(∂α
ζ̄
ϕ)(ζ) (ω − ζ̄)α

α! χ(λ|α|(ω − ζ̄)), (3.1)

where χ is a cutoff function in Cn which is 1 in a neighborhood of 0, and λk

are positive numbers. If λk → ∞ fast enough, then, possibly after shrinking
Ω, the series (3.1) converges to a smooth section of Eℓ in Ω̃ such that

ϕ̃(ζ, ζ̄) = ϕ(ζ), (3.2)
and

∂̄ϕ̃(ζ, ω) = O(|ω − ζ̄|∞). (3.3)
Such a ϕ̃(ζ, ω), satisfying (3.2) and (3.3), is called an almost holomorphic
extension of ϕ from Ω to Ω̃.
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If ϕ is real-analytic one can take λk = 1 for all k; then ϕ̃ is the holomorphic
extension of ϕ. The requirement on λk is related to which ultra-differentiable
class ϕ belongs to, that is, how fast its Fourier transform decays. If ϕ is in a
certain such class and h is holomorphic, then hϕ is in the same class.

Lemma 3.1. — Let ϕ be a smooth section of Eℓ in Ω, let vz denote the
Bochner–Martinelli form in Ω̃ with respect to the point (z, z̄), and let

Φz(ζ, ω) = ϕ̃(ζ, ω) − ∂̄ϕ̃ ∧ vz.

Then Φz is smooth in ζ, ω, z and ∇(ζ,ω)−(z,z̄)Φz = 0. Moreover, if fℓϕ = 0,
then fℓΦz = 0.

Proof. — Since

vz = b

∇(ζ,ω)−(z,z̄)b
,

where

b = 1
2πi

(
n∑
1

(ζj − zj) dζj +
n∑
1

(ωj − z̄j) dωj

)
,

cf. (2.3), we have that

Φz(ζ, ω) = ϕ̃(ζ, ω) +
2n∑

ℓ=1

O(|ω − ζ̄|∞)
(|ζ − z|2 + |ω − z̄|2)ℓ−1/2 ,

and thus Φz is smooth. Since ∇(ζ,ω)−(z,z̄)v
z = 1 outside the point (z, z̄) it

follows that ∇(ζ,ω)−(z,z̄)Φz = 0. If fℓϕ(ζ) = 0, then fℓ(∂α
ζ̄
ϕ)(ζ) = 0 for all α

and therefore fℓϕ̃(ζ, ω) = 0. Thus also fℓ(∂̄ϕ̃)(ζ, ω) = 0, and so the lemma
follows. □

Let Ω′ ⊂⊂ Ω be an open subset and for each z ∈ Ω′, let g be a smooth
weight with respect to (z, z̄) ∈ Ω̃′ with compact support in Ω̃, cf. Exam-
ple 2.2; of course we may assume that Ω̃ is a ball.

Assume that ϕ is a smooth section of Eℓ in Ω and choose λk such that (3.1)
defines an almost holomorphic extension. Then also fℓϕ admits such an
extension, in fact f̃ℓϕ = f̃ ℓϕ̃. We can then define the operator

Tℓ : E(Ω, Rℓ) −→ E(Ω′, Eℓ+1); Tℓϕ(z) =
∫

ζ,ω

H̃ŨΦz ∧ g, z ∈ Ω′.

It follows from Lemma 3.1 that Tℓϕ is smooth in Ω′. Moreover, if ℓ ⩾ 1 we
have from (2.15) that

ϕ = fℓ+1Tℓϕ+ Tℓ−1(fℓϕ) (3.4)

in Ω′. Now Theorem 1.1(i) follows if ℓ = 1.
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Remark 3.2. — If we instead use (2.14) for ℓ = 0 we can obtain a proof
of the following residue condition for membership in an ideal of germs of
smooth functions in Ea, where a ⊂ O.

Theorem 3.3. — Assume that a ⊂ O is an ideal. If R is the residue
current associated with the resolution (2.10) of O/J , then a germ of a smooth
function ϕ is in Ea if and only if

(∂α
z̄ ϕ)R = 0 (3.5)

for each multiindex α ⩾ 0.

This result was proved in [2] in case a is a complete intersection, and for
a general ideal, in fact for any submodule a ⊂ O⊕m, in [8].

3.2. Proof of Theorem 1.1(ii)

Let us first consider a simple example with lower regularity.

Example 3.4. — Consider the sequence (1.3) and assume that ϕ=(ϕ1, ϕ2)
is in C1 and that f1ϕ = 0. This means that

x1ϕ1 + x2ϕ2 = 0 (3.6)
and thus ϕ2 = 0 when x1 = 0. Since ϕ1 is C1 therefore ϕ2 = x1ψ, where ψ is
continuous. In the same way ϕ1 = −x2ψ̃. From (3.6) it follows that ψ̃ = ψ
and hence ψ is a continuous solution to f2ψ = ϕ.

We will use the same set-up and notation as in the proof above of part (i)
except for the extension ϕ̃ of ϕ. Let cn be a positive integer. If ϕ is in
Ccn+2M+k(Ω, Eℓ), then

ϕ̃(ζ, ω) :=
∑

|α|⩽cn+M+k

(∂α
ζ̄
ϕ)(ζ) (ω − ζ̄)α

α! (3.7)

is in CM (Ω̃, Eℓ), ϕ̃(ζ, ζ̄) = ϕ(ζ), and

∂̄ϕ̃(ζ, ω) = O
(
|ω − ζ̄|cn+M+k

)
. (3.8)

We have the following analogue to Lemma 3.1.

Lemma 3.5. — There is a constant cn, only depending on the dimension
n, such that if ϕ is in Ccn+2M+k(Ω, Eℓ) and

Φz = ϕ̃(ζ, ω) − ∂̄ϕ̃ ∧ vz,

then Φz is in CM (Ω̃, Eℓ) even after taking up to k derivatives with respect
to z, and ∇(ζ,ω)−(z,z̄)Φz = 0. Moreover, if fℓϕ = 0, then fℓΦz = 0.
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Proof. — Notice that

Φz(ζ, ω) = ϕ̃(ζ, ω) +
2n∑

ℓ=1

O(|ω − ζ̄|cn+M+k)
(|ζ − z|2 + |ω − z̄|2)ℓ−1/2 .

If cn is suitably chosen, then we can take k derivatives with respect to z and
still remain in CM (Ω̃, Eℓ). As before it follows that ∇(ζ,ω)−(z,z̄)Φz = 0. If
fℓϕ(ζ) = 0, then fℓ(∂α

ζ̄
ϕ)(ζ) = 0 for all α such that |α| ⩽ M + cn + k, and

therefore fℓϕ̃(ζ, ω) = 0. It follows that also fℓ(∂̄ϕ̃)(ζ, ω) = 0. □

We can now conclude the proof of Theorem 1.1(ii). Notice that Proposi-
tion 2.1 holds if g has order M (and is smooth at z) and Φ is at least in CM .
Our weight g leading to (2.14) contains the current R, that may have order
M + 1, and to avoid keeping track of relevant components, although it is
not necessary, it is convenient to replace cn by cn + 2. We can then proceed
precisely as in the smooth case and obtain integral operators

Tℓ : Ccn+2M+k(Ω, Eℓ) −→ Ck(Ω′, Eℓ−1)
such that (3.4) holds in Ω′ if ℓ ⩾ 1. Now part (ii) of Theorem 1.1 follows if
ℓ = 1.

4. Proof of Theorem 1.2

Assume that we have a generically exact Hermitian complex (2.6) in X
with associated currents U and R. If π : X ′ → X is a modification, then the
pullback of (2.6) is a generically exact Hermitian complex in X ′ and thus
we have associated currents U ′ and R′. It follows from the definition, cf. [8],
that π∗U

′ = U and π∗R
′ = R. In particular, if we have a Koszul complex on

X generated by the section a of A∗ as in Example 2.3, then the pull-back
is a Koszul complex in X ′ generated by the section π∗a of π∗A∗. It follows
from the example that if π∗a = a0a

′, where a′ is non-vanishing, then

R0 = π∗
( 1
aµ

0
∧ ω
)
,

where ω is a smooth form in X ′. In the same way if a ⊂ O is an ideal in
X and we take the Koszul-type complex in Example 2.4 associated with ar,
then there is a smooth form on X ′ such that the associated current has the
form

R0 = π∗
( 1
aµ+r−1

0
∧ ω
)
. (4.1)

Let us now assume that X = Ω is a neighborhood of 0 ∈ Cn and let
ϕ be a smooth function in Ω. If we proceed precisely as in the proof of
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Theorem 1.1(i) above but with the currents U and R from Example 2.4, we
get from (2.15) for ℓ = 0 the formula

ϕ = f1T1ϕ+ Sϕ, (4.2)
where

Sϕ(z) =
∫
H̃R̃0Φz ∧ g. (4.3)

In view of (3.1) we get from (4.2) and (4.3), cf. [2, Theorem 1.1]:

Lemma 4.1. — If
(∂α

z̄ ϕ)R0 = 0 (4.4)
for all α ⩾ 0, then R̃0Φz = 0 and ϕ is in Ear.

Proof of Theorem 1.2. — In view of Lemma 4.1 we have to prove that
(1.6) implies (4.4). Let as choose a modification π : Ω′ → Ω as above. For
simplicity we skip the upper index 0 and write (4.1) as R = π∗R

′, where

R′ = ∂̄
1

aµ+r−1
0

∧ ω, (4.5)

ω is a smooth form with values in Lµ+r−1, and L is the line bundle defined
by a0.

Let ξ = ∂α
z̄ ϕ for some α. We must prove that ξR = 0. Since ξ is smooth,

ξR = π∗(π∗ξ ·R′).
It is thus enough to verify that π∗ξ ·R′ = 0.

Since |a′| > 0, the assumption (1.6) implies that
|π∗ξ| ⩽ C|a0|µ+r−1 (4.6)

for some constant C.

In a neighborhood V of a regular point on the zero set of a0 we can assume
that we have local coordinates s1, . . . , sn such that st

1 = a0 for some positive
integer t, or more correctly, st

1 is the representative of a0 with respect to a
local frame for L. In any case, in view of (4.6), a Taylor expansion gives that
π∗ξ is a finite sum of terms st(µ+r−1)−j

1 s̄j
1ν, where ν is smooth. It is well-

known that each such term annihilates the residue current ∂̄(1/st(µ+r−1)
1 ).

In fact, already one single factor s̄1 is enough. The “worst” case is thus
s

t(µ+r−1)
1 ν, and this factor precisely annihilates ∂̄(1/st(µ+r−1)

1 ). It follows
that µ = π∗ξ∂̄(1/aµ+r−1

0 ) has support on a set with codimension ⩾ 2. Since
µ is pseudomeromorphic and has bidegree (0, 1) it must therefore vanish
identically in view of the dimension principle, see, e.g., [7].

Alternatively we can assume that the modification is chosen so that a0
locally is a monomial (normal crossings), say a0 = st1

1 . . . stk

k . Then (4.6)

– 13 –



Mats Andersson

and a Taylor expansion reveals that π∗ξ is a sum of terms with a factor
O(|s1|t1(µ+r−1) . . . |sk|tk(µ+r−1)), and each such term annihilates
∂̄(1/st1(µ+r−1)

1 . . . s
tk(µ+r−1)
k ). □
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