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Degeneration from difference to differential Okamoto
spaces for the sixth Painlevé equation (∗)

Thomas Dreyfus (1) and Viktoria Heu (2)

ABSTRACT. — In the current paper we study the q-analogue introduced by Jimbo
and Sakai of the well known Painlevé VI differential equation. We explain how it can
be deduced from a q-analogue of Schlesinger equations and show that for a convenient
change of variables and auxiliary parameters, it admits a q-analogue of Hamiltonian
formulation. This allows us to show that Sakai’s q-analogue of Okamoto space of
initial conditions for qPVI admits the differential Okamoto space via some natural
limit process.

RÉSUMÉ. — Dans cet article, nous étudions le q-analogue de la sixième équation
de Painlevé introduit par Jimbo et Sakai. Nous expliquons comment il peut être
retrouvé à partir d’un q-analogue de l’équation de Schlesinger et nous montrons
que, après un changement des paramètre, il admet une formulation en terme de q-
système Hamiltonien. Cela nous permet nous prouver que le q-analogue de l’espace
d’Okamoto des conditions initiales introduit par Sakai admet l’espace d’Okamoto
différentiel comme limite lorsque q tend vers 1.
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Introduction

In [12], Jimbo and Sakai have introduced a q-analogue of the Painlevé VI
equation, namely the following system of q-difference equations:

(qPJS,VI) :


y · σq,ty

a3a4
=

(
σq,tz − ta1a2

ϑ1

)(
σq,tz − ta1a2

ϑ2

)
(
σq,tz − 1

qκ1

)(
σq,tz − 1

κ2

)
z · σq,tz

1
qκ1κ2

= (y − ta1) (y − ta2)
(y − a3) (y − a4) ,

where κ1, κ2, ϑ1, ϑ2, a1, a2, a3, a4 ∈ C∗ are parameters subject to the relation
a1a2a3a4κ1κ2 = ϑ1ϑ2.

Here q is a complex parameter that is neither zero nor one, and σq,t is the
operator which to a function f(t) associates f(q · t). The q-derivative

∂q,t := σq,t − 1
(q − 1)t

formally converges, when q → 1, to the classical derivative ∂t (differentiation
with respect to t). It has been shown in [12] that the classical Painlevé VI
equation may be obtained by some limit process, when q goes to 1, from its q-
analogue. More precisely, by a series of changes of variables and parameters,
qPJS,VI formally yields a certain system of differential equations with eight
complex parameters, subject to one relation. As one can easily check, one can
then further normalize these parameters to a quadruple Θ = (θ0, θ1, θt, θ∞)
of complex parameters such that this system of differential equations is the
non-autonomous Hamiltonian system

(PVI) :
{
∂ty = ∂ZH

Θ
VI(y,Z, t)

∂tZ = −∂yH
Θ
VI(y,Z, t) ,

where HΘ
VI(y,Z, t) is given by

y(y − 1)(y − t)
t(t− 1)

(
Z2 + Z

y − t

)
− 1

4

(
(θ∞ − 1)2 − 1

t(t− 1) y + θ2
0

(t− 1)y + θ2
t

y − t
− θ2

1
t(y − 1)

)
.

When reformulated as a single second order differential equation in y, this
non-autonomous Hamiltonian system (PVI) yields the classical sixth Painlevé
differential equation with auxiliary parameters Θ. Given a generic initial
condition, i.e. y0 ∈ C \ {0, 1, t0}, and Z0 ∈ C, Cauchy’s theorem implies
the existence and uniqueness of a germ at t0 ̸= 0, 1 of associated holomor-
phic solutions of (PVI). As shown in [20], it is moreover possible to give a

– 970 –



Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation

meaning to solutions including non-generic initial conditions. More precisely,
Okamoto’s space of initial conditions at a fixed time t0 ∈ C \ {0, 1} is the
second Hirzebruch surface F2 blown up in eight points, whose position is
encoded by Θ and t0, minus a divisor formed by five irreducible compo-
nents of self-intersection number (−2) related to each other according to the
following intersection diagram:

•

•

•

••

Here each node represents an irreducible component, and nodes share
a common edge if and only if they intersect each other. For each point
in Okamoto’s space of initial conditions at t0, there exists a unique as-
sociated germ (at t0) of meromorphic solution of (PVI). A q-analogue of
Okamoto’s space for (qPJS,VI) for some fixed generic time t0 was found
in [23], see also [14] for a very comprehensible presentation. It is given by
F0 = P1 × P1, blown up in eight points, whose positions are encoded by
a1, a2, a3, a4, κ1, κ2, ϑ1, ϑ2 and t0, minus a divisor formed of four irreducible
components of self-intersection number (−2), arranged according to the fol-
lowing intersection diagram:

•

•

•

•

For each point in Sakai’s q-analogue of Okamoto’s space of initial conditions
at t0, there exists a unique discrete solution of (qPJS,VI), which, roughly
speaking, encodes the values at qZt0 that a meromorphic solution with pre-
scribed value at t0, if it exists, should interpolate. The questions adressed in
the present paper are the following.

(Q1) How can Okamoto’s space of initial values at t0 for (PVI) be obtained
via a natural limit process from its discrete analogue?

(Q2) How can meromorphic solutions of (PVI) be obtained via a natural
limit process from their discrete analogue?

Let us first answer question (Q1) informally. What we will obtain in Section 4
is that one of the four irreducible components of the boundary of the q-
Okamoto space at t0 does degenerate at the limit q → 1: for q = 1, it is
no longer irreducible, but is itself the union of three irreducible components
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of self-intersection (−2), one of which coincides with the limit of a non-
degenerating one, and the other two of which intersect only the latter. So in
terms of intersection diagrams, the informal answer to question (Q1) is the
following.

•

••

•

q→1−→

•

•

•

••

The key to this result (see Section 4.3 for a precise formulation) is to cove-
niently identify normalizations and changes of variables in (qPJS,VI) before
considering the limit process, such that the limit when q → 1 is (PVI). To
this end, we retrace, with some alterations, the method by which in [12],
the q-difference equation (qPJS,VI) has been obtained from a q-analogue of
isomonodromic deformations. Here the isomonodromy condition to be con-
sidered concerns certain families, parametrized by a time variable t, of q-
Fuchsian systems of rank 2, which for fixed q are of the form

σq,xY (x, t) = A(x, t)Y (x, t), with A(x, t) = A0(t)+xA1(t)
x− 1 +x At(t)

t(x− t) ,

where x is the standard coordinate on C ⊂ P1.As shown in [12], under certain
generic conditions, for given spectral parameters κ1, κ2, ϑ1, ϑ2, a1, a2, a3, a4 ∈
C∗ as above, such a family can be encoded by a triple of functions
(w(t),y(t), z(t)). We show in Section 1.3 that a convenient change of vari-
ables and parameters (including a normalization) that is both compatible
with the definition of the considered q-Fuchsian systems in [12] and that
yields tracefree differential Fuchsian systems at the limit when q → 1 is the
following setting:

λ = κ2w

q − 1 , Z =
(y−ta1)(y−ta2)
q(y−1)(y−t)z − 1

(q − 1)y , (0.1)

a1 = 1 + (q − 1)θt

2 , a2 = 1
a1
, a3 = 1 + (q − 1)θ1

2 ,

a4 = 1
a3
, ϑ1 = 1 + (q − 1)θ0

2 , ϑ2 = 1
ϑ1
,

κ1 = 1
κ2
, κ2 = 1 + (q − 1)θ∞

2 .

(0.2)

In Section 2.2, we both simplify and generalize the definition of q-isomon-
odromy in [12] into the requirement that there exists a certain matrix B(x, t),
depending rationally on x, such that the system of q-difference equations{

σq,xY (x, t) = A(x, t)Y (x, t)
σq,tY (x, t) = B(x, t)Y (x, t)
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satisfies the q-analogue of integrability, namely σq,tA · B = σq,xB · A . We
further introduce a sufficient condition for q-isomonodromy, which we call
q-Schlesinger isomonodromy. We show that under some generic conditions
such as the non-resonant condition ϑ1

ϑ2
̸∈ qZ

∗ and κ1
κ2

̸∈ qZ
∗ , this q-Schlesinger

isomonodromy of σq,xY = AY is equivalent to the following q-Schlesinger
equations

σq,tA0 = B0A0B
−1
0

σq,tA1 = t−1
qt−1

(qta1−1)(qta2−1)
q(ta1−1)(ta2−1) · (qI2 +B0)A1 (I2 +B0)−1

σq,tAt = −B0A0

(
1

a1a2
I2 + qtB−1

0

)
− t(t−1)

(ta1−1)(ta2−1) · (qI2+B0)A1

(
I2+ (qta1−1)(qta2−1)

qt−1 (I2+B0)−1
)
,

where

B0 := −qt
(
A0 + A1 + 1

t
At + t− 1

(ta1 − 1)(ta2 − 1)A1

)
×
(

1
a1a2

A0 + t(t− 1)
(ta1 − 1)(ta2 − 1)A1

)−1
.

Moreover, we show in Section 2.3 that when the spectral values are func-
tions of q given by (0.2), then these q-Schlesinger equations yield the usual
(differential) Schlesinger equation at the limit q → 1. When A is expressed
with respect to (w(t),y(t), z(t)) and the spectral parameters, then these q-
Schlesinger equations are (generically) equivalent to a system of q-difference
equations given by (qPJS,VI) and an additional equation for σq,tw. However,
our weaker definition of q-isomonodromy is actually (generically) equivalent
to (qPJS,VI). We conclude that the change of variables and parameters (0.1)
combined with (0.2) is a natural setting for the study of confluence of the
q-Painlevé VI equation. And indeed, for generic values of q, the change of
variable (0.1) defines a biregular transformation of Sakai’s q-Okamoto space
(see Section 4.2), such that the obtained modified q-Okamoto space yields,
for spectral values (0.2), the differential Okamoto space when q → 1 (see
Section 4.3).

Under convenient assumptions on q and the spectral data, some mero-
morphic solutions of (qPJS,VI) defined in a convenient sectorial neighborhood
of t = 0 have been constructed in [18, 19]. On the other hand, contrary to the
differential setting, the following question remains open: for a given generic
value of t0 and generic initial condition (y(t0), z(t0)), does there exist an
associated meromorphic solution of (qPJS,VI), defined on a connected subset
of C∗ stable under multiplication by q±1? Of course the answer is likely to
depend on particular choices of q and the spectral parameters. For example,
when q is a n-th root of unity, then a necessary condition for the existence
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of meromorphic solution is that the spectral parameters are chosen in a way
such that the n-th iterate of (qPJS,VI) is the identity. The question whether
meromorphic solutions of (qPJS,VI) over convenient set, parametrized by q,
admit a limit when q → 1 also seems difficult and remains open.

Much more abordable is the question of the existence of discrete so-
lutions, essentially solved in [23, Prop. 1]. A discrete solution with initial
value (y0, z0) ∈ C∗ × C∗ at t0 ∈ C∗ is a sequence (yℓ, zℓ, tℓ)ℓ∈Z of points
in P1 × P1 × C∗ such that for ℓ ̸= 0, we have tℓ = qℓt0 and (yℓ, zℓ) =
(fℓ(y0, z0, t0, q), gℓ(y0, z0, t0, q)), where fℓ, gℓ are the rational functions in
variables y, z, t, q such that the ℓ-th iterate of (qPJS,VI) is of the form{

σℓ
q,ty = fℓ(y, z, t, q)
σℓ

q,tz = gℓ(y, z, t, q) .

We refer to Section 3.2 for more details. It is shown in [23, Prop. 1]
that discrete solutions with initial value in C∗ ×C∗ at t0 are well defined, in
particular they exist and are unique, if t0 and the spectral values are generic.
Moreover, under this assumption, one can consider a space of initial values
bigger than C∗ ×C∗, namely the q-Okamoto space. We specify in Section 4.2
which are the special values for t0 and the spectral parameters that need to
be excluded here. Note that a discrete solution, as a sequence, does make
sense even if q is a root of unity.

Of course there is an analogous notion of discrete solution for the modified
q-Painlevé VI equation obtained by applying the change of variables and
parameters (0.1), (0.2) to (qPJS,VI). We prove in Section 3.3 that the therby
obtained system of q-difference equations may be interpreted as a q-analogue
of an Hamiltonian system. More precisely, it is given by

(qP̃VI) :
{
∂q,ty = ∂q,ZH

Θ
VI(y,Z, t) + (q − 1)RΘ

1 (y,Z, t, q)
∂q,tZ = −∂q,yH

Θ
VI(y,Z, t) + (q − 1)RΘ

2 (y,Z, t, q) ,

where HΘ
VI is the Hamiltonian from the (differential) (PVI) and for i ∈ {1, 2},

RΘ
i is some rational function such that RΘ

i |q=1 is well defined and does not
have poles outside the polar locus of HΘ

VI.

From this we deduce, also in Section 3.3, the answers to question (Q2). For
t0 ∈ C∗ and (y0,Z0) ∈ (C \ {0, 1, t0})×C, the sequence (yℓ(q),Zℓ(q), qℓt)ℓ∈N
of triples defining the corresponding discrete solution, but seen as rational
functions of q, is well defined, and encodes in some precise manner the Tay-
lor series coefficients of the unique solution of (PVI) with initial condition
(y0,Z0) at t0.

Each of the four sections following this introduction is decomposed into
three parts. Each time, in the first part we briefly recall some notions and
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known results in the differential case. In the second part, their q-analogues
are discussed, and in the third part, confluence is adressed. Concerning the
q-analogues, we usually recall some results from [12] and [23], complemented
by some precisions that we deemed helpful, and to which we add new results.
We finish by an appendix, see Section 5, explaining how our notion of q-
isomonodromy is related to the one in [12].

We would like to emphasize that some results in the sequel require
stronger assumptions on the complex variable q than q ̸= 0, 1. These as-
sumptions will of course be duly specified when needed. We choose not to
accumulate these requirements along the way towards the q-Painlevé VI
equation (which in and by itself is well-defined for q ̸= 0, 1), in order to get
the full picture of possible q-Okamoto spaces.

In this paper, we adopt the following (standard) notation.
GL2(R) the ring of invertible 2 × 2 matrices with coefficients

in a ring R.
SL2(R) the ring of invertible 2 × 2 matrices of determinant 1

with coefficients in R.
M2(R) the algebra of 2 × 2 matrices with coefficients in a ring R.
sl2(R) the ring of 2 × 2 matrices of trace 0 with coefficients

in a ring R.
I2 the identity matrix in M2(R)
A(i,j) the (i, j)-entry of a matrix A.
O(U) the ring of holomorphic functions on some complex

domain U ⊂ Cn.
M(U) the field of meromorphic functions on U .
k[x1, . . . , xn] the ring of polynomials in n variables, named x1, . . . , xn,

with coefficients in a field k.
k(x1, . . . , xn) the fraction field of k[x1, . . . , xn].

1. Fuchsian systems

1.1. Differential case

Let Θ = (θ0, θ1, θt, θ∞) ∈ C4 with θ∞ ̸= 0. We say that Θ satisfies the
non-resonant condition if

∀ i ∈ {0, 1, t,∞} , θi ̸∈ Z∗ . (1.1)

We consider a linear partial differential equation of the form

∂xY (x, t) = A(x, t)Y (x, t) , with A(x, t) = A0(t)
x

+A1(t)
x− 1 +At(t)

x− t
. (1.2)
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Here x is the standard coordinate on C, seen as a subset of P1 = C ∪ {∞},
and t is the standard coordinate on an open connected subset U ⊂ C\{0, 1}.

Definition 1.1. — We shall say that (1.2) is a family of sl2-Fuchsian
systems with spectral data Θ if the following hold:

• for each i ∈ {0, 1, t}, Ai ∈ sl2(O(U)),
• for all i ∈ {0, 1, t} and all t ∈ U , we have

Spec(Ai(t)) =
{

1
2θi,−

1
2θi

}
,

• the residue A∞ := −A0 − A1 − At at infinity is constant and nor-
malized as follows:

A∞ ≡
(

θ∞
2 0
0 − θ∞

2

)
.

With this normalization, the (1, 2) entry of x(x− 1)(x− t)A, seen as an
element of O(U)[x], is a polynomial of degree at most one. Let us assume that
it has degree one and define a non-zero holomorphic function λ(t) ∈ O(U)
and a meromorphic function y(t) ∈ M(U) by

A(1,2)(x, t) = λ(t)(x− y(t))
x(x− 1)(x− t) . (1.3)

Assuming moreover that y(t) ̸≡ 0, 1, t, we may define a meromorphic function
Z(t) ∈ M(U) by

A(1,1)(y(t), t) = Z(t) . (1.4)

The next Lemma shows that the matrix A is determined by the triple
(λ, y, Z). In what follows, id denotes the function t 7→ t.

Lemma 1.2. — If a family of sl2-Fuchsian systems (1.2) with spectral
data Θ, with θ∞ ̸= 0, gives rise to

(λ, y, Z) ∈ (O(U) \ {0}) × (M(U) \ {0, 1, id}) × M(U) (1.5)
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as above, then the coefficients of the matrix A necessarily are the following
functions of λ, y, Z, x, t and Θ:

A(1,1) = (y − x)
4θ∞x(x− 1)(x− t)

[
y(y − 1)(y − t)

(
2Z + θ∞

y − x

)2
− a

]

− θ∞

4

(
1
x

+ 1
x− 1 + 1

x− t
+ 1
y − x

)
.

A(1,2) = λ(x− y)
x(x− 1)(x− t)

A(2,2) = −A(1,1)

A(2,1) = 1
λ

(
c0

x
+ c1

x− 1 − c0 + c1

x− t

)
c0 = y

tθ2
∞

(
(y − 1)(y − t)(yZ + θ∞)Z + (y − 1 − t)θ2

∞ − a

4

)2

− tθ2
0

4y

c1 = y − 1
(1 − t)θ2

∞

(
y(y − t)((y − 1)Z + θ∞)Z + (y + 1 − t)θ2

∞ − a

4

)2

− (1 − t)θ2
1

4(y − 1) .

Here we denote

a := tθ2
0
y

− (t− 1)θ2
1

y − 1 + t(t− 1)θ2
t

y − t
.

Proof. — This lemma can be deduced from the formulas in [11, p. 443-
444] by considering the tensor product of ∂xY = AY with

∂xζ =
(
θ0

2x + θ1

2(x− 1) + θt

2(x− t)

)
ζ. □

Remark 1.3. — If we have an arbitrary meromorphic triple (λ, y, Z) as
in (1.5), then via the formulas in Lemma 1.2 we can associate a family of
Fuchsian systems. Note however that the coefficients of the matrix func-
tions A0, A1 and At are meromorphic functions of t. If one wants to obtain
holomorphic coefficients, one might have to restrict to the complement of a
discrete subset in U . Indeed, for example the product λy needs to be holo-
morphic.

Remark 1.4. — As explained in [17, §4], the condition θ∞ ̸= 0 can actu-
ally be overcome if one works in a (conjugated) setting where A∞ is assumed
nonzero and normalized to

(
θ∞/2 0

⋆ −θ∞/2

)
, whereas λ is normalized to 1.
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1.2. A discrete analogue

Let q ∈ C \ {0, 1}. Let Θ := (Θ0,Θ1,Θt,Θ∞) ∈ (C∗)4 and let Θ :=
(Θ0,Θ1,Θt,Θ∞) ∈ (C∗)4 with Θ∞ ̸= Θ∞ be two quadrupels subject to the
following relation:

Θ0Θ0 = Θ∞Θ∞ΘtΘtΘ1Θ1 . (1.6)

Remark 1.5. — In order to motivate our choice of notation, let us indicate
that with respect to confluence, will be led to consider Θi satisfying some
relation with the θi from the differential context, and Θi satisfying Θi = 1/Θi

(see Section 1.3).

We say that (Θ,Θ) satisfies the non-resonant condition if

∀ i ∈ {0, 1, t,∞} , Θi

Θi

̸∈ qZ
∗
. (1.7)

If ζ is a standard coordinate in a complex domain that is stable under mul-
tiplication by q and 1

q , then we define the following operators on functions
of ζ:

σq,ζ : f(ζ) 7−→ f(qζ) , ∂q,ζ : f(ζ) 7−→ f(qζ) − f(ζ)
(q − 1)ζ .

We consider families of linear q-difference systems of the form

σq,xY (x, t) = A(x, t)Y (x, t),

with A(x, t) = A0(t) + x
A1(t)
x− 1 + x

At(t)
t(x− t) , (1.8)

or, equivalently, by setting Ã0 = A0−I2
q−1 , Ã1 = A1

q−1 , Ãt = At

t(q−1) ,

∂q,xY (x, t) = Ã(x, t)Y (x, t), with Ã(x, t) = Ã0(t)
x

+ Ã1(t)
x− 1 + Ãt(t)

x− t
.

Here x is again the standard coordinate on C, and t is the standard coordi-
nate on an open connected subset D of C∗.

Definition 1.6. — We shall say that (1.8) is a family of q-Fuchsian
systems with spectral data (Θ ,Θ) if the following hold:

• for each i ∈ {0, 1, t}, Ai ∈ M2(O(D)),
• for all t ∈ D, we have

Spec(A0(t)) =
{

Θ0,Θ0
}
,

• we have det(A) = Θ∞Θ∞p(x,t)
(x−1)2(x−t)2 , where

p(x, t) := (x− tΘt)(x− tΘt)(x− Θ1)(x− Θ1) , (1.9)
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• the matrix A∞ := A0 + A1 + 1
tAt is constant and normalized as

follows:

A∞ =
(

Θ∞ 0
0 Θ∞

)
. (1.10)

Remark 1.7. — The entries of the matrix (x − 1)(x − t)A(x, t) ∈
M2(O(D)[x]) have degree two. Hence the determinant of this matrix is a
degree four polynomial. The coefficient of x4 is det(A∞) = Θ∞Θ∞, which
is coherent with det((x − 1)(x − t)A(x, t)) = Θ∞Θ∞p(x, t). On the other
hand, the constant coefficient is tdet(A0(t)) = t2Θ0Θ0. Note that (1.6) is
then equivalent to Θ∞Θ∞p(0, t) = t2Θ0Θ0. The assumption that two zeros
of p are proportional to t, and the two others are independent of t will be
needed for instance in the proof of Proposition 2.9.

With the normalization (1.10), the (1, 2) entry of (x − 1)(x − t)A is a
polynomial of degree at most one in x. Let us assume that is has degree one
and define a non-zero holomorphic function λ(t) ∈ O(D) and a meromorphic
function y(t) ∈ M(D) by

A(1,2)(x, t) = (q − 1)λ(t)(x− y(t))
(x− 1)(x− t) , (1.11)

so that A(1,2)(y(t), t) = 0. Assuming moreover that y(t) ̸≡ 0, 1, t, we may
define a meromorphic function Z(t) ∈ M(D) by

A(1,1)(y(t), t) = 1 + (q − 1)y(t)Z(t). (1.12)

Remark 1.8. — We chose here to slighlty modify the notation from [12]
because we are mainly interested at the limit when q → 1. Towards this goal,
it is worth mentioning that our variables satisfy Ã(1,2)(x, t) = λ(t)(x−y(t))

(x−1)(x−t) ,
and Ã(1,1)(y(t), t) = Z(t). More details are given in Section 1.3.

Analogously to the differential case of families of sl2-Fuchsian systems,
we have the following lemma, which is a slight adaptation of the formulas
in [12, p. 4].

Lemma 1.9. — If a family of q-Fuchsian systems (1.8) with spectral data
(Θ ,Θ), with Θ∞ ̸= Θ∞, gives rise to

(λ,y,Z) ∈ (O(D) \ {0}) × (M(D) \ {0, 1, id}) × M(D)

as above, and if 1+(q−1)y(t)Z(t) does not vanish identically, then the coef-
ficients of the matrix A are necessarily the following functions of λ,y,Z, x, t
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and (Θ ,Θ):

A(x) = 1
(x− 1)(x− t)

Θ∞ ((x− y)(x− α) + z1) (q − 1)λ(x− y)

Θ∞Θ∞
(γx+ δ)
(q − 1)λΘ∞((x− y)(x− β) + z2)


(1.13)

with

z1 = (y − 1)(y − t)(1 + (q − 1)yZ)
Θ∞

z2 = p(y)
z1

β = −(α− 1) − (y − t) + p(0) − p(y)
ty

+ p(t) − p(y)
t(t− 1)(y − t) − p(1) − p(y)

(t− 1)(y − 1)

γ = z1 + z2 + αβ + (α− 1 + β)(y − 1) − p(0) − p(y)
y

+ p(1) − p(y)
y − 1

δ = p(0) − (αy + z1)(βy + z2)
y

,

(1.14)
and

α = − t(Θ0 + Θ0) − (Θ∞z1 + Θ∞z2)
(Θ∞ − Θ∞)y

+ Θ∞

Θ∞−Θ∞

(
1+ t− y + p(0)−p(y)

ty
+ p(t) − p(y)
t(t−1)(y−t) − p(1) − p(y)

(t−1)(y−1)

)
.

(1.15)
Recall that p is defined in (1.9). Here we dropped the dependence on t in order
to simplify the formulas, i.e. we write p(x) instead of p(x, t) and similarly
y = y(t),Z = Z(t),λ = λ(t),A(x) = A(x, t).

Proof. — The general form of A in (1.13), together with the equation for
z1 in (1.14), is precisely what is needed in order for A∞ to be of the required
normalized form, and for λ,y,Z to satisfy the equalities (1.11) and (1.12).
Via evaluation at x = 0, 1, t,y, the equation

det ((x− 1)(x− t)A(x)) = Θ∞Θ∞p(x)

with arbitrary α is equivalent to the remaining equations in (1.14). More
precisely, the successive evaluations at y, 0, 1, t give the lines 2, 5, 4, and 3
of (1.14). In particular, using (1.6), we have

detA0 = Θ∞Θ∞ΘtΘtΘ1Θ1 = Θ0Θ0 .

Equation (1.15) then is equivalent to trace(A0) = Θ0 + Θ0. □
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1.3. Confluence

The heuristic equality
lim
q→1

∂q,x = ∂x

motivates the following definition.

Definition 1.10. — Let f ∈ C(g, x, q) such that {q = 1} is not an irre-
ducible component of the polar divisor of f , i.e. f(g, x, 1) is a well defined ra-
tional function. Then we say that the q-difference equation ∂q,xg = f(g, x, q)
discretises the differential equation ∂xg = f(g, x, 1).

This definition generalizes in the obvious way to the case of systems of
rational q-difference equations in several variables. It can also be general-
ized, in a more subtle way, to the case when the base field is not C, but
for example the field of meromorphic functions on some domain. The term
confluence is used when the inverse phenomenon occurs: when objects as-
sociated to a discretized differential equation (most importantly, solutions),
yield the corresponding object of the differential equation by some limit pro-
cess as q → 1. Confluence is widely studied, see for instance [3, 5, 6, 24, 25].
Before confluence can even be adressed, one of course needs to identify the
appropriate discretization. The aim of the current section is to do so for fam-
ilies of sl2-Fuchsian systems ∂xY = A(x, t)Y as in Definition 1.1. Note that
the naive approach of setting A(x, t, q) = I2 + (q− 1)xA(x, t) does in general
not yield a q-Fuchsian system as in Definition 1.6. Instead, we will consider
A(x, t, q) given by a triple of meromorphic functions as in Lemma 1.9, but
with an additional parameter q, and study when Ã = A−I2

(q−1)x admits a limit
as q → 1. Here, in a first step, we ignore the difficulty of the coefficients
of Ã being meromorphic functions with respect to t, by simply considering
λ,y,Z as additional variables.

Proposition 1.11. — Let Θ = (θ0, θ1, θt, θ∞) ∈ C4 with θ∞ ̸= 0. Let
Θ(q) = (Θ0,Θ1,Θt,Θ∞)(q) and Θ(q) = (Θ0,Θ1,Θt,Θ∞)(q) be two quadru-
pels of elements of C(q), i.e. rational functions in a complex variable q, such
that Θ∞ ̸= Θ∞ and such that (1.6) holds. Let

A ∈ M2(C(x,λ,y,Z, t, q))

be the 2×2-matrix with coefficients in C(x,λ,y,Z, t, q) (i.e. the set of ratio-
nal functions in six complex variables named x,λ,y,Z, t, q) defined by the
formulas in Lemma 1.9. Let A ∈ sl2(C(x, λ, y, Z, t)) be defined by formulas
in Lemma 1.2. Denote Ã = A−I2

(q−1)x . The following are equivalent.
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(1) The divisor {q = 1} in C6
x,λ,y,Z,t,q is not an irreducible component of

the polar divisor of Ã and the therefore well-defined rational matrix
function Ã|q=1 equals A(x,λ,y,Z, t). In other words,

lim
q→1

Ã(x,λ,y,Z, t, q) = A(x,λ,y,Z, t) .

(2) Up to permuting the roles of Θi and Θi for i ∈ {0, 1, t}, the following
holds as q → 1:

Θi(q) = 1 + (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞}

Θi(q) = 1 − (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞} .
(1.16)

Proof. — From the particular form of A it follows that A can be de-
composed as A0 + x

x−1A1 + xAt

t(x−t) where A0,A1,At do not depend on x. It
follows that Ã can be decomposed as Ã0

x + Ã1
x−1 + Ãt

x−t where Ã0, Ã1, Ãt do
not depend on x. Similarly, we may denote by A0, A1, At the residues of A
with respect to x = 0, 1, t. We denote Ã∞ := − limx→∞ xÃ = I2−A∞

q−1 and
A∞ = −A0 −A1 −At. Then (1) holds if and only if, for each i ∈ {0, 1, t,∞},
we have

lim
q→1

Ãi(x,λ,y,Z, t, q) = Ai(x,λ,y,Z, t).

Assume (1) holds. We have

Ã∞ =
(

1−Θ∞
q−1 0
0 1−Θ∞

q−1

)
.

Since A∞ is of normal form, we deduce the estimates for Θ∞ and Θ∞. Since
Spec(A0) = {Θ0,Θ0}, we have

Spec
(
Ã0

)
=
{

Θ0 − 1
q − 1 ,

Θ0 − 1
q − 1

}
.

Since Spec(A0) = {θ0/2,−θ0/2}, we deduce the estimates for Θ0 and Θ0
as in the statement (up to interchanging their roles). Recall that det(A) =
Θ∞Θ∞(x−tΘt)(x−tΘt)(x−Θ1)(x−Θ1)

(x−1)2(x−t)2 . We therefore have

det
(
Ã1

)
= Θ∞Θ∞(1 − tΘt)(1 − tΘt)(1 − Θ1)(1 − Θ1)

(q − 1)2(1 − t)2 ,

det
(
Ãt

)
= Θ∞Θ∞t

2(1 − Θt)(1 − Θt)(t− Θ1)(t− Θ1)
(q − 1)2(t− 1)2 .

Since det(Ai) = −θ2
i /4 for i ∈ {1, t}, we deduce the estimates for Θi and Θi

as in the statement (up to interchanging their roles). Hence (1) ⇒ (2).

– 982 –



Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation

Conversely, the above calculations show that if (2) holds and the limit
limq→1 Ã is a well defined element of M2(C(x,λ,y,Z, t)), then this limit is of
the required form. Moreover, it is straightforward to check (with some more
effort), that if (2) holds, then the limit is well defined. Here one needs to
use the Taylor series expansion of the Θi’s and Θi’s up to order O((q− 1)3)
and use the relation on the thereby appearing second order terms imposed
by the equality Θ0Θ0 = Θ∞Θ∞ΘtΘtΘ1Θ1. Hence (2) ⇒ (1). □

Note that we have arranged the general definition of (λ,y,Z) associated
to a matrix A(x, t) as in Definition 1.6, such that for the matrix Ã = A−I2

(q−1)x ,
equations (1.11) and (1.12) may be written as

Ã(1,2)(x, t) = λ(t)(x− y(t))
(x− 1)(x− t) , Ã(1,1)(y(t), t) = Z(t) .

This definition is analogous to the general definition in equations (1.3) and
(1.4) of (λ, y, Z) associated to a matrix A(x, t) as in Definition 1.1. Indeed,
recall that these equations were given by

A(1,2)(x, t) = λ(t)(x− y(t))
(x− 1)(x− t) , A(1,1)(y(t), t) = Z(t) .

Therefore, we expect ∂q,xY = A(x, t, q)Y as in Definition 1.6, but with
an additional parameter q, to be an appropriate discretization of family of
sl2-Fuchsian systems ∂xY = A(x, t)Y as in Definition 1.1, where moreover
(λ, y, Z) are well defined, if the spectral data (Θ,Θ)(q) satisfy (1.16) and if,
in some convenient sense, we have

lim
q→1

(λ,y,Z)(t, q) = (λ, y, Z)(t) . (1.17)

Let us now explain what we shall mean by this convenient sense. Let
Q ⊂ C \ {0, 1} be a connected, not necessarily open, subset, with 1 in its
closure. Consider a connected open subset D ⊂ C∗ and let f(t, q) be a
function such that for each fixed q ∈ Q sufficiently close to 1, we have a
well-defined meromorphic function t 7→ f(t, q) in M(D).

Definition 1.12. — We say that f ∈ M(D) is the limit of f as q → 1
if for generic values (i.e. outside a proper closed analytic subset) of t ∈ D,
we have

lim
q→1
q∈Q

f(t, q) = f(t) .

Analogously, if we have a reduced rational function

ϕ (x, (f ℓ)0⩽ℓ⩽m+n+1) =
∑n

k=0 fkx
k∑m

k=0 fk+n+1x
k
,
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where each coefficient f ℓ(t, q) is as above and limq→1 f ℓ(t, q) = fℓ(t) ∈

M(D), then we say that ϕ(x, t) =
∑n

k=0
fkxk∑m

k=0
fk+n+1xk

is the limit of (x, t, q) 7→

ϕ (x, (f ℓ(t, q))0⩽ℓ⩽m+n+1) as q → 1.

Proposition 1.13. — Let D and Q be as above. Let Θ = (θ0,θ1,θt,θ∞)∈
C4 with θ∞ ̸= 0. Let Θ(q) and Θ(q) be two quadrupels of elements of C(q)
such that Θ∞ ̸= Θ∞ and such that equations (1.6) and (1.16) hold. Let
(λ(t, q),y(t, q),Z(t, q)) be a triple of meromorphic functions in neighbor-
hood of D × Q ⊂ C2 such that λy(y − 1)(y − t)(1 + (q − 1)yZ) does not
vanish identically on D×Q and let (λ(t), y(t), Z(t)) be a triple of meromor-
phic functions on D such that λy(y − 1)(y − t) does not vanish identically.
Then for Ã = A−I2

(q−1)x and A as in Lemmas 1.9 and 1.2 respectively, we have

lim
q→1

Ã(x, t, q) = A(x, t) (1.18)

(in the sense of Definition 1.12) if and only if (1.17) holds.

Proof. — Let us first prove the “if” part of the statement. One the one
hand, if (1.17) holds, then

lim
q→1

[(x, t, q) 7→ A(x,λ(t, q),y(t, q),Z(t, q))]

= [(x, t) 7→ A(x, λ(t), y(t), Z(t))] . (1.19)

On the other hand, let us consider the rational function

L := Ã(x,λ,y,Z, t) −A(x,λ,y,Z, t)
q − 1 ∈ C(x,λ,y,Z, t, q) .

By definition of A, A and by Proposition 1.11, the affine part of the polar
divisor of L is contained in

{x ∈ {0, 1, t}} ∪ {λ = 0} ∪ {y ∈ {0, 1, t}} ∪ {1 + (q − 1)yZ = 0}
∪ {t ∈ {0, 1}} ∪ {Θ∞(q) = Θ∞(q)}

and does not contain {q = 1}. Hence if (1.17) holds, then

lim
q→1

[(x, t, q) 7→ (q − 1)L(x,λ(t, q),y(t, q),Z(t, q), t, q)] = 0 . (1.20)

The addition of the limits (1.19) and (1.20) yields (1.18).

Let us now prove the “only if” part of the statement. If (1.18) holds, then
the limit of the (1, 2) coefficient of Ã(x, t, q) yields the (1, 2) coefficient of A
as q → 1. From the explicit formulas, we deduce

lim
q→1

[
(x, t, q) 7→ λ(t, q)(x− y(t, q))

(x− 1)(x− t)

]
=
[
(x, t) 7→ λ(t)(x− y(t))

(x− 1)(x− t)

]
,
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and thus limq→1 (y(t, q),λ(t, q)) = (y(t), λ(t)). By assumption, we have

lim
q→1

(
Ã(x, t, q) −A(x, t)

)
= 0 .

Since limq→1 y(t, q) = y(t), we deduce

0 = lim
q→1

((
Ã(1,1)(x, t, q) −A(1,1)(x, t)

)
|x=y

)
= lim

q→1

(
Z(t, q) −A(1,1)(x, t)|x=y

)
. (1.21)

On the other hand, again from limq→1 y(t, q) = y(t), we get

0 = lim
q→1

(
A(1,1)(x, t)|x=y −A(1,1)(x, t)|x=y

)
= lim

q→1

(
A(1,1)(x, t)|x=y − Z(t)

)
. (1.22)

The addition of the limits (1.21) and (1.22) yields limq→1 Z(t, q) = Z(t). □

According to the above proposition, under some generic hypotheses, for
a convenient choice of spectral value functions (Θ,Θ)(q), equation (1.16)
provides a convenient setting for the discretization of families of sl2-Fuchsian
systems as in Definition 1.1. Here the convenient conditions the spectral value
functions must satisfy are the following (up to permutation of the roles of
Θi and Θi for i ∈ {0, 1, t}):

Θi(q) = 1 + (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞}

Θi(q) = 1 − (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞}

Θ0Θ0 = Θ∞Θ∞ΘtΘtΘ1Θ1

Θ∞(q) ̸= Θ∞(q).
A simple way to achieve these conditions is to choose the following setting:

Θi(q) = 1 + (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞}

Θi = 1
Θi

∀ i ∈ {0, 1, t,∞}

Θ∞(q) ̸= 1.

This convention ΘiΘi = 1 can be seen as a q-analogue of the tracefreeness of
the differential Fuchsian systems we consider. Note that if Θi(q) is analytic
in a neighborhood of 1 and Θi(q) = 1 + (q − 1) θi

2 + O((q − 1)2), then the
condition Θi = 1

Θi
implies that

Θi(q) + Θi(q) = 2 + (q − 1)2 θ
2
i

4 +O((q − 1)3) ,
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independently of the particular value of the second order term in the Taylor
series expansion of Θi.

2. Schlesinger equations

2.1. Differential case

Let A0, A1, At ∈ sl2(C) and t ∈ C \ {0, 1}. Consider the Fuchsian system

∂xY (x) = A(x)Y (x) with A(x) = A0

x
+ A1

x− 1 + At

x− t

over P1. An important invariant of such a system is its monodromy, defined
as follows.

In a neighborhood V of a point x0 ∈ C \ {0, 1, t}, this system admits
a fundamental solution Y, i.e. a holomorphic function Y : V → SL2(C)
satisfying Y ′ = AY, yielding a group homomorphism

ρ :
{
π1(P1 \ {0, 1, t,∞}, x0) −→ SL2(C)

γ 7−→ (Yγ)−1 · Y ,

where Yγ denotes the analytic continuation of Y along γ. If V is connected,
any other fundamental solution on V is of the form Y · M for some matrix
M ∈ SL2(C). Hence the conjugacy class

[ρ] := {M−1ρM |M ∈ SL2(C)} ⊂ Hom(π1(P1 \ {0, 1, t,∞}, x0),SL2(C))
does not depend on the choice of the fundamental solution Y near x0 and is
referred as the monodromy of the Fuchsian system. Note that the monodromy
does not depend on the choice of the base point x0 in the following sense. If
x1 ∈ C\{0, 1, t}, we may choose a path γ1 from x0 to x1 in C\{0, 1, t}, yield-
ing an isomorphism τγ1 : π1(P1 \ {0, 1, t,∞}, x1) ∼→ π1(P1 \ {0, 1, t,∞}, x0).
The representation ρ1 := ρ ◦ τγ1 then is the monodromy representation with
respect to the fundamental solution Yγ1 , and the conjugacy class [ρ1] does
not depend on the choice of the path γ1. We stress the fact that the most com-
mon definition of the monodromy is the inverse of this one, that is Y−1 · Yγ

but lead to an anti-representation, rather than a representation. One the
other hand, both definitions exist in the literature and this choice has no
influence in what follows.

Remark 2.1. — In general, it is not possible to compute explicity the
monodromy of the Fuchsian system associated to three matrices A0, A1, At

as above. However, if γ0, γ1, γt, γ∞ denote the standard generators of π1(P1 \
{0, 1, t,∞}, x0) (each γi turning clockwise around i), and if the matrices
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Ai are non-resonant, then the matrix ρ(γi) is conjugated to the matrix
exp(2

√
−1πAi).

Let now
∂xY (x, t) = A(x, t)Y (x, t) (2.1)

be a family, parametrized by t ∈ U , of sl2-Fuchsian systems over P1 with
spectral data Θ as in Definition 1.1. Here U ⊂ C\{0, 1} is a connected open
subset and θ∞ ̸= 0. Let t0 ∈ U and let ∆ ⊂ U be a small disc centered at
t0 such that 0, 1 /∈ ∆. Let x0 ∈ P1 \ ({0, 1,∞} ∪ ∆). Then for any t ∈ ∆ we
have a canonical isomorphism

π1(P1 \ {0, 1, t,∞}, x0) ≃ π1
(
P1 \ ({0, 1,∞} ∪ ∆), x0

)
.

By the Cauchy–Kowalewskaja theorem on linear differential equations with
parameters [10, Thm. 9.4.5, p. 348], see also [15, p. 14], if ∆ is sufficiently
small, there exists a neighborhood V of x0 ∈ P1 \ ({0, 1,∞} ∪ ∆) such that
there is a local holomorphic fundamental solution Y : V × ∆ → SL2(C)
satisfying ∂xY = AY. For any t1 ∈ ∆, this fundamental solution provides a
group homomorphism

ρt1 :
{
π1(P1 \ ({0, 1,∞} ∪ ∆), x0) −→ SL2(C)

γ 7−→ (Yγ)−1(x0, t1) · Y(x0, t1) .
This yields a holomorphic family (ρt)t∈∆ of representations, and one may
consider the induced family ([ρt])t∈∆ of conjugacy classes of representations
of π1(P1 \ ({0, 1,∞} ∪ ∆), x0).

Definition 2.2. — We say that (2.1) is isomonodromic if one of the
two following equivalent properties hold.

(1) Any point t0 ∈ U admits a neighborhood ∆ such that the associated
family ([ρt])t∈∆ of monodromies is constant, i.e.

[ρt] = [ρt′ ] ∀ t, t′ ∈ ∆ .

(2) The system (2.1) can locally be completed into a Lax pair, i.e.
any point t0 ∈ U admits a neighborhood ∆ where there exists B ∈
sl2(O(∆)(x)) such that the following holds:

• the polar locus of B is contained in
D := {x = 0} ∪ {x = 1} ∪ {x = t} ∪ {x = ∞} ⊂ P1 × ∆ ,

• and the system of differential equations{
∂xY (x, t) = A(x, t)Y (x, t)
∂tY (x, t) = B(x, t)Y (x, t)

over P1 × ∆ satisfies the Lax equation
∂tA− ∂xB = [B,A] .
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That these properties are indeed equivalent can deduced from [2, Thm. 2].
Moreover, considering the special case of non-resonant spectral data in [2,
Thm. 3], we have the following lemma.

Lemma 2.3. — Assume that the spectral data Θ satisfy the non-resonant
condition (1.1). Under that condition, if the system (2.1) can be completed
into a Lax pair over P1 ×∆ via a certain matrix function B, then this matrix
is of the form

B(x, t) = −At(t)
x− t

+ C(t) ,

where C ∈ sl2(O(∆)) is a tracefree diagonal matrix function.

A key ingredient in the proof of the above classical results are the well-
known Schlesinger equations. They yield particular types of isomonodromic
deformations.

Definition 2.4. — We say that (2.1) is Schlesinger isomonodromic if
one of the two following equivalent properties hold.

(1) The system (2.1) can be completed into a Lax pair via the matrix

B(x, t) = −At(t)
x− t

.

(2) The residues Ai(t) of (2.1) satisfy the Schlesinger equations

A′
0(t) = −[A0(t), At(t)]

t

A′
1(t) = [A1(t), At(t)]

1 − t

A′
t(t) = [A0(t), At(t)]

t
− [A1(t), At(t)]

1 − t
.

(2.2)

In order to see that these properties are equivalent, it suffices to compare
the residues at x = 0, 1, t of the Lax equation in the case B = − At(t)

x−t . Of
course Schlesinger isomonodromic families are isomonodromic. As is imme-
diate to check, the converse holds locally up to conjugation:

Lemma 2.5. — Assume that (2.1) is isomonodromic and non-resonant.
Let us consider C(t) = diag(c(t),−c(t)) ∈ sl2(O(∆)) be the tracefree diago-
nal matrix appearing in Lemma 2.3. Let t0 ∈ U and assume that ∆ is a
sufficiently small neighborhood of t0, such that there exists a non-vanishing
holomorphic function µ ∈ O(∆) such that µ′(t) = c(t)µ(t). Then, the gauge
transformation Y = MỸ with M(t) = diag

(
µ(t), 1

µ(t)

)
yields a family

∂xỸ = ÃỸ

of sl2-Fuchsian systems which is Schlesinger isomonodromic.

– 988 –



Degeneration from difference to differential Okamoto spaces for the sixth Painlevé equation

By definition, the family (2.1) is Schlesinger isomonodromic if and only
if the entries of A satisfy a certain list of differential equations. Since these
entries may be written in terms of the triple (λ, y, Z), see Lemma 1.2, we
may translate the differential equations in terms of the entries of A into
differential equations in terms of the triple (λ, y, Z). This will lead to the
sixth Painlevé equation, according to the following classical results, due to
R. Fuchs [7].

Proposition 2.6. — Let ∂xY = A(x, t)Y be a family of Fuchsian sl2-
systems with spectral data Θ as in Definition 1.1, giving rise to a triple
(λ, y, Z) as in (1.5). Then ∂xY = AY is Schlesinger isomonodromic if and
only if (y, Z) is a solution of

y′(t) = y(y − 1)(y − t)
t(t− 1)

(
2Z + 1

y − t

)
Z ′(t) = −3y2 + 2(t+ 1)y − t

t(t− 1) Z2 − 2y − 1
t(t− 1)Z

+ 1
4

(
(θ∞ − 1)2 − 1

t(t− 1) − θ2
0

(t− 1)y2 − θ2
t

(y − t)2 + θ2
1

t(y − 1)2

)
,

(2.3)

and λ is a solution of
λ′(t)
λ(t) = (θ∞ − 1)(y(t) − t)

t(t− 1) . (2.4)

Corollary 2.7. — Assume that Θ satisfies the non-resonant condi-
tion (1.1). Let ∂xY = AY be a family of Fuchsian sl2-systems with spectral
data Θ as in Definition 1.1, parametrized by t ∈ U ⊂ C \ {0, 1}, giving rise
to a triple (λ, y, Z) as in (1.5). Define

U∗ := {t ∈ U |λ(t) ̸= 0 , y(t) ̸= ∞}.
Then the family ∂xY = AY parametrized by U∗ is isomonodromic if and
only if (y, Z) is a solution of (2.3).

Proof. — If ∂xY = AY is isomonodromic, then by Lemma 2.5, it is lo-
cally conjugated to a Schlesinger isomonodromic family via a diagonal gauge
transformation. The latter does not affect (y, Z). Hence by Proposition 2.6,
(y, Z) is a solution of (2.3).

Conversely, if (y, Z) is a solution of (2.3), then locally in U∗ one may
choose a local non-vanishing solution λ̃ of (2.4). One obtains a family of Fuch-
sian sl2-systems ∂xỸ = ÃỸ given by (λ̃, y, Z) as in Lemma 1.2. This family
of systems is Schlesinger isomonodromic by Proposition 2.6 and conjugated
to ∂xY = AY by a diagonal gauge transformation of the form Y = MỸ with
M = diag(µ, 1/µ) satisfying λ̃µ2 = λ. Hence the initial system is isomon-
odromic. □
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2.2. A discrete analogue

We will now define a convenient q-analogue of isomonodromy, which will
lead to a q-analogue of Schlesinger equations for families of Fuchsian lin-
ear q-difference systems. Analogously to the differential case, we will define
q-isomonodromy by the existence of the q-analogue of a Lax pair. This defi-
nition differs from the approach to q-isomonodromy used for example in [12].
The relation between the two will be explained in Section 5. Let q ∈ C\{0, 1} .
Let

σq,xY (x, t) = A(x, t)Y (x, t),

with A(x, t) = A0(t) + x
A1(t)
x− 1 + x

At(t)
t(x− t) , (2.5)

be a family of q-Fuchsian systems with spectral data (Θ ,Θ) as in Defini-
tion 1.6. From now on, we make the additional asumption that D is a con-
nected open subset of C∗, which is stable under multiplication by q and 1

q .

Definition 2.8. — We say that the system (2.5) is q-isomonodromic if
it can be completed into a q-Lax pair, i.e. there exists B ∈ GL2(M(D)(x))
such that the system {

σq,xY = A(x, t)Y
σq,tY = B(x, t)Y

satisfies the q-Lax equation
A(x, qt)B(x, t) = B(qx, t)A(x, t). (2.6)

We will now establish the first step towards the q-analogue of Lemma 2.3:
under the assumption that q is not a root of unity, if (2.5) is non-resonant
and can be completed into a q-Lax pair via a matrix function B, then B has
a very particular shape.

Proposition 2.9. — Assume that q ̸∈ e2iπQ and assume that (Θ ,Θ)
satisfies the non-resonant condition (1.7). Let A ∈ GL2(O(D)(x)) be as
in (2.5) and let B ∈ GL2(M(D)(x)) such that (2.6) holds. Then, there
are matrices C(t), B0(t) ∈ GL2(M(D)) with C(t) diagonal, such that

B(x, t) = C(t) (x− qt)(xI2 +B0(t))
(x− qtΘt)(x− qtΘt)

. (2.7)

Moreover, Spec(B0(t)) =
{

−qtΘt,−qtΘt

}
.

Proof. — Let us write

Â(x, t) := (x− t)(x− 1)A(x, t)
(x− tΘt)(x− tΘt)

, B(x, t) = (x− qt)B̂(x, t)
(x− qtΘt)(x− qtΘt)

.
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With this notation, equation (2.6) reads

qÂ(x, qt)B̂(x, t) = B̂(qx, t)Â(x, t) . (2.8)

From the expression of the determinant of A(x, t) we have

det
(
Â(x, t)

)
= Θ∞Θ∞

(x− Θ1)(x− Θ1)
(x− tΘt)(x− tΘt)

. (2.9)

The determinant of B̂(x, t) is an element of M(D)(x). Let us write

det
(
B̂(x, t)

)
= c(t)

∏n1
i=1(x− ai(t))∏n2
j=1(x− bj(t))

,

with 0 ̸≡ c(t) ∈ M(D) and ai, bj being elements of the algebraic closure
M(D) of M(D) such that ai(t) ̸≡ bj(t) for all i, j. Applying the determinant
in the both sides of (2.8), we find that

q2c(t) (x− Θ1)(x− Θ1)
(x− qtΘt)(x− qtΘt)

∏n1
i=1(x− ai(t))∏n2
j=1(x− bj(t))

= c(t)
∏n1

i=1(qx− ai(t))∏n2
j=1(qx− bj(t))

(x− Θ1)(x− Θ1)
(x− tΘt)(x− tΘt)

,

which simplifies as follows:

1
(x− qtΘt)(x− qtΘt)

∏n1
i=1(x− ai(t))∏n2
j=1(x− bj(t))

= 1
(qx− qtΘt)(qx− qtΘt)

∏n1
i=1(qx− ai(t))∏n2
j=1(qx− bj(t))

.

At x = ∞, the left hand side behaves like xn1−n2−2, while the right hand
side behaves like qn1−n2−2xn1−n2−2. Since q is not a root of unity, we must
have n1 = n2 + 2. We may thus rewrite the equality as

f(x) = f(qx) ,

where f : x 7→ 1
(x− qtΘt)(x− qtΘt)

∏n2+2
i=1 (x− ai(t))∏n2
j=1(x− bj(t))

∈ M(D)(x) .

It follows easily that f ∈ M(D)(x) is constant in x, forcing n2 = 0 and, up
to renumbering the ai’s, that a1 = qtΘt and a2 = qtΘt. In particular,

det(B̂(x, t)) = c(t)(x− qtΘt)(x− qtΘt) . (2.10)

We may rewrite (2.8) as follows.

qB̂(x, t) = Â(x, qt)−1B̂(qx, t)Â(x, t) . (2.11)
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Let us now show that B̂(x, t) is of the form x · B̂∞(t) + B̂0(t), i.e. let us
show that the function x 7→ B̂(x, t) has only one possible pole, at x = ∞,
and that this is at most a simple pole.

Let us prove that R∞(t) is diagonal. We have B̂(x, t) = xkR∞(t) +
O(xk−1) as x → ∞ for a certain k ∈ Z and a certain non-zero R∞ ∈
M2(M(D)). Setting Â∞(t) := Â(∞, t), we have Â∞(t) = A∞(t) which is in-
vertible. Moreover, A∞(t) = diag(Θ∞,Θ∞) is independent of t. From equa-
tion (2.11) we get

R∞(t) = qk−1 diag(Θ∞,Θ∞)−1R∞(t) diag(Θ∞,Θ∞).

Taking the determinant on both sides yields det(R∞(t))=det(R∞(t))(qk−1)2.
By (2.10) we find det(R∞(t)) = c(t) ̸= 0, so that R∞(t) must actually be
invertible and 1 = q2k−2. Since q is not a root of unity, we have k = 1.
Hence B̂(x, t) has a simple pole at x = ∞. Furthermore, since Θ∞ ̸= Θ∞,
we deduce that R∞(t) is diagonal.

Let α(t) ∈ M(D) such that α(t) ̸∈ {0,Θ1,Θ1, tΘt, tΘt} · qZ>0 . Assume
for a contradiction that x = α is a pole of B̂(x, t). Then x = 1

qα is a
pole of B̂(qx, t). From the particular form of Â and (2.9) we know that
both Â(x, qt)−1 and Â(x, t) are finite and invertible at x = 1

qα, i.e.
Â(α/q, t), Â(α/q, qt)−1 ∈ GL2(M(D)). Indeed, the only possible poles of
Â(x, t) are x = tΘt and x = tΘt and the only possible poles of Â(x, qt)−1

are x = Θ1 and x = Θ1. Hence by (2.11), B̂(x, t) has a pole at x = 1
qα as

well. By induction, B̂(x, t) has a pole at x = 1
qnα for each n ∈ N. Yet by

assumption, B̂(x, t) is a rational function of x and can therefore only have
finitely many poles.

Let α(t) ∈ {Θ1,Θ1, tΘt, tΘt}·qZ>0 . Assume for a contradiction that x = α

is a pole of B̂(x, t). Then x = qα is a pole of B̂(x/q, t). We may rewrite
equations (2.11) and (2.9) as

det
(
Â(x/q, t)

)
= (x− qΘ1)(x− qΘ1)

(x− qtΘt)(x− qtΘt)
,

B̂(x, t) = qÂ(x/q, qt)B̂(x/q, t)Â(x/q, t)−1 .

The same reasoning as before shows that B̂(x, t) then has a pole at x = qα
as well. Again this leads by induction to an infinite number of poles, and
therefore, a contradiction.

Finally, we treat the case α = 0. We have B̂(x, t) = xkR0(t) + O(xk+1)
as x → 0 for a certain k ∈ Z and a certain non-zero R0 ∈ M2(M(D)).
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Setting Â0(t) := Â(0, t), we have Â0(t) = 1
tΘtΘt

A0(t) which is invertible.
From equation (2.11) we get

R0(t) = qk−1Â0(qt)−1R0(t)Â0(t) = qkA−1
0 (qt)R0(t)A0(t).

(2.10) yields det(R0(t)) = q2t2c(t)ΘtΘt ̸= 0, so that R0 is actually invertible.
Since Spec(A0(t)) = {Θ0,Θ0}, we have det(A0(t)) = det(A0(qt)) and we may
take the determinant on both sides of R0(t) = qkA−1

0 (qt)R0(t)A0(t) and find
q2k = 1. Since q is not a root of unity, we deduce k = 0.

We have now proven that B̂(x, t) has a simple pole at x = ∞ and is finite
and non-zero everywhere else. More precisely, we have proven that

B̂(x, t) = C(t)(xI2 +B0(t))
holds for the diagonal matrix C(t) := R∞(t) ∈ GL2(M(D)) and the matrix
B0 := C(t)−1R0(t) ∈ GL2(M(D)). Moreover, from (2.10) we get
det(xI2 +B0(t)) = (x− qtΘt)(x− qtΘt), yielding the sought expression for
the eigenvalues of B0. □

We will see in the proof of the following proposition that the matrix
B0, as well as the matrix C up to a scalar multiple, are uniquely defined
by (2.6). However, once these matrices are obtained, (2.6) still imposes strong
conditions on the matrix A, which will yield the q-Painlevé VI equation.

Proposition 2.10. — Assume that q ̸∈ e2iπQ. Let (Θ,Θ) ∈ (C∗)4 ×
(C∗)4 such that Θ∞ ̸= Θ∞ and such that the relation (1.6) as well as the
non-resonant condition (1.7) hold. Let (λ,y,Z) ∈ M(D)3. Denote

X := (y − 1)(y − t)(1 + (q − 1)yZ)
Θ∞Θ∞(y − Θ1)(y − Θ1)

∈ M(D)

and assume that y, (y − 1), (y − t),λ, X, Θ∞X − 1 , qΘ∞X − 1 ,Θ∞X −
(y−tΘt)(y−tΘt)
(y−Θ1)(y−Θ1)

are all well defined meromorphic functions on D and are each
not identically zero. Let A(x, t) = A0(t) + x

x−1A1(t) + x
t(x−t)At(t) be defined

by (λ,y,Z) as in Lemma 1.9 and assume that the coefficients of A0,A1,At

are holomorphic on a domain D∗ ⊂ D stable under multiplication by q and
1/q. Let us denote A∞ = A0 + A1 + 1

tAt = diag(Θ∞,Θ∞). The following
are equivalent.

(1) The family of q-Fuchsian systems σq,xY = AY , parametrized by D∗,
is q-isomonodromic.

(2) Denoting

B0 := −qt
(
A∞ + t−1

(tΘt−1)(tΘt−1)
A1

)(
1

ΘtΘt
A0 + t(t−1)

(tΘt−1)(tΘt−1)
A1

)−1

C := diag(c, 1) , with c = σq,tλ
λ

Θ∞X−1
qΘ∞X−1

,
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the following equations hold:

σq,tA0 = CB0A0B
−1
0 C−1

σq,tA1 = t− 1
qt− 1

(qtΘt − 1)(qtΘt − 1)
q(tΘt − 1)(tΘt − 1)

· C(qI2 +B0)A1 (I2 +B0)−1
C−1

σq,tAt = −CB0A0

(
1

ΘtΘt

I2 + qtB−1
0

)
C−1

− t(t−1)C(qI2+B0)A1

(tΘt − 1)(tΘt − 1)

(
I2+ (qtΘt−1)(qtΘt−1)

qt− 1 (I2+B0)−1
)
C−1.

(3) The pair (y,Z) is a solution of the following system of q-difference
equations:

σq,ty = Θ1Θ1

y
·

(
X − tΘtΘt

Θ0

)(
X − tΘtΘt

Θ0

)
(
X − 1

Θ∞

)(
X − 1

qΘ∞

)
σq,tZ = 1

(q − 1)σq,ty

(
(σq,ty − qtΘt)(σq,ty − qtΘt)
q(σq,ty − 1)(σq,ty − qt)X − 1

)
.

(2.12)

Proof. — Let us first show that (1) ⇔ (2). Since q is not a root of unity,
by Proposition 2.9 and the non-resonant assumption, (1) is equivalent to
the existence of B0,C ∈ GL2(M(D)) with C diagonal, such that for B given
by (2.7), we have (σq,tA(x, t))B(x, t) = (σq,xB(x, t))A(x, t). We may rewrite

1
x

(σq,tA(x, t))B(x, t) − 1
x

(σq,xB(x, t))A(x, t)

= − 1
qtΘtΘt

R0(t)
x

− qt− 1
(qtΘt − 1)(qtΘt − 1)

R1(t)
x− 1

+ (x− qt(Θt + Θt))R2(t) + qtR3(t)
(x− qtΘt)(x− qtΘt)

− C
(x− t(Θt + Θt))R4 − tR5

(x− tΘt)(x− tΘt)
,

where
R0 := (σq,tA0)CB0 − CB0A0 ,

R1 := (σq,tA1)C(I2 +B0) − q(t− 1)
qt− 1

(qtΘt − 1)(qtΘt − 1)
q2(tΘt − 1)(tΘt − 1)

C(qI2 +B0)A1

R2 := 1
qtΘtΘt

(σq,tA0)CB0 + qt− 1
(qtΘt − 1)(qtΘt − 1)

(σq,tA1)C(I2 +B0)

+ (σq,tA∞)C

R3 := (σq,tA0)C + qt− 1
qt

(σq,tA1)C − (qt− 1) (σq,tA1)C(I2 +B0)
qt(qtΘt − 1)(qtΘt − 1)

− 1
qt

(σq,tA∞)C(qt
(
Θt + Θt)I2 +B0

)
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R4 := 1
qtΘtΘt

B0A0 + t− 1
q(tΘt − 1)(tΘt − 1)

(qI2 +B0)A1 + A∞

R5 := A0 + t− 1
t

A1 − (t− 1)
qt(tΘt − 1)(tΘt − 1)

(qI2 +B0)A1

− 1
qt

(
qt(Θt + Θt)I2 +B0

)
A∞ .

Hence (1) is equivalent to the vanishing Ri = 0 for all i ∈ {0, 1, 2, 3, 4, 5} for
some B0,C ∈ GL2(M(D)) with C diagonal. Note that by Proposition 2.9, the
matrixB0 must have eigenvalues −qtΘt,−qtΘt, so that I2+B0 is invertible. If
R0 = R1 = R4 = R5 = 0, then R2 and R3 are both equivalent to σq,tA∞ =
CA∞C−1. We may therefore omit R3 in the following. For i ∈ {0, 1}, the
vanishing of Ri is equivalent to the equation for σq,tAi as in the statement,
with general B0,C. Substituting these equations into R2 = 0 yields the
equation for σq,tAt as in the statement, again with general B0,C. However,
R4 = 0 is equivalent to B0 being as in the statement. Note that this matrix
B0 is well-defined and invertible under the assumptions. As one can check
by direct computation, this B0 solves R5 = 0. Hence (1) is equivalent to
the existence of a diagonal matrix C ∈ GL2(M(D)) such that the equations
in (2) hold for B0 as in the statement. If C is such a convenient matrix,
then for any f ∈ M(D) non-vanishing, fC is also convenient. Hence we may
require that C is of the form diag(c, 1). Since (q−1)λ = (1−t)A(1,2)

1 −tA(1,2)
0 ,

we must have

(q − 1)σq,tλ = (1 − qt)σq,tA
(1,2)
1 − qtσq,tA

(1,2)
0 .

With the equations in (2) for the σq,tAi’s, this is equivalent to c being as in
the statement. We conclude that (1) ⇔ (2).

Let us now show that (2) ⇒ (3). From y = − t
(q−1)λA

(1,2)
0 , we obtain

σq,ty = − qt

(q − 1)σq,tλ
σq,tA

(1,2)
0 = −qt σq,tA

(1,2)
0

(1 − qt)σq,tA
(1,2)
1 − qtσq,tA

(1,2)
0

.

Substituting the values of A(1,2)
0 and A

(1,2)
1 from (2) then yields

σq,ty = q

y
· Θ1Θ1Θ∞Θ∞X

2 − t(Θ0 + Θ0)X + t2ΘtΘt

(Θ∞X − 1)(qΘ∞X − 1)
. (2.13)

For the purpose of factorization, we use the equality

Θ0Θ0 = ΘtΘtΘ1Θ1Θ∞Θ∞.

This yields the expression for σq,ty in the statement. Similarly, from

1 + (q − 1)yZ = A
(1,1)
0 + y

y − 1A
(1,1)
1 + y

y − t

(
A(1,1)

∞ − A
(1,1)
0 − A

(1,1)
1

)
,
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we obtain

σq,t ((y − 1)(y − t)(1 + (q − 1)yZ))

= (σq,ty − 1)
(

Θ∞σq,ty − qtσq,tA
(1,1)
0

)
+ (1 − qt)σq,ty · σq,tA

(1,1)
1 .

Substituting the value of σq,ty from (2.13), the values of A
(1,1)
0 and A

(1,1)
1

from (2), as well as Z = 1
(q−1)y

(
Θ∞Θ∞(y−Θ1)(y−Θ1)

(y−1)(y−t) X − 1
)

, the right hand
side simplifies to

(σq,ty − qtΘt)(σq,ty − qtΘt)
qX

.

Therefore, σq,tZ is as in the statement.

Let us now show that (3) ⇒ (2). Note that for each i ∈ {0, 1, t}, the
matrices Ai may be expressed as functions of λ, X and y. If (3) holds, then
the matrices C−1σq,tAiC, with C as in (2), can also be expressed as functions
of λ, X and y. It its straightforward to check (with computer assistance)
that the equations in (2) then are satisfied. □

In analogy with the differential case, we give a name to the particular
case when a family can be completed into a Lax pair via a matrix B as
in (2.7) with C(t) = I2:

Definition 2.11. — We say that the family σq,xY = A(x, t)Y of Fuch-
sian systems is q-Schlesinger isomonodromic if it can be completed into a
q-Lax pair via a matrix B ∈ GL2(M(D)(x)) of the form

B(x, t) = (x− qt)(xI2 +B0(t))
(x− qtΘt)(x− qtΘt)

. (2.14)

Let us now say a few words about whether, analogously to the differ-
ential setting, a family of q-Fuchsian systems which is q-isomonodromic
can be made q-Schlesinger isomonodromic via a gauge transformation. Let
A ∈ GL2(O(D)(x)) be as in (2.5) and assume that the family of q-Fuchsian
systems ∂q,xY = A(x, t)Y can be completed into a Lax pair via a matrix
B ∈ GL2(M(D)(x)) of the form (2.7), with C ∈ GL2(M(D)) diagonal.
Assume there exists M ∈ GL2(M(D)) which is diagonal and solves the q-
difference equation

σq,tM(t) = C(t)M(t) .
Since M does not depend on x, performing the gauge transformation Y =
MŶ yields the family σq,xŶ = Â(x, t)Ŷ given by

Â(x, t) = (σq,xM(t))−1A(x, t)M(t) = M(t)−1A(x, t)M(t) .
Since M is diagonal, up to shrinking D to the domain of holomorphy of
the coefficients of Â ∈ GL(M(D)(x)), this new family is still a family of
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q-Fuchsian systems in the sense of Definition 1.6. Moreover, this new family
can be completed into a Lax pair via the matrix

B̂ := M−1C−1BM ∈ GL2(M(D)(x)) .

Indeed, from the q-Lax equation for the initial family, we get

Â(x, qt)B̂(x, t) = M(qt)−1A(x, qt)M(qt)M−1(t)C−1(t)B(x, t)M(t)
= M(t)−1C(t)−1A(x, qt)B(x, t)M(t)
= M(t)−1C(t)−1B(qx, t)A(x, t)M(t)

= B̂(qx, t)Â(x, t) .

Note that B̂ is given by

B̂(x, t) = (x− qt)(xI2 + B̂0(t))
(x− qtΘt)(x− qtΘt)

with B̂0 = M−1B0M .

In other words, the conjugated family σq,xŶ = Â(x, t)Ŷ is q-Schlesinger
isomonodromic. To find this conjugated family, we had to solve a diagonal
system of q-difference equations, which boils down to solving two scalar linear
q-difference equations. Contrarily to the differential case, the resolution of
q-difference equations even of such simple form is not trivial, and does not
seem to be known in full generality. However, if some strong assumptions
on the domain of definition D are satisfied, one can use for example the
following lemma.

Lemma 2.12. — Assume that |q| > 1 and D contains an annulus of the
form

{t ∈ C | a < |t| < b}
for some real numbers 0 < a < b < ∞. Let c ∈ M(D) \ {0}. Then there
exists a meromorphic solution m(t) ∈ M (D) \ {0} of

σq,tm = cm .

Note that the assumption on D of the above lemma is satisfied if for
instance D = C∗ \

⋃k
ℓ=1 aℓq

Z, for some aℓ ∈ C∗.

Proof. — Let us define

O1 := {t ∈ P1 | |t| < b} ∪
(
D ∩ {t ∈ P1 | |t| ⩾ b}

)
,

O2 := {t ∈ P1 | |t| > a} ∪
(
D ∩ {t ∈ P1 | |t| ⩽ a}

)
.

These are connected open sets satisfying O1 ∩ O2 = D and O1 ∪ O2 = P1.
By [1, Lem. 4.4], there exist c1 ∈ M(O1), and c2 ∈ M(O2) such that
c = c1c2. By construction, c1 is a germ of meromorphic function at 0. By
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Remark 5.4, there exists 0 ̸= m1 that is meromorphic on a punctured neigh-
borhood of 0 in C∗ such that σq,tm1 = c1m1. Using the functional equa-
tion and using the fact that D is stable by multiplication by q, we find
that m1 may be continued into a meromorphic function on qO1 \ {0} where
qO1 = {qt, t ∈ O1}. Similarly, we construct a non-zero meromorphic solu-
tion of σq,tm2 = c2m2 that is meromorphic on q−1O2 \ {∞}. Since D ⊂ C∗

and qO1 ∩ q−1O2 ⊃ O1 ∩ O2 = D we find that a convenient solution is
m = m1m2. □

2.3. Confluence

Let Θ(q) = (Θ0(q),Θ1(q),Θt(q),Θ∞(q)) be a quadruple of rational func-
tions in a complex variable q such that as q → 1, we have

Θi(q) = 1 + (q − 1)θi

2 +O((q − 1)2) ∀ i ∈ {0, 1, t,∞} (2.15)

with θi ∈ C. We define Θ by Θi = 1
Θi

. Recall from Section 1.3 that
these requirements on (Θ,Θ) are a convenient setting for the discretiza-
tion of sl2-Fuchsian systems with spectral data Θ (if θ∞ ̸= 0). We shall
now see under these requirements, the q-Schlesinger equations discretize the
(differential) Schlesinger equations, and that the difference equation (2.12)
generically characterizing q-isomonodromy discretizes the differential equa-
tion (2.3) generically characterizing isomonodromy.

2.3.1. The q-Schlesinger equations discretize the differential ones

The q-Schlesinger equations are obtained from the equations in point (2)
of Proposition 2.10 by setting C = I2. With respect to the ∂q,t-operator and
the matrices

Ã0 = A0 − I2

q − 1 , Ã1 = A1

q − 1 , Ãt = At

t(q − 1) ,

they read as follows:

∂q,tÃ0 = B0Ã0B−1
0 −Ã0

(q−1)t

∂q,tÃ1 = 1
(q−1)t

(
(t−1)
qt−1

(qtΘt−1)(qtΘt−1)
q(tΘt−1)(tΘt−1)

(qI2 +B0) Ã1 (I2 +B0)−1 − Ã1

)
∂q,tÃt = − 1

(q−1)2t

(
I2+ 1

qtΘtΘt
B0

)
− 1

(q−1)t

(
B0Ã0

(
1

qtΘtΘt
I2+B−1

0

)
+Ãt

)
− (t−1)(qI2+B0) Ã1

q(q−1)t(tΘt−1)(tΘt−1)
·
(

I2 + (qtΘt−1)(qtΘt−1)
qt−1 (I2 +B0)−1

)
,

(2.16)
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where B0 = B0

(
Ã0, Ã1, t, q

)
is the function with values in

G := {M ∈ GL2(C) | det(M + I2) ̸= 0} ,

defined, on the complement of some proper Zariski closed subset of GL2(C)×
GL2(C) × C × C, as B0

(
Ã0, Ã1, t, q

)
being given by

− qt

(
I2 + (q − 1)

(
t− 1

(tΘt − 1)(tΘt − 1)
Ã1 − Ã∞

))
×
(

I2 + (q − 1)
(
Ã0 + t(t− 1)

(tΘt − 1)(tΘt − 1)
Ã1

))−1
,

where Ã∞(q) = diag
(

1−Θ∞
q−1 , 1−Θ∞

q−1

)
= diag

(
θ∞
2 ,− θ∞

2
)

+ O(q − 1) . Since

Ã∞(q) is given in this context, we may write everything as a function of
Ã0 and Ã1 by identifying Ãt := −

(
Ã0 + Ã1 + Ã∞

)
. With this notation, as

q → 1, up to terms of order O((q − 1)2), we have

B0

(
Ã0, Ã1, t, q

)
∼ −qt

(
I2 + (q − 1)

(
1

t− 1 Ã1 − Ã∞

))(
I2 + (q − 1)

(
Ã0 + t

t− 1 Ã1

))−1

∼ −qt
(

I2 + (q − 1)
(

1
t− 1 Ã1 − Ã∞

))(
I2 − (q − 1)

(
Ã0 + t

t− 1 Ã1

))
∼ −qt

(
I2 + (q − 1)Ãt

)
.

Let f0, f1, ft be the functions with values in M2(C), defined on some
natural domain of definition inside GL2(C) × GL2(C) × C × (C \ {1}), that
when evaluated in

(
Ã0, Ã1, t, q

)
, yield the right hand sides of the equations

in (2.16). Then we have

f0(Ã0, Ã1, t, q) =

(
I2 + (q − 1)Ãt

)
Ã0

(
I2 − (q − 1)Ãt

)
− Ã0

(q − 1)t +O(q − 1)

= [Ã0, Ãt]
0 − t

+O(q − 1) ,
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f1(Ã0, Ã1, t, q) =
(I2−(q−1) t

1−t Ãt)Ã1

(
I2−(q−1) t

1−qt Ãt

)−1
−Ã1

(q − 1)t +O(q−1)

=
(I2−(q−1) t

1−t Ãt)Ã1

(
I2+(q−1) t

1−tÃt

)
− Ã1

(q − 1)t +O(q−1)

= [Ã1, Ãt]
1 − t

+O(q − 1) .

Using similar calculations, and the Taylor series expansion of B0 until its
second order term, one finds

ft(Ã0, Ã1, t, q) = − [Ã0, Ãt]
0 − t

− [Ã1, Ãt]
1 − t

+O(q − 1) .

In summary, we have

∂q,tÃ0(t) = [Ã0(t), Ãt(t)]
0 − t

+O(q − 1)

∂q,tÃ1(t) = [Ã1(t), Ãt(t)]
1 − t

+O(q − 1)

∂q,tÃt(t) = − [Ã0(t), Ãt(t)]
0 − t

− [Ã1(t), Ãt(t)]
1 − t

+O(q − 1).

This proves that the q-Schlesinger equations (2.16) discretize the (differ-
ential) Schlesinger equations (2.2).

In order to complement this result, let us consider the function B̃ with
values in M2(C), given, on its natural set of definition inside GL2(C) ×
GL2(C) × C × C × (C \ {1}), by

B̃
(
Ã0, Ã1, x, t, q

)
:= 1

(q − 1)t

 (x− qt)
(
xI2 +B0

(
Ã0, Ã1, t, q

))
(x− qtΘt)(x− qtΘt)

− I2

 .

This function corresponds to the right hand side of the δq,t-version of σq,tY =
BY with B as in (2.14). It behaves, when q → 1, as

B̃
(
Ã0, Ã1, x, t, q

)
∼ 1

(q − 1)t

 (x− qt)
(

(x− qt)I2 − (q − 1)tÃt

)
(x− qt)2 − I2 +O((q − 1)2)


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∼ 1
(q − 1)t

(
−(q − 1)t Ãt

(x− qt) +O((q − 1)2)
)

∼ − Ãt

x− t
+O(q − 1) .

By the above estimates, B̃ can be continued analytically to {q = 1} and is
there given by − Ãt

x−t .

2.3.2. The q-Lax pairs discretize the differential ones

Let
Q ⊂ C∗ \ e2iπQ

be a connected subset with 1 in its closure. Let D ⊂ C∗ be an open connected
subset. We shall assume that the pair (D,Q) satisfies the property that D is
stable by multiplication by q±1, for every q ∈ Q. Note that unless D = C∗,
the subset Q cannot be too large. Two examples of a convenient pair (D,Q)
with D ⊂ C∗ are the following:

• (D,Q) =
(
C∗ \ qR0 , q

R>0
0

)
where q0 ∈ C, with |q0| ≠ 1.

• D is an open sector with infinite radius centered at 0 and Q =
]1,+∞[.

In addition to our previous requirements on (Θ,Θ), let us now moreover
assume that the (differential) spectral values Θ satisfy the non-resonant
condition θi ̸∈ Z∗ for i ∈ {0, 1, t,∞} and θ∞ ̸= 0. Note that for values of
q ∈ Q sufficiently close to 1, the (q-difference) non-resonant condition (1.7)
then is automatically is satisfied.

Let A0, A1, At ∈ GL2(O(D)) such that ∂xY (x, t) = A(x, t)Y with A =
A0
x + A1

x−1 + At

x−t is a family of sl2-Fuchsian systems with spectral data Θ as
in Definition 1.1. Let Ã0, Ã1, Ãt be holomorphic functions in a neighborhood
of D × Q ⊂ C2 with values in GL2(C), such that for each q ∈ Q, the q-
difference equation ∂q,xY = Ã(x, t, q)Y with Ã = Ã0

x + Ã1
x−1 + Ãt

x−t yields,
via A = I2 + x(q − 1)Ã, a family of q-Fuchsian systems with spectral data
(Θ(q),Θ(q)) as in Definition 1.6. By Proposition 1.13 it is convenient to
assume that

∀ i ∈ {0, 1, t} , lim
q→1

Ãi(t, q) = Ai(t) .

We shall moreover assume that

∀ i ∈ {0, 1, t} , lim
q→1

∂q,tÃi(t, q) = A′
i(t)
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and that the family ∂q,xY = Ã(x, t, q)Y is q-isomonodromic for each q ∈ Q.
By non-resonant, Section 2.3.1 and the proof of Proposition 2.10, this means
that this family can be completed into a q-Lax pair

σq,xY =
(

I2 + (q − 1)xÃ(x, t, q)
)
Y

σq,tY = C(t, q)
(

I2 + (q − 1)tB̃(x, t, q)
)
Y .

We then find 
∂q,xY = Ã(x, t, q)Y

∂q,tY =
(
C(t, q)B̃(x, t, q) + C(t, q) − I2

(q − 1)t

)
Y ,

(2.17)

where

lim
q→1

B̃(x, t, q) = −At(t)
x− t

and C(t, q) = f(t, q) diag(c1(t, q), c2(t, q)) .

Here f ∈ M(D × Q) \ {0} can be chosen arbitrarily and

c1 =
σq,t

(
tÃ

(1,2)
0 + (t− 1)Ã(1,2)

1

)
tÃ

(1,2)
0 + (t− 1)Ã(1,2)

1
, c2 = qΘ∞X − 1

Θ∞X − 1 ,

where X is some rational expression in terms of q, t, Θ1, Θ∞, Ã(1,1)
0 , Ã(1,2)

0 ,
Ã

(1,1)
1 , Ã(1,2)

1 that can easily be made explicit. We assume these ci and X to
be well-defined and finite. Using the Taylor series expansion of Θ1(q) and
Θ∞(q), we readily compute that up to terms of order O((q − 1)2), we have

1
f
C ∼ I2 + (q − 1)t

tÃ
(1,2)
0 + (t− 1)Ã(1,2)

1

×

(
t∂q,tÃ

(1,2)
0 + (t− 1)∂q,tÃ

(1,2)
1 0

0 (1 − θ∞)
(
Ã

(1,2)
0 + Ã

(1,2)
1

)) .
Choosing f of the form f(t, q) = 1 + (q − 1)g(t) for some meromorphic
function g, we can make sure that limq→1 C(t, q) = I2 and that the matrix

C(t) := lim
q→1

C(t, q) − I2

(q − 1)t
exists and is tracefree. Consider a subset of D where C(t) is holomorphic.
With C = I2 + (q − 1)tC, the q-Lax pair induced by (2.17) is(

I2 + (q − 1)xσq,tÃ
)

(I2 + (q − 1)tC)
(

I2 + (q − 1)tB̃
)

= (I2 + (q − 1)tC)
(

I2 + (q − 1)tσq,xB̃
)(

I2 + (q − 1)xÃ
)
.
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The term in O(1) on both sides of the equality is I2 = I2. The term in
O(q − 1) is

(q − 1)xσq,tÃ + (q − 1)tB̃ = (q − 1)tσq,xB̃ + (q − 1)xÃ.
Finally, the term in O((q − 1)2) is

(q − 1)2xtσq,t(Ã)C + (q − 1)2xtσq,t(Ã)B̃ + (q − 1)2t2CB̃

= (q − 1)2xtσq,x(B̃)Ã + (q − 1)2t2Cσq,x(B̃) + (q − 1)2xtCÃ.

Then, dividing by (q − 1)2xt and we obtain with ∂q,xC = 0 that

∂q,t(Ã) − ∂q,x(B̃ + C) = σq,x(B̃)Ã + x−1tCσq,x(B̃) + CÃ

− σq,t(Ã)C − σq,t(Ã)B̃ − x−1tCB̃ +O(q − 1).

With σq,t(Ã) = Ã +O(q − 1), σq,x(B̃) = B̃ +O(q − 1), we obtain

∂q,t(Ã) − ∂q,x(B̃ + C) =
[
B̃ + C, Ã

]
+O(q − 1).

Since Ã = A+O(q − 1), B̃ = − At(t)
x−t +O(q − 1), this shows that we obtain

the confluence of the q-Lax pair (2.17) to the differential Lax pair given by
∂xY = A(x, t)Y

∂tY =
(

−At(t)
x− t

+ C(t)
)
Y ,

satisfying the Lax equation

∂t(A) − ∂x

(
−At(t)
x− t

+ C

)
=
[
−At(t)
x− t

+ C,A

]
.

2.3.3. The difference equations for triples (λ,y,Z) discretize the
differential ones

Of particular interest for the results in this paper is the discretization
of the characterization of Schlesinger isomonodromy in terms of triples
(λ(t), y(t), Z(t)) given in Proposition 2.6, namely the system of differential
equations given by (2.3) and (2.4). Proposition 2.10 suggests that a conve-
nient q-analogue of this differential equation is given by

∂q,tλ

λ
= (Θ∞ − qΘ∞)X

(q − 1)t (1 − Θ∞X)

∂q,ty = E − y

(q − 1)t

∂q,tZ = 1
(q−1)t ·

(
(E − qtΘt)(E − qtΘt)

q(q−1)E(E−1)(E−qt)X − 1
(q−1)E − Z

)
,

(2.18)
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where X(y,Z, t, q) and E(y,Z, q, t) are defined respectively as

X := (y − 1)(y − t)(1 + (q − 1)yZ)
(y − Θ1)(y − Θ1)

, E := q

y
· (X − tΘ0)(X − tΘ0)

(Θ∞X − 1)(qΘ∞X − 1)
.

Here, as usual when considering confluence, we used our convention ΘiΘi =
1. Let us now show that (2.18) discretizes the system of differential equations
given by equations (2.4) and (2.3).

Let fλ, fy, fZ be the rational functions in the variables y,Z, t, q forming
the right hand sides of the equations in (2.18). Using the estimates (2.15), we
may compute the Taylor series expansion of X(q) := X(y,Z, t, q) as q → 1.
Up to terms of order O((q − 1)3), we have

X(q) = (y − 1)(y − t)(1 + (q − 1)yZ)
(y − 1)2 + y(2 − Θ1 − Θ1)

∼
y−t
y−1 (1 + (q − 1)yZ)

1 − (q − 1)2 θ2
1
4

y
(y−1)2

∼ y − t

y − 1(1 + (q − 1)yZ)
(

1 + (q − 1)2 θ
2
1
4

y

(y − 1)2

)
∼ y − t

y − 1

(
1 + (q − 1)yZ + (q − 1)2 θ

2
1
4

y

(y − 1)2

)
.

So in particular, we have X(q) = y−t
y−1 + O(q − 1). Since moreover Θ∞ =

1 +O(q − 1) and Θ∞ − qΘ∞ = (q − 1)(θ∞ − 1) +O((q − 1)2), we conclude
that

fλ(q) := fλ(y,Z, t, q) = (θ∞ − 1)(y − t)
t(t− 1) +O(q − 1) .

In other words, the first difference equation in (2.18) discretizes (2.4). Simi-
larly, up to order terms of order O((q − 1)3), we obtain

E(q) =
(X(q) − tΘ0)

(
X(q) − t 1

Θ0

)
y
(
X(q) − 1

Θ∞

)(
X(q) − Θ∞

q

)
∼

1
y (X(q) − t)2 − (q − 1)2 θ2

0
4 tX(q)

(X(q) − 1)2 − (q − 1) t−1
y−1 + (q − 1)2

(
t−1
y−1 − y−t

y−1

(
θ2

∞−2θ∞
4 − yZ

)) .
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Substituting the Taylor expansion of X(q) up to order O((q − 1)3) yields
E(q)

∼
y

((
1 − (q − 1) y−t

t−1 Z
)2

− (q − 1)2
(

tθ2
0

4
(y−t)(y−1)

(t−1)2y2 + θ2
1(y−t)

2(t−1)(y−1)2

))
(

1−(q−1)y y−t
t−1 Z

)2
−(q−1) y−1

t−1 +(q−1)2
(

y−1
t−1 − (y−t)(y−1)

(t−1)2

(
θ2

∞−2θ∞
4 − yZ

)
− θ2

1y(y−t)
2(y−1)2(t−1)

)
∼ y + (q − 1)y(y − 1)(2(y − t)Z + 1)

t− 1

+(q−1)2 · y(y−1)(y−t)
t− 1

(
(3y−1)(y−t)Z2+(3y−2)Z

t− 1 − tθ2
0

4(t−1)y2 + θ2
1

2(y−1)2 + (θ∞−1)2+3
4(t− 1)

)
.

Already from the Taylor expansion of E(q) up to order O((q−1)2), we deduce
that

fy(q) = y(y − 1)(2(y − t)Z + 1)
t(t− 1) +O(q − 1) .

From the Taylor expansion of E(q) and X(q) up to order O((q − 1)3), we
deduce by a series of tedious but straightforward calculations that

fZ(q) = −y(y − 1)(y − t)Z2

t(t− 1)

(
1
y

+ 1
y − 1 + 1

y − t

)
− (2y − 1) Z

t(t− 1)

− θ2
0

4(t− 1)y2 + θ2
1

4t(y − 1)2 − θ2
t

4(y − t)2 + (θ∞ − 1)2 − 1
4t(t− 1) +O(q − 1) .

It follows that the second and third difference equation in (2.18) together
discretize the system of differential equations (2.3).

3. The sixth Painlevé equation

3.1. Differential case

Let Θ = (θ0, θ1, θt, θ∞) ∈ C4. We define the rational function HΘ
VI ∈

C(y, Z, t) in three variables given by

HΘ
VI := y(y − 1)(y − t)

t(t− 1)

(
Z2 + Z

y − t

)
− 1

4

(
(θ∞ − 1)2 − 1

t(t− 1) y + θ2
0

(t− 1)y + θ2
t

y − t
− θ2

1
t(y − 1)

)
.

Consider the non-autonomous Hamiltonian system defined by
y′(t) = ∂HΘ

VI
∂Z

(y, Z, t)

Z ′(t) = −∂HΘ
VI

∂y
(y, Z, t) .

(3.1)
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Explicitly, it is given by



y′(t) = y(y − 1)(y − t)
t(t− 1)

(
2Z + 1

y − t

)
Z ′(t) = −3y2 + 2(t+ 1)y − t

t(t− 1) Z2 − 2y − 1
t(t− 1)Z

+ 1
4

(
(θ∞ − 1)2 − 1

t(t− 1) − θ2
0

(t− 1)y2 − θ2
t

(y − t)2 + θ2
1

t(y − 1)2

)
.

(3.2)

Recall from Corollary 2.7 that if for all i ∈ {0, 1, t,∞}, we have θi ̸∈ Z∗

and θ∞ ̸= 0, then this system of differential equations characterizes isomon-
odromy for families of sl2-Fuchsian systems. Substituting Z = t(t−1)y′(t)

2y(y−1)(y−t) −
1

2(y−t) (from the first equation in (3.2)) into the second, we obtain the sixth
Painlevé equation associated to the spectral data Θ:

PVI :


y′′ = 1

2

(
1
y

+ 1
y − 1 + 1

y − t

)
y′2 −

(
1
t

+ 1
t− 1 + 1

y − t

)
y′

+ y(y−1)(y−t)
2t2(t− 1)2

(
(θ∞−1)2+ θ2

1(t−1)
(y − 1)2 − θ2

0t

y2 − (θ2
t −1)(t−1)t
(y − t)2

)
.

Conversely, given a meromorphic solution y of PVI (we will see in the sequel
that it exists), and assuming it is not identically equal to 0, 1, t (which is
a trivially satisfied if θ0θ1θt ̸= 0), then the substitution formula yields a
meromorphic function Z such that the pair (y, Z) is a meromorphic solution
of (3.2).

Let us briefly recall the well-known results concerning the existence of
analytic solutions of PVI. By the Cauchy–Lipschitz theorem, for every t0 ∈
C \ {0, 1} and every choice of (y0, y1) ∈ (C \ {0, 1, t0}) × C, there exists
a unique holomorphic function y(t) defined in a neighborhood of t0 such
that y(t0) = y0 and y′(t0) = y1, and such that y is a solution of the sixth
Painlevé equation. Equivalently, for every t0 ∈ C \ {0, 1} and every choice
of (y0, Z0) ∈ (C \ {0, 1, t0}) × C, there exists a unique holomorphic solution
(y(t), Z(t)) of the Hamiltonian system (3.2), defined in a neighborhood of
t0, such that (y(t0), Z(t0)) = (y0, Z0). By the so-called Painlevé property,
any such germ of holomorphic solution can be meromorphically continued
along any path in C \ {0, 1}. In particular, on any simply connected subset
U of P1 \ {0, 1,∞}, there exists a unique meromorphic solution satisfying
some initial condition as above at t0 ∈ U (see for instance [9, 13], see also
Section 4.1 for some details).
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3.2. A discrete analogue

Let us fix q ∈ C \ {0, 1} and let us consider the spectral data (Θ0, Θ1,
Θt, Θ∞, Θ0, Θ1, Θt, Θ∞) ∈ (C∗)8 such that

Θ0Θ0 = Θ1Θ1ΘtΘtΘ∞Θ∞ .

In [12] the q-Painlevé VI equation associated to such a spectral data was
introduced. It is given by the following system of q-difference equations:

qPJS,VI(Θ,Θ) :



y · σq,ty

Θ1Θ1
=

(
σq,tz − tΘtΘt

Θ0

)(
σq,tz − tΘtΘt

Θ0

)
(
σq,tz − 1

qΘ∞

)(
σq,tz − 1

Θ∞

) ,

z · σq,tz
1

qΘ∞Θ∞

=
(y − tΘt)

(
y − tΘt

)
(y − Θ1)

(
y − Θ1

) .
(3.3)

The auxiliary parameters in [12] bear other names, but we have written
the equation in a way that the dictionary between the auxiliary parameters
in [12] and the above Θi, Θi is obvious, see (0.2). This system of difference
equations has been derived in [12], for |q| ̸= 1, from the pseudo-constancy
condition of the Birkhoff connection matrix for q-Fuchsian systems with non-
resonant spectral data (Θ,Θ). Note that the change of variable

z = (y − tΘt)(y − tΘt)
q(y − 1)(y − t)(1 + (q − 1)yZ)

applied to (3.3) yields the q-difference system (2.12). In the case q ̸∈ e2iπQ

and non-resonant (Θ,Θ), solutions of the latter system have been shown
in Proposition 2.10 to correspond (under some generic assumptions) to q-
isomonodromic (in the sense of Definition 2.8) families of q-Fuchsian systems.
Conversely, when starting with (2.12), the change of variable

Z =
(y−tΘt)(y−tΘt)

q(y−1)(y−t)z − 1
(q − 1)y

yields equation (3.3), which has a significantly shorter and more symmetric
expression. Note that with this change of variable, one has σq,tz = X, for X
as in (2.12).

From now on, because we are ultimately interested in the behaviour under
confluence, we will use our convention

∀ i ∈ {0, 1, t,∞}, ΘiΘi = 1,

by which equations (3.3) and (2.12) can obviously be simplified. In particular,
from now on, the following system of q-difference equations will be referred
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to as the q-Painlevé VI equation associated to spectral data Θ ∈ (C∗)4:

qPVI(Θ) :



y · σq,ty =
(σq,tz − tΘ0)

(
σq,tz − t 1

Θ0

)
(
σq,tz − Θ∞

q

)(
σq,tz − 1

Θ∞

) ,
z · σq,tz = 1

q

(y − tΘt)
(

y − t 1
Θt

)
(y − Θ1)

(
y − 1

Θ1

) .

(3.4)

Unfortunately, contrarily to the differential situation, the existence of a
meromorphic solution having a prescribed value at a point t0 ∈ C∗ is in
general not known. Let us now focus on discrete solutions, i.e. the sequence
of values on qZt0 for some t0 ∈ C∗ \ qZ that a meromorphic solution defined
on a domain containing the spiral qZt0 should interpolate. More precisely, a
discrete solution of (3.4) is a sequence

(yℓ, zℓ, tℓ)ℓ∈Z

of points in P1 × P1 × C∗, such that

• the sequence (tℓ)ℓ∈Z is given by tℓ = qℓt0 for some t0 ∈ C∗

• the sequence (yℓ, zℓ)ℓ∈Z satisfies the following equations for each
ℓ ∈ Z: 

yℓ · yℓ+1 =
(zℓ+1 − tℓΘ0)

(
zℓ+1 − tℓ

1
Θ0

)
(

zℓ+1 − 1
Θ∞

)(
zℓ+1 − Θ∞

q

)
zℓ · zℓ+1 = 1

q

(yℓ − tℓΘt)
(

yℓ − tℓ
1

Θt

)
(yℓ − Θ1)

(
yℓ − 1

Θ1

) ,

(3.5)

• moreover, for each ℓ ∈ Z, the rational simplification of the rela-
tion implied by (3.5) between (y0, z0, t0) and (yℓ, zℓ, q

ℓt0) is also
satisfied.

Note that a more intrinsic notion of discrete solution will appear in Sec-
tion 4.2, where we briefly review the construction in [23] of a q-analogue of
the Okamoto space. See also the pioneer work [8].

Let us explain why for discrete solutions as in the above definition we do
not only take into account the relations between successive pairs. Let t0 ∈ C∗

and consider for example a pair (y0, z0) where y0 = Θ1 and where z0 ∈ C∗.
Then by the recurrence relation (3.5), we have (y1, z1) = (Θ1,∞). Then the
second equation of the recurrence relation for ℓ = 1 simply writes ∞ = ∞.
So a priori, z2 could take any value. But z2 is uniquely determined if we
go back to (y0, z0) and take into account rational simplifications. Indeed,
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let us introduce an additional variable νℓ := zℓ · (yℓ − Θ1). When we write
ν1 as a rational function of general (y0, z0, t0) via the recurrence relation,
then one immediately checks that numerator and denominator can both be
factorized by (y0 − Θ1). After this rational simplification, ν1 is well-defined
for y0 = Θ1 and yields

ν1(Θ1, z0, t0) = (t0Θ1 − Θt)(t0Θ1 − Θt)
(Θ1 − Θ1)qz0

+ Θ1

((
Θ∞

q
+ Θ∞

)
− t0(Θ0 + Θ0)

)
.

On the other hand, the recurrence relation at level ℓ = 1 may be written as
y2 = 1

y1

(z2 − qt0Θ0)
(
z2 − qt0Θ0

)(
z2 − Θ∞

) (
z2 − Θ∞

q

)
z2 = 1

q

(y1 − qt0Θt)
(
y1 − qt0Θt

)
ν1
(
y1 − Θ1

) .

Substituting y1 = Θ1 and the value of ν1 above yields

z2 =
(Θ1 − qt0Θt)

(
Θ1 − qt0Θt

)
(t0Θ1−Θt)(t0Θ1−Θt)

z0
+ qΘ1

(
Θ1 − Θ1

) ((Θ∞
q + Θ∞

)
− t0(Θ0 + Θ0)

) .
Hence z2 ∈ P1 is determined uniquely in terms of z0. Moreover, since y1 =
Θ1, y2 is determined uniquely in terms of z2 by the recurrence relation. So
in summary, if (y0, z0) = (Θ1, z0) with z0 ∈ C∗, then (y1, z1) and (y2, z2)
are uniquely determined in terms of z0. Conversely, from (y2, z2) as above
we can recover (Θ1, z0) under the condition that (t0Θ1 − Θt)(t0Θ1 − Θt) is
non-zero.

More generally, [23, Prop. 1] ensures, in the case of sufficiently generic
spectral data, the existence and uniqueness of discrete solutions with suf-
ficiently generic prescribed initial data. These genericity conditions will be
made precise in Section 4.2. What we will obtain is the following, see Re-
mark 4.2.

Proposition 3.1. — Let q ∈ C \ {0, 1}. Let Θ = (Θ0,Θ1,Θt,Θ∞) ∈
(C∗)4 such that 1 ̸∈ {Θ2

0,Θ2
1,Θ2

t } and such that Θ2
∞ ̸= q. Denote

Sq := {Θε1
1 Θεt

t , Θε0
0 Θε∞

∞ | ε0, ε1, εt, ε∞ ∈ {−1, 1}} · qZ . (3.6)
Let

(y0, z0, t0) ∈ C∗ × C∗ × (C∗ \ Sq) .
Then, there exists a unique discrete solution (yℓ, zℓ, tℓ)ℓ∈Z of (3.4) with ini-
tial value (y0, z0, t0).
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3.3. Confluence

As usual for matters of confluence, in this section we will only consider
spectral data (Θ,Θ) related by ΘiΘi = 1. We will first establish that the
sixth Painlevé equation, up to the change of variable and spectral data that
we previously found to be convenient for confluence, admits a q-analogue of
Hamiltonian formulation. From this, we will deduce the confluence of discrete
and meromorphic solutions.

3.3.1. A q-analogue of Hamiltonian system

Let us apply the change of variable

z = (y − tΘt)(y − tΘt)
q(y − 1)(y − t)(1 + (q − 1)yZ) , Z =

(y−tΘt)(y−tΘt)
q(y−1)(y−t)z − 1

(q − 1)y , (3.7)

to (3.4). The resulting equation, which is the simplification of (2.12) by the
convention Θi = 1/Θi, is better adapted for questions of confluence. Indeed,
roughly summarizing the result in Section 1.3, if a family of q-Fuchsian
systems given by (λ,y,Z) discretizes a family of sl2-Fuchsian systems given
by (λ, y, Z), then we have (y,Z) → (y, Z) as q → 1. On the other hand, the
implied estimate (y, z) →

(
y, y−t

y−1
)

as q → 1 looses too much information.
So we consider, for spectral data Θ = (Θ0,Θ1,Θt,Θ∞) ∈ (C∗)4, the system
of q-difference equations

qP̃VI(Θ) :
σq,ty = 1

y
·

(
(y−1)(y−t)(1+(q−1)yZ)

(y−Θ1)(y−Θ1)
−tΘ0

)(
(y−1)(y−t)(1+(q−1)yZ)

(y−Θ1)(y−Θ1)
−tΘ0

)
(

(y−1)(y−t)(1+(q−1)yZ)
(y−Θ1)(y−Θ1)

− Θ∞
q

)(
(y−1)(y−t)(1+(q−1)yZ)

(y−Θ1)(y−Θ1)
−Θ∞

)
σq,tZ =

(σq,ty−qtΘt)(σq,ty−qtΘt)(y−Θ1)(y−Θ1)
q(σq,ty−1)(σq,ty−qt)(y−1)(y−t)(1+(q−1)yZ) − 1

(q − 1)σq,ty
,

(3.8)

where we denote Θi := 1/Θi for conciseness.

The following result states that this modified q-Painlevé VI equation
qP̃VI(Θ) is an appropriate q-analogue of a Hamiltonian system. First, let
us introduce the Hamiltonian. To each datum Θ = (θ0, θ1, θt, θ∞) ∈ C4, we
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associate the rational function HΘ
VI ∈ C(y,Z, t) in three variables given by

HΘ
VI(y,Z, t) := y(y − 1)(y − t)

t(t− 1)

(
Z2 + Z

y − t

)
− 1

4

(
(θ∞ − 1)2 − 1

t(t− 1) y + θ2
0

(t− 1)y + θ2
t

y − t
− θ2

1
t(y − 1)

)
. (3.9)

Note this is nothing else than the Hamiltonian for the differential case. In
the following, we denote abusively

1 + (q− 1)Θ
2 :=

(
1 + (q− 1)θ0

2 , 1 + (q− 1)θ1

2 , 1 + (q− 1)θt

2 , 1 + (q− 1)θ∞

2

)
.

Theorem 3.2. — Let Θ ∈ C4. Let RΘ
1 ,RΘ

2 ∈ C(y,Z, t, q) be the (well-
defined) rational functions in four variables such that the modified q-Painlevé
VI equation (3.8) with spectral data given by

Θ := 1 + (q − 1)Θ
2

reads

qP̃VI (Θ) :
{
∂q,ty = ∂q,ZH

Θ
VI(y,Z, t) + (q − 1)RΘ

1 (y,Z, t, q)
∂q,tZ = −∂q,yH

Θ
VI(y,Z, t) + (q − 1)RΘ

2 (y,Z, t, q)

via (3.9) and the operator identity 1+t(q−1)∂q,t = σq,t. Let R ∈ {RΘ
1 ,RΘ

2 }.
The divisor {q = 1} in C4

y,Z,t,q is not an irreducible component of the polar
divisor of R. Moreover, the polar locus of the therefore well-defined rational
function R|q=1 on C3

y,Z,t is contained in the set

P := {y = 0} ∪ {y = 1} ∪ {y = t} ∪ {t = 0} ∪ {t = 1} .

Proof. — Let us first say some words about the well-definedness of RΘ
1 ,

RΘ
2 . For quadrupels Θ, there are well defined rational functions f, g ∈

C(y,Z, t, q,Θ0,Θ1,Θt,Θ∞) such that qP̃VI(Θ) can be written as{
σq,ty = f(y,Z, t, q,Θ)
σq,tZ = g(y,Z, t, q,Θ) .

Indeed, it suffices to substitute the first equation in (3.8) into the second,
so that the right hand sides only depends on the variables y,Z, t, q,Θ. Note
that ∂q,ZH

Θ
VI(y,Z, t) and ∂q,yH

Θ
VI(y,Z, t) can easily be calculated and are

elements of C(y,Z, t, q). Then
RΘ

1 (y,Z, t, q) := 1
q − 1

(
f
(
y,Z, t, q, 1+ q−1

2 Θ
)

− y

(q − 1)t − ∂q,ZH
Θ
VI(y,Z, t)

)

RΘ
2 (y,Z, t, q) := 1

q − 1

(
g
(
y,Z, t, q, 1+ q−1

2 Θ
)

− Z

(q − 1)t + ∂q,yH
Θ
VI(y,Z, t)

)
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are indeed elements of C(y,Z, t, q) and are those required by the statement.
Let us define

R̃Θ
1 (y,Z, t, q) := 1

q − 1

(
f
(
y,Z, t, q, 1 + q−1

2 Θ
)

− y

(q − 1)t − ∂ZH
Θ
VI(y,Z, t)

)

R̃Θ
2 (y,Z, t, q) := 1

q − 1

(
g
(
y,Z, t, q, 1 + q−1

2 Θ
)

− Z

(q − 1)t + ∂yH
Θ
VI(y,Z, t)

)
.

Since ∂
∂ZH

Θ
VI and ∂

∂yH
Θ
VI are rational functions of (y,Z, t), these R̃Θ

1 , R̃Θ
2 are

again rational functions in the variables y,Z, t, q. Denoting ∇⋆ := ∂q,⋆−∂⋆

q−1 ,
we have RΘ

1 − R̃Θ
1 = −∇Z(HΘ

VI), and RΘ
2 − R̃Θ

2 = ∇y(HΘ
VI). In order to

compute these differences, note that HΘ is rational with only simple poles
independent of Z and for ⋆ ∈ {y,Z}, the operator ∇⋆ is C(t)-linear. So it
suffices to compute ∇x(xn) for n ∈ N and ∇x( 1

x−a ) for a independent of x.
We have ∇x(1) = 0, and for n ∈ N∗, we find

∇x(xn) = xn−1
(
qn−1

(q−1)2 − n

q−1

)
= xn−1

(∑n−1
k=0 q

k −n
q − 1

)
= xn−1

n−1∑
k=0

[k]q ,

where [k]q = qk−1
q−1 =

∑k−1
i=0 q

i with [0]q = 0. In particular, we find ∇x(x) = 0,
∇x(x2) = x, ∇x(x3) = (2 + q)x2. For a independent of x, we find

∇x

(
1

x− a

)
= −1

(qx− a)(x− a)(q− 1) + 1
(x− a)2(q− 1) = x

(qx− a)(x− a)2 .

We deduce

−∇Z(HΘ
VI) = −y(y − 1)(y − t)

t(t− 1) Z ,

∇y(HΘ
VI) = ((q + 2)y − 1 − t)Z + 1

t(t− 1) yZ

− 1
4

(
θ2

0
q(t− 1)y2 + θ2

t y

(y − t)2(qy − t) − θ2
1y

t(y − 1)2(qy − 1)

)
.

Obviously, these differences do not have {q = 1} as an irreducible component
of their respective polar divisors, and their restrictions to q = 1 do not have
poles outside P. This means that the statement holds for R ∈ {RΘ

1 ,RΘ
2 } if

and only if it holds for R ∈ {R̃Θ
1 , R̃Θ

2 }. But for the latter, we have already
done most of the work. Indeed, the calculations in Section 2.3.3 at the end
of Section 2.3 show that in restriction to any line {(y,Z, t) = (y0,Z0, t0)} ⊂
C4

y,Z,t,q with (y0,Z0, t0) ∈ C3 \ P, the two rational functions(
(q − 1)R̃Θ

1

)∣∣∣
{(y,Z,t)=(y0,Z0,t0)}

(q),
(

(q − 1)R̃Θ
2

)∣∣∣
{(y,Z,t)=(y0,Z0,t0)}

(q)
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vanish both at q = 1. It follows that {q = 1} is an irreducible component of
the zero divisor of both

(
(q−1)R̃Θ

2
)

and
(
(q−1)R̃Θ

2
)
. In particular, {q = 1}

is not an irreducible component of the polar divisor of R̃Θ
1 or R̃Θ

2 . Moreover,
even though we did not push the Taylor series expansions in Section 2.3 far
enough as to have an explicit expression for R̃Θ

1 |q=1 and R̃Θ
2 |q=1, it is still

clear from the calculations that these functions cannot have poles outside P.
The result follows. □

3.3.2. Confluence of discrete solutions

We will now see that discrete solutions of the modified q-Painlevé VI
equation yield holomorphic solutions of the differential Painlevé VI equation
by some limit process. The idea is that the successive ∂q,t-derivations should
lead, when q → 1, to the coefficients of the Taylor series expansion of the
limit functions. Let us consider the operator

δq,t := t∂q,t = σq,t − 1
q − 1 .

As one can easily check, for each n ∈ N, we have

δn
q,t = 1

(q − 1)n
·

n∑
k=0

(
n

k

)
(−1)n−kσk

q,t . (3.10)

Here we use the convention δ0
q,t = σ0

q,t = 1. We will prove the following.

Theorem 3.3. — Let Θ ∈ C4. Let t0 ∈ C \ {0, 1} and (y0,Z0) ∈
(C \ {0, 1, t0})×C. Then, there exists a family (yn,Zn)n∈N of pairs of ratio-
nal functions (yn,Zn) ∈ C(q) × C(q) such that for generic values of q, the
sequence (yn(q),Zn(q), qnt0)n∈N is the positive part of the discrete solution
of qP̃VI

(
1 + (q − 1) Θ

2
)

with initial value (y0,Z0, t0). Consider the sequence
(an, bn)n∈N of pairs of rational functions (an, bn) ∈ C(q) × C(q) defined by

an(q) = 1
(q − 1)n

·
n∑

k=0

(
n

k

)
(−1)n−kyk(q)

bn(q) = 1
(q − 1)n

·
n∑

k=0

(
n

k

)
(−1)n−kZk(q) .

Then for each n ∈ N, neither an(q) nor bn(q) has a pole at q = 1. Moreover,
the power series ∑

n⩾0

an(1)
n! (q − 1)n ,

∑
n⩾0

bn(1)
n! (q − 1)n,
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both converge and yield the pair of functions q 7→ (y(q · t0), Z(q · t0)), where
(y(t), Z(t)) is the unique solution of the Painlevé Hamiltonian system (3.1)
with initial condition (y0,Z0) at t0.

This result will be proven by the end of this section. As it turns out, rather
than trying to calculate the limit for q → 1 for the (an(q), bn(q)) directly,
it is easier to first construct a particular sequence of rational functions that
are finite at q = 1 and then show that this sequence is actually the one from
the statement. First we will need some general remarks.

The δq,t-operator on a field of functions with complex variable t is additive
and satisfies the following algebraic properties:

δq,t(fg) = (δq,tf)g + fδq,tg + (q − 1)δq,t(f)δq,t(g),

δq,t

(
1
f

)
= −δq,tf

f(f + (q − 1)δq,tf) .
(3.11)

In particular, for any rational function F ∈ C(y,Z, t, q) we may define,
by treating y and Z like functions of t, a rational function ∆F with two
additional variables such that

δq,tF (y,Z, t, q) = ∆F (y,Z, t, q, δq,ty, δq,tZ) .

Let δt = t∂t be the formal limit of δq,t when q goes to 1. The q-analogue of
the chain rule that we will need is the following.

Lemma 3.4. — Let F ∈ C(y,Z, t, q) and ∆F ∈ C(y,Z, t, q, δq,ty, δq,tZ)
be as above. Define RF ∈ C(y,Z, t, q, δq,ty, δq,tZ) by

RF :=
∆F −

(
∂F
∂y · δty + ∂F

∂Z · δtZ + ∂F
∂t · t

)
q − 1 .

If {q = 1} is not an irreducible component of the polar locus of F , then it
is not an irreducible component of the polar locus of ∆F and RF . Moreover,
when F is seen as an element of C(y,Z, t, q, ∂q,ty, ∂q,tZ), then the affine
parts of the polar locus of ∆F |q=1 and RF |q=1 are contained in the polar
locus of F |q=1.

Proof. — Let P,Q ∈ C[y,Z, t, q], 0 ̸= Q, such that F = P/Q. We
use (3.11) to compute successively ∆Q−1 , RQ−1 and ∆P/Q, RP/Q. We have

∆Q−1 = −∆Q

Q(Q+ (q − 1)∆Q) = −∆Q

Q2 +
(q − 1)∆2

Q

Q2(Q+ (q − 1)∆Q) .
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Then (q − 1)RQ−1 is given by

∆Q−1 + 1
Q2

(
∂Q

∂y
· δty + ∂Q

∂Z
· δtZ + ∂Q

∂t
· t
)

= − (q − 1)RQ

Q2 +
(q − 1)∆2

Q

Q2(Q+ (q − 1)∆Q) .

We have

∆F = ∆P/Q = ∆P

Q
+ P∆Q−1 + (q − 1)∆P ∆Q−1

= ∆P

Q
+P

(
−∆Q

Q2 +
(q − 1)∆2

Q

Q2(Q+(q−1)∆Q)

)
− (q−1)∆P

∆Q

Q(Q+(q−1)∆Q) .

Finally,
RF = RP/Q = RPQ

−1 + PRQ−1 + ∆P ∆Q−1

= RP

Q
+ P

(
−RQ

Q2 +
∆2

Q

Q2(Q+ (q − 1)∆Q)

)
− ∆P ∆Q

Q(Q+ (q − 1)∆Q) .

This proves that {q = 1} is not an irreducible component of the polar locus of
∆F and RF . Note that ∆P |q=1,∆Q|q=1, RP |q=1, RQ|q=1 ∈ C[y, Z, t, δq,ty,
δq,tZ]. Hence the affine parts of the polar loci of ∆F |q=1 and RF |q=1 are
contained in the zero locus of Q|q=1. This concludes the proof. □

Let H1, H2 ∈ C(y,Z, t) and R1, R2 ∈ C(y,Z, t, q) be rational functions
in three and four complex variables respectively such that

• the affine part of the polar locus of each of the functions Hi with i ∈
{1, 2} is contained in the subset P ⊂ C3

y,Z,t given by P := {y = 0}∪
{y = 1} ∪ {y = t} ∪ {t = 0} ∪ {t = 1} .

• for each i ∈ {1, 2}, the polar locus of Ri does not contain {q = 1},
and the affine part of the polar locus of Ri|{q=1} is contained in P.

Consider the system of q-difference equations{
δq,ty = H1(y,Z, t) + (q − 1)R1(y,Z, t, q)
δq,tZ = H2(y,Z, t) + (q − 1)R2(y,Z, t, q) .

(3.12)

Applying the operator δq,t on both sides and then substituting the values
of δq,ty, δq,tZ imposed by this system yields a second order relation. There
exist rational functions R(1)

1 , R
(1)
2 ∈ C(y,Z, t, q) such that this second order

system is of the form{
δ2

q,ty = H
(1)
1 (y,Z, t) + (q − 1)R(1)

1 (y,Z, t, q)

δ2
q,tZ = H

(1)
2 (y,Z, t) + (q − 1)R(1)

2 (y,Z, t, q) ,
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where H
(1)
1 , H

(1)
2 ∈ C(y,Z, t) and R

(1)
1 , R

(1)
2 ∈ C(y,Z, t, q) are given for

i ∈ {1, 2} by

H
(1)
i = ∂Hi

∂y
· δty + ∂Hi

∂Z
· δtZ + ∂Hi

∂t
· t

R
(1)
i = ∆Ri

(y,Z, t, q,H1, H2)

+
∆Hi(y,Z, t, q,H1, H2) −

(
∂Hi

∂y · δty + ∂Hi

∂Z · δtZ + ∂Hi

∂t · t
)

q − 1 .

By Lemma 3.4, for i ∈ {1, 2}, the polar locus of R(1)
i does not contain

{q = 1}, and the affine part of the polar locus of R(1)
i |{q=1} is contained

in P.

We may apply this discussion to the modified q-Painlevé VI equation (3.8)
with spectral data given by Θ := 1 + (q − 1) Θ

2 and begin the proof of
Theorem 3.3. Let us fix Θ ∈ C4 and set

H1 := H
(0)
1 := t

∂

∂Z
HΘ

VI, R1 := tR̃Θ
1 ,

H2 := H
(0)
2 := −t ∂

∂y
HΘ

VI, R2 := tR̃Θ
2 ,

where HΘ
VI(y,Z, t) is given by (3.9) and where for i ∈ {1, 2}, R̃Θ

i (y,Z, t, q)
is as in the proof of Theorem 3.2. With this convention, by Theorem 3.2, the
modified q-Painlevé VI equation with spectral data 1 + (q − 1) Θ

2 is, when
expressed with respect to the δq,t-operator, given by (3.12). Moreover, by
induction on n ∈ N, the associated system of order n+ 1 is of the form{

δn+1
q,t y = H

(n)
1 (y,Z, t) + (q − 1)R(n)

1 (y,Z, t, q)

δn+1
q,t Z = H

(n)
2 (y,Z, t) + (q − 1)R(n)

2 (y,Z, t, q) ,

for some well defined rational functions H(n)
1 , H(n)

2 ∈ C(y,Z, t) and R
(n)
1 ,

R
(n)
2 ∈ C(y,Z, t, q) such that

• H
(n)
i = ∂H

(n−1)
i

∂y · δty + ∂H
(n−1)
i

∂Z · δtZ + ∂H
(n−1)
i

∂t · t and
• the polar locus of R(n)

i does not contain {q = 1}, and the affine part
of the polar locus of R(n)

i |{q=1} is contained in P.

Now let us fix
t0 ∈ C \ {0, 1} , (y0,Z0) ∈ (C \ {0, 1, t0}) × C .

Note that if the line {(y,Z, t) = (y0,Z0, t0)} ⊂ C4
y,Z,t,q is contained in

the polar divisor of R(n)
i for some n, then R

(n)
i |q=1 would have a pole at

(y0,Z0, t0). But this cannot happen because (y0,Z0, t0) ̸∈ P. Therefore, we
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may define a sequence of pairs of rational functions (ãn, b̃n)n∈N ∈ (C(q) ×
C(q))N as follows. We take the initial functions to be the constants ã0(q) :=
y0, b̃0(q) := Z0, and for n ∈ N, we set{

ãn+1(q) = H
(n)
1 (y0,Z0, t0) + (q − 1)R(n)

1 (y0,Z0, t0, q)

b̃n+1(q) = H
(n)
2 (y0,Z0, t0) + (q − 1)R(n)

2 (y0,Z0, t0, q) .

Note that by construction, for each n ∈ N, the pair (ãn, b̃n) is well defined
and finite when evaluated at q = 1. If (y(t), Z(t)) is the unique solution of the
Painlevé Hamiltonian system (3.1) with initial condition (y0,Z0) at t0, then
its successive derivations with respect to the differential operator δt satisfy
precisely

(
(δn+1

t y)(t0), (δn+1
t Z)(t0)

)
= (H(n)

1 (y0,Z0, t0), H(n)
2 (y0,Z0, t0)).

On the other hand, the successive δt-derivatives of (y(t), Z(t)) evaluated
at t0 coincide with the evaluation at q = 1 of the successive ∂q-derivatives
of the holomorphic functions

q 7→ y(q · t0) , q 7→ Z(q · t0) .

Therefore, the power series
∑

n⩾0
ãn(1)

n! (q−1)n,
∑

n⩾0
b̃n(1)

n! (q−1)n both con-
verge and yield the pair of functions q 7→ (y(qt0), Z(qt0)), where (y(t), Z(t))
is this unique solution. It remains to prove that the sequence (ãn, b̃n)n∈N
coincides with the (an, bn)n∈N defined in the statement of Theorem 3.3. On
the other hand, since σq,t = 1 + (q − 1)δq,t, for each n ∈ N we have

σn
q,t = (1 + (q − 1)δq,t)n =

n∑
k=0

(
n

k

)
(q − 1)kδk

q,t . (3.13)

We are therefore inclined to define the sequence (yn,Zn)n∈N ∈ (C(q) ×
C(q))N given by 

yn(q) =
n∑

k=0

(
n

k

)
(q − 1)kãk(q)

Zn(q) =
n∑

k=0

(
n

k

)
(q − 1)k b̃k(q) .

By construction, the elements of the sequence (yn,Zn, q
nt0)n∈N ∈ (C(q)×

C(q) × C(q))N are related to (y0,Z0, t0) by the same rational relation as
those of a discrete solution with initial value (y0,Z0, t0) of the modified q-
Painlevé VI equation (3.8) with spectral data Θ = 1 + (q − 1) Θ

2 . Therefore,
the sequence of rational functions (yn,Zn, q

nt0)n∈N is the (positive part of)
the solution with initial value (y0,Z0, t0), seen as a rational function of the
variable q.

The process in (3.13) allowing to recover σn
q,t from 1, δq,t, . . . , δ

n
q,t is inverse

to the process in (3.10) allowing to recover δn
q,t from σ0

q,t, . . . , σ
n
q,t. Therefore,
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the sequence (ãn, b̃n)n∈N constructed above coincides with the (an, bn)n∈N
defined in the statement of Theorem 3.3. This concludes the proof of Theo-
rem 3.3.

Remark 3.5. — Note that with respect to the notation in Theorem 3.3,
for each n ∈ N, as q → 1, we have

yn(q) − y(qnt0) = O(q − 1) and Zn(q) − Z(qnt0) = O(q − 1).

Indeed, we have

yn(q) =
n∑

k=0

(
n

k

)
(q − 1)kak(q) = a0(q) +O(q − 1)

= y(t0) +O(q − 1) = y(qnt0) +O(q − 1) .

The argument for (Zn(q) − Z(qnt0)) = O(q − 1) is identical.

Corollary 3.6. — Let Θ ∈ C4. Let Q ⊂ C \ {0, 1} be a subset with 1
in its closure. Let t0 ∈ C \ {0, 1}. Let (y0(q),Z0(q)) be a pair of continuous
functions Q → C such that the limit

(y0, Z0) := lim
q→1
q∈Q

(y0(q),Z0(q))

exists in C2 and satisfies y0 ̸∈ {0, 1, t0}. Then, there exists a family
(yn(q),Zn(q))n∈N ∈ C(y0(q), q) × C(Z0(q), q) of pairs of continuous func-
tions such that for generic values of q, the sequence (yn(q),Zn(q), qnt0)n∈N
is the positive part of the discrete solution of qP̃VI

(
1 + (q − 1) Θ

2
)

with initial
value (y0(q),Z0(q), t0). Moreover, for each n ∈ N, as q → 1, we have

yn(q) − y0(q) = O(q − 1) , Zn(q) − Z0(q) = O(q − 1) .

Proof. — In the proof of Theorem 3.3, we may replace (y0,Z0) by
(y0(q),Z0(q)) in the definition of (an(q), bn(q))n∈N. Note that the latter
then is a sequence of pairs of rational functions, each evaluated in a pair of
continuous functions in q which, as q → 1, admit a finite limit which is not
in the polar locus of the restriction to q = 1 of these rational functions. We
conclude that for each n ∈ N, the pair (an(q), bn(q)) may be continued to
a continuous function on Q ∪ {1} with finite value at q = 1. Moreover, as
before, we have the relation

(yn(q) ,Zn(q) =
n∑

k=0

(
n

k

)
(q − 1)k(ak(q), bk(q))

= (a0(q), b0(q)) +O(q − 1)
= (y0(q),Z0(q)) +O(q − 1) . □
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4. Okamoto’s space of initial conditions

4.1. Differential case

Let us review the construction in [20] of a convenient space of initial
conditions for the Painlevé VI equation, and recall why it proves the Painlevé
property. Let Θ = (θ0, θ1, θt, θ∞) ∈ C4. Recall the Hamiltonian system (3.1)
associated to the Painlevé VI differential equation with spectral data Θ:

y′(t) = ∂HΘ
VI

∂Z
(y, Z, t)

Z ′(t) = −∂HΘ
VI

∂y
(y, Z, t) .

Let us fix a time t0 ∈ C \ {0, 1}. Recall from Section 3.1 that for any initial
value (y0, Z0) ∈ (C\{0, 1, t0})×C, there exists a unique germ of holomorphic
solution (y(t), Z(t)) of (3.1) such that (y(t0), Z(t0)) = (y0, Z0). Since we
have y0 ̸∈ {0, 1, t0} here, we may equivalently consider the space of initial
conditions (u0, v0) ∈ (C \ {0, 1, t0}) × C, where we identify

(u0, v0) = (y0, y0(y0 − 1)(y0 − t0)Z0) . (4.1)

We compactify this space of initial values to the second Hirzebruch surface
F2, using the following coordinate charts of C2-spaces, endowed with their
obvious rational transition maps:

(u0, v0) =: (u, v), (u1, v1) =
(
u,

1
v

)
,

(u2, v2) =
(

1
u
,
v

u2

)
, (u3, v3) =

(
1
u
,
u2

v

)
.

Here what we have added by the compactification is the union of the hori-
zontal line

H := {v1 = 0} ∪ {v3 = 0}

and the four vertical lines given by

Di := {u0 = i}∪{u1 = i} for i ∈ {0, 1, t0} , D∞ := {u2 = 0}∪{u3 = 0} .

Now the Hamiltonian system (3.1) defines a meromorphic vector field on
F2 ×(C\{0, 1}). Explicitly, it is given with respect to the coordinates (u, v, t)
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by



t′ = 1

u′ = 1
t(t− 1) (2v + u(u− 1))

v′ = 1
4

(
4v2 − t2θ2

0
t(t− 1)u + 4v2 − (t− 1)2θ2

1
t(t− 1)(u− 1) + 4v2 − t2(t− 1)2θ2

t

t(t− 1)(u− t)

)
+ θ∞(θ∞ − 2)u(u− 1)(u− t)

4t(t− 1)

+ 1
4

(
−θ2

0(u− 1 − t)
t− 1 + θ2

1(u+ 1 − t)
t

− (t(t− 1)θ2
t − 4v)(u− 1 + t)
t(t− 1)

)
.

One realizes that the vector field is infinite on the set given for each fixed
t = t0 by

H ∪ D0 ∪ D1 ∪ Dt ∪ D∞.

More precisely, it is infinite or undetermined (of the form “ 0
0 ”) precisely

there. These indeterminacy points will be called base points in the following.
If we assume that

θ0 ̸= 0 , θ1 ̸= 0 , θt ̸= 0 , θ∞ ̸= 1 , (4.2)

then there are precisely eight such base points. With respect to the four
charts of F2, these base points, each possibly visible in several charts, are
precisely the following:

(u0, v0) (u1, v1) (u2, v2) (u3, v3)
β±

0
(
0,± tθ0

2
) (

0,± 2
tθ0

)
β±

1

(
1,± (t−1)θ1

2

) (
1,± 2

(t−1)θ1

) (
1,± (t−1)θ1

2

) (
1,± 2

(t−1)θ1

)
β±

t

(
t,± t(t−1)θt

2

) (
t,± 2

t(t−1)θt

) (
1
t ,±

(t−1)θt

2t

) (
1
t ,±

2t
(t−1)θt

)
β+

∞
(
0, θ∞−2

2
) (

0, 2
θ∞−2

)
β−

∞
(
0,− θ∞

2
) (

0,− 2
θ∞

)
In the following discussion, we assume (4.2). For fixed t, the Hirzebruch
surface, as well as the configuration of particular lines and base points, are
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resumed in the following picture. Here “(n)” indicates “self-intersection num-
ber equal to n”.

H(−2)

D∞

(0)

Dt

(0)

D1

(0)

D0

(0)

•β+
0

•β−
0

•β+
1

•β−
1

•β−
t

•β+
t •β+

∞

•β−
∞

u

v

For any fixed t, let us denote by F̂t
2 the result of the above Hirzebruch surface

F2 after blow up of the eight base points. For each i ∈ {0, 1, t,∞}, we denote
by D∗∗

i the strict transform of Di after blow up of β±
i , i.e. the closure of

Di \ {β±
i } in F̂t

2. Note that each D∗∗
i has self-intersection number −2. The

Okamoto space of initial values at the time t for the sixth Painlevé equation
with spectral data Θ is by definition

Okat := F̂t
2 \ It , where It := D∗∗

0 ∪ D∗∗
1 ∪ D∗∗

t ∪ D∗∗
∞ ∪ H .

For example in order to blow up β−
0 , one replaces a neighborhood of β−

0
containing none of the other seven base points, by the corresponding neigh-
borhood in the spaces C2

u01,v01
and C2

u02,v02
related to C2

u,v according to the
following transition maps:

(u01, v01) =
(
u,

2v + tθ0

2u

)
, (u02, v02) =

(
2u

2v + tθ0
, v + tθ0

2

)
.

Note that (u02, v02) =
(

1
v01
, u01v01

)
whenever v01 ̸= 0. In these two new

charts, what in C2
u,v was the point β−

0 now corresponds to the exceptional
line, isomorphic to P1, given by

E−
0 := {u01 = 0} ∪ {v02 = 0} .
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The complementary of E−
0 however is in biholomorphic correspondence with

the corresponding open subset of C2
u,v. The vector field in these new charts

is given as follows:

u′
01 = 1

t(t−1)
(
2
(
u01v01 − tθ0

2
)

+ u01(u01 − 1)
)

v′
01 = − 1

t(t−1)
(
v2

01 − v01 + tθ0
2
)

− t+1
t2(t−1) (u01v01 − tθ0)v01 + v01

t

+ 1
4

(
− θ2

0
t−1 + θ2

1
t − θ2

t

)
+ 1

4

(
(2u01v01−tθ0)2−(t−1)2θ2

1
t(t−1)(u01−1)

+ (2u01v01−tθ0)2−t2(t−1)2θ2
t

t2(t−1)(u01−t) + θ∞(θ∞−2)(u01−1)(u01−t)
t(t−1)

)
,



u′
02 = 1

t(t−1)
(
1 − u02 + tθ0

2 u
2
02
)

+ t+1
t2(t−1) (v02 − tθ0)u02

− u02
t − u2

02
4

(
− θ2

0
t−1 + θ2

1
t − θ2

t

)
− u2

02
4

(
(2v02−tθ0)2−(t−1)2θ2

1
t(t−1)(u02v02−1)

+ (2v02−tθ0)2−t2(t−1)2θ2
t

t2(t−1)(u02v02−t) + θ∞(θ∞−2)(u02v02−1)(u02v02−t)
t(t−1)

)
v′

02 = v02−tθ0
t(t−1)u02

+ 1
4

(
(2v02−tθ0)2−(t−1)2θ2

1
t(t−1)(u02v02−1) + (2v02−tθ0)2−t2(t−1)2θ2

t

t(t−1)(u02v02−t)

)
+ θ∞(θ∞−2)u02v02(u02v02−1)(u02v02−t)

4t(t−1)

+ 1
4

(
− θ2

0(u02v02−1−t)
t−1 + θ2

1(u02v02+1−t)
t

− (t(t−1)θ2
t −2(2v02−tθ0))(u02v02−1+t)

t(t−1)

)
+ θ0

2 .

We see that there is no base point on E−
0 = {u01 = 0}∪{v02 = 0}. In other

words, the blow up was sufficient to resolve the base point β−
0 . Moreover,

we see that the vector field is finite on all points of E−
0 except the one given

by the intersection with the strict transform of D0, which is visible in these
charts as {u02 = 0}. As shown in [20], this actually holds true for all eight
base points, i.e. on Okat, the vector field is everywhere finite and free of base
points.

As explained in [16], this situation can be conveniently reformulated as
follows. On F2 × (C \ {0, 1}), the meromorphic vector field given by (3.1)
defines a singular holomorphic foliation. The singular locus corresponds to
the eight families (parametrized by t ∈ C \ {0, 1}) of base points. After
blowing up the singular locus, the induced foliation on⋃

t∈C\{0,1}

F̂t
2
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is non-singular. Moreover, it is transversal to {t = cst} on the complementary
of
⋃

t∈C\{0,1} It, i.e. on

Oka :=
⋃

t∈C\{0,1}

Okat .

This implies that for any t0 ∈ C \ {0, 1} and any initial condition given
by a point in Okat0 , in turn given by a point in some chart C2

uij ,vij
of

F̂t0
2 , one obtains a unique germ of holomorphic integral curve of the form

(uij(t), vij(t), t). Translated back into the variables (y, Z), this yields a mero-
morphic solution y of the sixth Painlevé equation, associated to this initial
condition. Moreover, since (uij(t), vij(t), t) parametrizes a germ of leaf of
the Painlevé foliation on Oka, and this foliation is transversal to {t = cst},
this parametrization of a germ of leaf can be analytically continued in Oka
along any path with starting point t0. In other words, the meromorphic so-
lution y of the Painlevé equation can be meromorphically continued along
any path in C \ {0, 1} with starting point t0. As for the usual analytic con-
tinuation, this meromorphic continuation has no reason to be uniform. But
we obtain a well-defined meromorphic function on every simply connected
subset of C \ {0, 1} containing t0. This phenomenon, which is also observed
for the other five Painlevé equations, is also known as the Painlevé property
of solutions of Painlevé equations.

Let us illustrate the above by an example. Consider a germ of solution y
of PVI, associated to an initial condition on E−

0 \ D∗∗
0 at t = t0. That is, we

have (u01, v01)(t0) = (0, α) for some α ∈ C. Hence y = u01 is holomorphic
near t0. From the explicit formula of the vector field, we readily calculate
the first terms of the Taylor series expansion of y:

y(t) = − θ0

(t0 − 1)(t− t0) − θ0(2α− 1 − t0)
2t0(t0 − 1)2 (t− t0)2 +O((t− t0)3) .

Note that y has a simple zero at t0, and its Taylor series expansion at t0 up
to order two is uniquely determined by α.

4.2. A discrete analogue

Let us first review the construction in [23] of a convenient q-analogue of
the Okamoto space for the q-Painlevé VI equation, which proves the existence
of discrete solutions, et then adapt this discussion to our modified q-Painlevé
VI equation.

Let q ∈ C \ {0, 1}. Let Θ = (Θ0,Θ1,Θt,Θ∞) ∈ (C∗)4 and denote, as
usual, Θi := 1/Θi for each i ∈ {0, 1, t,∞}. Consider the rational functions
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f, g ∈ C(y, z, t) in three complex variables given by

g(y, z, t) := 1
q

(y − tΘt)
(
y − tΘt

)
z (y − Θ1)

(
y − Θ1

) ,
f(y, z, t) :=

(g(y, z, t) − tΘ0)
(
g(y, z, t) − tΘ0

)
y
(
g(y, z, t) − Θ∞

q

) (
g(y, z, t) − Θ∞

)
=

(
1
q

(y−tΘt)(y−tΘt)
z(y−Θ1)(y−Θ1) − tΘ0

)(
1
q

(y−tΘt)(y−tΘt)
z(y−Θ1)(y−Θ1) − tΘ0

)
y

(
1
q

(y−tΘt)(y−tΘt)
z(y−Θ1)(y−Θ1) − Θ∞

q

)(
1
q

(y−tΘt)(y−tΘt)
z(y−Θ1)(y−Θ1) − Θ∞

) .
(4.3)

Note that with this notation, the sixth q-Painlevé equation (3.4) with spec-
tral data Θ writes

σq,ty = f(y, z, t) , σq,tz = g(y, z, t).

For each fixed t = t0 ∈ C∗ such that

t ̸= Θ±1
0 Θ∞/q , t ̸= Θ±1

0 Θ∞ , t ̸= Θ±1
t Θ1 , t ̸= Θ±1

t Θ1 , (4.4)

the expressions of f(y, z, t0) and g(y, z, t0) in (4.3) are reduced, i.e. they
admit no common factor in nominator and denominator. Now choose any
t = t0 ∈ C∗ satisfying (4.4) and consider the rational map

St :
{
P1 × P1 99K P1 × P1

(y, z) 7−→ (f(y, z, t0), g(y, z, t0)) .
(4.5)

Note that for any point (y0, z0) ∈ C∗ × C∗ ⊂ P1 × P1, the image S(y0, z0)
is a well defined point in P1 ×P1. However, on the complement of C∗ ×C∗ in
P1×P1, there are some points for which the image under St is undetermined,
i.e. at least one of the coordinates of the image contains, even after switching
to homogeneous coordinates in the source, an expression of the form “ 0

0 ”.
These points will we called critical points in the following. Let us assume

Θ2
0 ̸= 1 , Θ2

1 ̸= 1 , Θ2
t ̸= 1 , Θ2

∞ ̸= q . (4.6)

Then there are precisely eight critical points, which are given, for t = t0, as
follows:

γ−
0 (t) : (y, z) = (0, tΘ0/q) , γ+

0 (t) : (y, z) =
(
0, tΘ0/q

)
,

γ−
1 (t) : (y, z) =

(
Θ1,∞

)
, γ+

1 (t) : (y, z) = (Θ1,∞) ,
γ−

t (t) : (y, z) = (tΘt, 0) , γ+
t (t) : (y, z) =

(
tΘt, 0

)
,

γ−
∞(t) : (y, z) =

(
∞,Θ∞

)
, γ+

∞(t) : (y, z) = (∞,Θ∞/q) .
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Let us denote by Bl
(
P1 × P1)

x1,...,xk
, the blow up of P1 ×P1 at the k distinct

points x1, . . . , xk. For each t ∈ C∗ satisfying (4.4), let us define

Pt := Bl
(
P1 × P1)

γ−
0 (t),γ+

0 (t),γ−
1 (t),γ+

1 (t),γ−
t (t),γ+

t (t),γ−
∞(t),γ+

∞(t) . (4.7)

Here we continue to assume (4.6), so that these are indeed eight distinct
points, the blow up is well defined, and does moreover not depend on the
order in which the points are successively blown up. As a slight improvement
to [23, Proposition 1], we obtain the following.

Proposition 4.1. — Let q ∈ C \ {0, 1}. Let Θ ∈ (C∗)4 such that (4.6)
holds. Denote

Sq := {Θε1
1 Θεt

t , Θε0
0 Θε∞

∞ | ε0, ε1, εt, ε∞ ∈ {−1, 1}} · qZ . (4.8)

Then for any t ∈ C∗ \ Sq, the map

St : Pt 99K Pqt

induced by (4.5), via pre-composition and post-composition with the blow ups
in (4.7), is biregular. That is, this rational map contains no indeterminacy
points and is bijective. In particular, it is a biholomorphism.

Proof. — We simply follow the proof in [23], where generic t,Θ, were con-
sidered, and make sure that it goes through for fixed t,Θ as in the statement.
In order to make the following argumentation shorter, let us first consider
an example.

Consider the rational map φ from P1 × P1 with standard coordinates
(y, z) to P1 × P1 with standard coordinates (ŷ, ẑ) defined by (y, z) 7→
(ŷ, ẑ) = (y, z(y − Θ1)) . This map is actually a so-called elementary trans-
formation with respect to the ruling P1 × P1 → P1 given by (y, z) 7→ y. In
the complement of the fiber {y = Θ1} of this ruling, its defines a biholo-
morphism onto its image. Moreover, this map has an indeterminacy point
at (y, z) = (Θ1,∞). With the exception of this indeterminacy point, every
point in the fiber {y = Θ1} is mapped to the point (ŷ, ẑ) = (Θ1, 0). Con-
versely, the inverse rational map (ŷ, ẑ) 7→ (y, z) =

(
ŷ, ẑ

ŷ−Θ1

)
has an inde-

terminacy point at (ŷ, ẑ) = (Θ1, 0) and maps the rest of the fiber {ŷ = Θ1}
to the point (y, z) = (Θ1,∞). However, as one can easily check, the rational
map obtained by considering the composition

Bl(P1 ×P1)(y,z)=(Θ1,∞) −→ P1 ×P1 φ
99K P1 ×P1 99K Bl(P1 ×P1)(ŷ,ẑ)=(Θ1,0) ,

is biregular. So in summary, the elementary transformation φ blows up the
point (y, z) = (Θ1,∞) and contracts the strict transform of the line {y =
Θ1}, and becomes biregular when pre- and post-composed with the blow-ups
of (y, z) = (Θ1,∞) and (ŷ, ẑ) = (Θ1, 0) respectively.
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The key is now to use elementary transformations in order to decompose
the map St into a sequence of biregular isomorphisms.

• Consider the rational map from P1 × P1 with standard coordi-
nates (y, z) to P1 × P1 with standard coordinates (y, ẑ) defined
by (y, z) 7→ (y, ẑ) =

(
y, z (y−Θ1)(y−Θ1)

(y−tΘt)(y−tΘt)

)
. This map can be seen

as the composition of four (commuting) elementary transformations
with respect to the ruling (y, z) 7→ y. Note that by assumption, the
set {Θ1,Θ1, tΘt, tΘt} has cardinality four, which implies that no two
of these elementary transformations cancel each other out. There-
fore, the considered rational map induces a biregular isomorphism
from Pt to the surface P

(1)
t , where P

(1)
t denotes the blow up of

P1 × P1 with standard coordinates (y, ẑ) at the eight points given,
with respect to these coordinates, by

(
0, Θ0

qt

)
,

(
0, Θ0

qt

)
,

(
Θ1, 0

)
, (Θ1, 0) ,

(tΘt,∞) ,
(
tΘt,∞

)
,
(
∞,Θ∞

)
, (∞,Θ∞/q) .

• Consider the biregular map from P1 × P1 with standard coordi-
nates (y, ẑ) to P1 × P1 with standard coordinates (y, z̃) defined by
(y, ẑ) 7→ (y, z̃) =

(
y, 1

qẑ

)
. This map induces a biregular isomor-

phism from P
(1)
t to the surface P

(2)
t , where P

(2)
t denotes the blow

up of P1 × P1 with standard coordinates (y, z̃) at the eight points
given, with respect to these coordinates, by

(
0, tΘ0

)
, (0, tΘ0) ,

(
Θ1,∞

)
, (Θ1,∞) ,

(tΘt, 0) ,
(
tΘt, 0

)
, (∞,Θ∞/q) ,

(
∞,Θ∞

)
.

• Consider the rational map from P1 × P1 with standard coordi-
nates (y, z̃) to P1 × P1 with standard coordinates (ŷ, z̃) defined by
(y, z̃) 7→ (ŷ, z̃) =

(
y (z̃−Θ∞/q)(z̃−Θ∞)

(z̃−tΘ0)(z̃−tΘ0)
, z̃
)
. This map can be seen as

the composition of four (commuting) elementary transformations
with respect to the ruling (y, z̃) 7→ z̃. Note that by assumption,
the set {tΘ0, tΘ0,Θ∞/q,Θ∞} has cardinality four, which implies
that the considered rational map induces a biregular isomorphism
from P

(2)
t to the surface P

(3)
t , where P

(3)
t denotes the blow up of

P1 × P1 with standard coordinates (ŷ, z̃) at the eight points given,
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with respect to these coordinates, by(
∞, tΘ0

)
, (∞, tΘ0) ,

(
Θ1,∞

)
, (Θ1,∞) ,(

Θt

qt
, 0
)
,

(
Θt

qt
, 0
)
, (0,Θ∞/q) ,

(
0,Θ∞

)
.

• Consider the biregular map from P1 × P1 with standard coordi-
nates (ŷ, z̃) to P1 × P1 with standard coordinates (ỹ, z̃) defined by
(ŷ, z̃) 7→ (ỹ, z̃) =

(
1
ŷ , z̃

)
. This map induces a biregular isomor-

phism from P
(3)
t to the surface P

(4)
t , where P

(4)
t denotes the blow

up of P1 × P1 with standard coordinates (ỹ, z̃) at the eight points
given, with respect to these coordinates, by(

0, tΘ0
)
, (0, tΘ0) , (Θ1,∞) ,

(
Θ1,∞

)
,(

qtΘt, 0
)
, (qtΘt, 0) , (∞,Θ∞/q) ,

(
∞,Θ∞

)
.

It now suffices to see that P(4)
t = Pqt and that the biregular map Pt

∼→ P
(4)
t ,

obtained by composing all of the above, coincides with St. □

Remark 4.2. — The above proposition implies that if (4.6) holds, then
for each t ∈ C∗ \ Sq, for each n ∈ N, we have biregular maps

S
(n)
t := Sqnt ◦ · · · ◦ Sqt ◦ St : Pt → Pqnt ,

S
(−n)
t :=

(
S

(n)
q−nt

)−1
: Pt → Pq−nt .

In particular, if t0 ∈ C∗ \ Sq, and (y0, z0) ∈ C∗ × C∗ ⊂ Pt0 , then for each
n ∈ Z, we obtain a well-defined element

(ỹn, z̃n) := S
(n)
t0

(y0, z0) ∈ Pqnt0

and a well-defined element (yn, zn) ∈ P1 × P1 obtained by projecting via
the natural regular map Pqnt0 → P1 × P1. But the fact that the association
(y0, z0) → (yn, zn) is well-defined for each n ∈ Z is simply a reformulation
of the statement of Proposition 3.1. So the above proposition proves the
latter.

The q-analogue of an Okamoto space for fixed t ∈ C∗ \Sq will be a certain
Zariski-open subset of Pt. In order to define it, let us go back to F0 := P1×P1

with standard coordinates (y, z), endowed with the eight distinct points γ±
i

and identify some particular components of this space, namely, the following
vertical and horizontal lines:

H0 : {z = 0} , H∞ : {z = ∞} , V0 : {y = 0} , V∞ : {y = ∞} ,
V+

t : {y = tΘt} , V−
t : {y = tΘt} .
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This configuration of points and lines is illustrated in the following picture.
Here the colors can be ignored for now, their use will become clear later, see
Remark 4.5.

H∞

H0

V∞V0 V+
t V−

t

•
γ+

1

•
γ−

1

•
γ+

t
•

γ−
t

•γ+
0

•γ−
0

•γ+
∞

•γ−
∞

y

z

(0)

(0)

(0)

(0)

Recall that Pt is the blow up of F0 in the eight points γ±
i with i ∈

{0, 1, t,∞}. In Pt, we denote by

H∗∗
0 ,H∗∗

∞,V∗∗
0 ,V∗∗

∞,V+∗
t ,V−∗

t

the strict transforms of the corresponding projective lines in F0. We denote
J t := H∗∗

0 ∪ H∗∗
∞ ∪ V∗∗

0 ∪ V∗∗
∞ .

Under the map St : Pt → Pqt, the set J t is mapped to the set Jqt. So
in some sense, the set J t can be seen as invariant under the q-Painlevé
map St. Moreover, a discrete solution (yn, zn, q

nt0)n∈Z given by an initial
condition in J t is not very interesting in the sense that both (yn)n∈Z and
(zn)n∈Z simply oscillate between 0 and ∞. The Okamoto space qOkat for
fixed t ∈ C∗ \ Sq as introduced in [23] is by definition the complement of J t

in Pt. So we define
qOkat := Pt \ J t .

Note that the strict transforms V±∗
t of the vertical lines Vt in F0 are not

contained in J t. They do however play a particular role in the relation to the
construction of the modified Okamoto space qÕkat that we will now define.
The letter will be better suited for the confluence problem.
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Let us recall that Z =
(y−tΘt)(y−tΘ̄t)

q(y−1)(y−t)z
−1

(q−1)y . Motivated by (4.1), we apply the
change of variable

(u,v) = (y,y(y − 1)(y − t)Z)

=
(

y,
(y − tΘt)(y − t/Θt)

q(q − 1)z − (y − 1)(y − t)
(q − 1)

)
, (4.9)

to the modified q-Painlevé VI equation (3.8) with spectral data Θ. There
are well-defined rational functions f̃ , g̃ ∈ C(u,v, t) such that with respect to
these variables, (3.8) is of the form

σq,tu = f̃(u,v, t) , σq,tv = g̃(u,v, t) .

More precisely, we have

f̃(u,v, t) =

(
(u−1)(u−t)+(q−1)v

(u−Θ1)
(

u− 1
Θ1

) − tΘ0

)(
(u−1)(u−t)+(q−1)v

u(u−Θ1)
(

u− 1
Θ1

) − t 1
Θ0

)
(

(u−1)(u−t)+(q−1)v

(u−Θ1)
(

u− 1
Θ1

) − 1
Θ∞

)(
(u−1)(u−t)+(q−1)v

(u−Θ1)
(

u− 1
Θ1

) − Θ∞
q

)

g̃(u,v, t) =
(u − Θ1)

(
u − 1

Θ1

)(
f̃(u,v, t) − qtΘt

)(
f̃(u,v, t) − qt 1

Θt

)
q(q − 1)(u − 1)(u − t) + q(q − 1)2v

−

(
f̃(u,v, t) − 1

)(
f̃(u,v, t) − qt

)
(q − 1) .

We consider the second Hirzebruch surface F2 with C2-charts C2
u0,v0

, C2
u1,v1

,
C2

u2,v2
, C2

u3,v3
glued together along their C∗ × C∗-subsets according to the

transition maps given by

(u0,v0) = (u,v), (u1,v1) =
(

u,
1
v

)
,

(u2,v2) =
(

1
u
,

v

u2

)
, (u3,v3) =

(
1
u
,

u2

v

)
.

(4.10)

Here we will consider (u,v) as the standard coordinates, with respect to
which we will define rational maps such as the following. For each fixed
t = t0 ∈ C∗ satisfying (4.4), we obtain a rational map

S̃t :
{ F2 99K F2

(u,v) 7−→
(
f̃(u,v, t), g̃(u,v, t)

)
.

(4.11)

Lemma 4.3. — Let Θ ∈ (C∗)4 such that (4.6) holds. Let t ∈ C∗ \ Sq,
where Sq is defined in (4.8). The indeterminacy points of the rational map S̃t
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defined in (4.11) are precisely the following eight points (in the source F2).

β−
0 (t) : (u,v) =

(
0, t(Θ0 − 1)

q − 1

)
,

β+
0 (t) : (u,v) =

(
0, t(Θ0 − 1)

q − 1

)
,

β−
1 (t) : (u,v) =

(
Θ1,

(Θ1 − 1)(t− Θ1)
q − 1

)
,

β+
1 (t) : (u,v) =

(
Θ1,

(Θ1 − 1)(t− Θ1)
q − 1

)
,

β−
t (t) : (u,v) =

(
tΘt,−

t(Θt − 1)(tΘt − 1)
q − 1

)
,

β+
t (t) : (u,v) =

(
tΘt,−

t(Θt − 1)(tΘt − 1)
q − 1

)
,

β−
∞(t) : (u2,v2) =

(
0, Θ∞ − 1

q − 1

)
,

β+
∞(t) : (u2,v2) =

(
0, Θ∞ − q

q(q − 1)

)
.

Proof. — The statement can easily be verified by direct computation.
Note however that this lemma can also be deduced, with much less compu-
tation, from Proposition 4.4 below. □

In addition to the eight indeterminacy points β±
i for i ∈ {0, 1, t,∞}, we

identify the following particular projective lines in F2:

H : {v1 = 0} ∪ {v3 = 0} ,
D0 := {u = 0} ∪ {u1 = 0} , D∞ := {u2 = 0} ∪ {u3 = 0} ,
D+

1 := {u = Θ1} ∪ {u1 = Θ1} , D−
1 := {u = Θ1} ∪ {u1 = Θ1} ,

D+
t := {u = tΘt} ∪ {u1 = tΘt} , D−

t := {u = tΘt} ∪ {u1 = tΘt} .

Moreover, we introduce the following curve (that corresponds to H0 :{z =0}):

C := {(u − 1)(u − t) = (1 − q)v} ∪ {(u1 − 1)(u1 − t)v1 = 1 − q}
∪ {(1 − u3)(1 − tu3)v3 = 1 − q} .

The configuration of these points, lines and the curve C in F2 is illustrated
in the following figure. Here the grey numbers indicate the self-intersection
number of the corresponding curve. The use of colors will became clear later,
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see Remark 4.5.

H

D∞D0 D+
t D−

tD+
1 D−

1

u = tu = 1

C

•
β+

1

•
β−

1

•
β+

t
•

β−
t

•β+
0

•β−
0

•β+
∞

•β−
∞

u

v

(−2)

(0)

(+2)

(0)

Note that the points β±
1 , respectively β±

t , are precisely the intersection be-
tween C and D±

1 , respectively C and D±
t . Note further that C ∩ H = ∅, that

β±
0 ̸∈ H∪C because Θ0,Θ0 ̸= 0 and that β±

∞ ̸∈ H∪C because Θ∞,Θ∞ ̸= 0.

Now let us denote, for each t ∈ C∗ satisfying (4.4), by

P̃t := Bl
(
P1 × P1)

β−
0 (t),β+

0 (t),β−
1 (t),β+

1 (t),β−
t (t),β+

t (t),β−
∞(t),β+

∞(t)

the blow up of F2 at the eight points β±
i (t). Here we continue to assume (4.6).

In P̃t, we denote by

H,D∗∗
0 ,D∗∗

∞,D+∗
1 ,D−∗

1 ,D+∗
t ,D−∗

t ,C∗∗∗∗

the strict transforms of the corresponding projective lines/curves in F2. We
define

qÕkat := P̃t \ It , where It := H ∪ D∗∗
0 ∪ D∗∗

∞ ∪ C∗∗∗∗ .

As we shall see, this is an alternative q-Okamoto space of initial values of
qPVI, and qÕkat is convenient for the study of confluence. Before formulating
the equivalence of qOkat and qÕkat, let us give a name to the exceptional
curves. We denote, for each i ∈ {0, 1, t,∞}, by F±

i the exceptional lines in
Pt corresponding to blow up of γ±

t and by E±
i the exceptional lines in P̃t

corresponding to blow up of β±
i .

– 1031 –



T. Dreyfus and V. Heu

Proposition 4.4. — Let q ∈ C \ {0, 1}. Let Θ ∈ (C∗)4 such that (4.6)
holds. Let t ∈ C∗ \ Sq, where Sq is defined in (4.8). Consider the birational
map given, with respect to the standard coordinates and the above notation, by

φ :


Pt 99K P̃t

(y, z) 7−→ (u,v) =
(

y,
(y − tΘt)

(
y − tΘt

)
− q(y − 1)(y − t)z

q(q − 1)z

)
.

This map is biregular and induces bijections

V±∗
t ≃ E±

t , F±
t ≃ D±∗

t and F±
i ≃ E±

i ∀ i ∈ {0, 1,∞} .

Moreover, it induces a bijection J t ∼→ It and therefore provides an isomor-
phism

qOkat
∼−→ qÕkat .

Proof. — First, consider the rational map F0 99K F2 given, with respect
to the standard coordinates, by the same formula as φ. We will abusively
denote it again by φ. Note that φ preserves the fibers of the rulings F2 → P1

and F0 → P1 given by (u,v) 7→ u and (y, z) 7→ y. Hence we may restrict
and corestrict φ to a map φ◦ : F0 \V±

t 99K F2 \D±
t . It is however immediate

to check that φ◦ is regular and a bijection, with inverse map given by

ψ :


F2 \ D±

t −→ F0 \ V±
t

(u,v) 7−→ (y, z) =
(

u,
1
q

·
(u − tΘt)

(
u − tΘt

)
(u − 1)(u − t) + (q − 1)v

)
.

Moreover, it is immediate to check that φ◦ maps the points γ±
i to the points

β±
i for each i ∈ {0, 1,∞}, and that it induces bijections

V0 ≃ D0 , V∞ ≃ D∞ , H0 \ {γ±
t } ≃ H∞ \ D±

t , H \ V±
t ≃ C \ {β±

t } .

To conclude, we use the same argument as in the proof of Proposi-
tion 4.1. Namely, in a neighborhood of the fibers V±

t and D±
t , φ is an

elementary transformation blowing up the point γ±
t and contracting the

strict transform of the fiber V±
t onto the point β±

t . Therefore, the induced
map φ : Bl(F0)γ±

t
→ Bl(F2)β±

t
is biregular. The result follows. □

Remark 4.5. — As shown in the above proof, the rational map φ : F2 99K
F0 corresponding to the change of variable (4.9) composed with the change
of variable (3.7) (which relates qPVI(Θ) to the modified qP̃VI(Θ)), respects
the scheme of colors in the diagrams representing the particular lines in F2
and F0.
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4.3. Confluence

In this section, we will see that the differential Okamoto space can be
obtained from the second version of the q-difference one by a limit process.
More precisely, we will show that they smoothly fit together into a family of
Okamoto-spaces, parametrized by a neighborhood of q = 1 in C.

Let Θ = (θ0, θ1, θt, θ∞) ∈ C∗ × C∗ × C∗ × (C \ {1}), and consider, as in
Section 3.3, the quadrupel of rational functions

Θ(q) = 1 + q − 1
2 Θ. (4.12)

Let t ∈ C∗. Let us consider the second Hirzebruch surface F2 with coordi-
nates (u,v), (u1,v1), (u2,v2), (u3,v3) as in (4.10). For each i ∈ {0, 1, t,∞},
we may define meromorphic functions in the variable q ∈ C, holomorphic in
a neighborhood of {q = 1}, of the form

β±
i : C → F2 ,

given, for each fixed q ∈ C, as follows.

β−
0 (q) : (u,v) =

(
0, −tθ0/2

Θ0(q)

)
,

β+
0 (q) : (u,v) =

(
0, tθ0

2

)
,

β−
1 (q) : (u,v) =

 1
Θ1(q) ,

−θ1/2
(
t− 1

Θ1(q)

)
Θ1(q)

 ,

β+
1 (q) : (u,v) =

(
Θ1(q), θ1(t− Θ1(q))

2

)
,

β−
t (q) : (u,v) =

(
tΘt(q),−

tθt

2 (tΘt(q) − 1)
)
,

β+
t (q) : (u,v) =

(
t

Θt(q)
,
t(t− Θt(q))θt/2

Θt(q)2

)
,

β−
∞(q) : (u2,v2) =

(
0, −θ∞/2

Θ∞(q)

)
,

β+
∞(q) : (u2,v2) =

(
0, θ∞/2 − 1

q

)
.

Note that one the one hand, for generic values of q and t, these correspond
in the confluence setting (4.12) to the values of the β±

i in Lemma 4.3. On
the other hand, for q = 1 and t ̸= 1, we have β±

i (1) = β±
i with β±

i as

– 1033 –



T. Dreyfus and V. Heu

in Section 4.1. Now we may see these functions as the parametrized curves{(
q,β±

i

)
| q ∈ C∗)} in the product

C∗ × F2 .

We will abusively call them the curves β±
i . Moreover, in this product space,

we may identify the following planes

H : {v1 = 0} ∪ {v3 = 0} ,
D0 := {u = 0} ∪ {u1 = 0} , D∞ := {u2 = 0} ∪ {u3 = 0}

and the surface

C := {(u − 1)(u − t) = (1 − q)v} ∪ {(u1 − 1)(u1 − t)v1 = 1 − q}
∪ {(1 − u3)(1 − tu3)v3 = 1 − q} .

Note that the curve defined by the restriction of C to {q = 1} is degenerate:
it has three irreducible components, given, with respect to the notation in
Section 4.1, by H, D1 and Dt respectively. Now denote by

Ωt := Bl (C∗ × F2)β±
i

\ J where J : H ∪ C∗∗∗∗ ∪ D∗∗
0 ∪ D∗∗

∞

the blow up of this product space along the eight curves β±
i minus the strict

transforms of the mentioned particular surfaces.(1) Then we have
Ωt|q=1 = Okat for all t ∈ C \ {0, 1}

Ωt|q=q0 = qÕkat(q0) for all (t, q0) ∈ C∗ × (C \ {0, 1})
such that (4.6) holds and t ̸∈ Sq0 .

Recall that Sq0 was defined in (4.8). Let us see how these two conditions of
validity fit together in the family

Ω :=
⋃

t∈C\{0,1}

Ωt .

The condition (4.6) is vacuous for q0 sufficiently close to 1, because we as-
sumed (4.2). However, in the parameter space C∗ ×C∗ with coordinates (t, q)
of Ω, the set {(t, q) | t ∈ Sq, q ̸= 1} decomposes as an infinite union of curves
of the form{

Θε1
1 Θεt

t q
k
∣∣ε0, ε1 ∈{−1, 1}, k∈Z

}
and

{
Θε0

0 Θε∞
∞ qk

∣∣εt, ε∞ ∈{−1, 1}, k∈Z
}
.

By (4.12), the adherence of each of these curves at {q = 1} is given by
{q = 1, t = 1}.

(1) Strictly speaking, here one has to choose an order for the eight curves to be blown
up in order to obtain a well-defined result in restriction to those q ∈ C∗ where the curves
intersect. We will however neglect these values of q anyway afterwards, because they are
not close to 1.
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Remark 4.6. — The behavior of the whole set Sq when q goes to 1 may
be wild. This can be fixed as in [24], by requiring that q tends to 1 along
a q-spiral. More precisely, let t ∈ C \ {0, 1} and fix |q0| > 1 with t /∈ qR0 .
We have qε

0 → 1, when ε > 0 is a real number going to 0 and for ε > 0
sufficiently close to 0, we find t /∈ Sqε

0
.

5. Appendix: The relation between two notions of
q-isomonodromy

Some authors interpret the pseudo-constancy of the Birkhoff connection
matrix as a suitable discrete analogue for the isomonodromy of families of
Fuchsian systems. We will explain here how this is related to our notion of
q-isomonodromy (see Section 2.2). This Birkhoff connection matrix is de-
fined via certain fundamental solutions of the family of q-Fuchsian systems
parameterized by t ∈ D. Therefore, we shall first recall from [24] the con-
struction of fundamental solutions (see also [4, 21, 22] for constructions in
some more general settings). Note that these fundamental solutions will be
meromorphic matrix functions on C∗ × D. In particular, they are uniform
in t, which is one of the reasons why the definition of monodromy in the
differential case should not be translated literally to the q-difference setting.

Let q be a complex number with |q| > 1. Let D be open connected subset
of C∗. Let

σq,xY (x, t) = A(x, t)Y (x, t),

with A(x, t) = A0(t) + x
A1(t)
x− 1 + x

At(t)
t(x− t) (5.1)

be a family of q-Fuchsian systems as in Definition 1.6 with non-resonant
spectral data (Θ,Θ). Note that in particular, we assume that for each
i ∈ {0, 1, t}, we have Ai ∈ M2(O(D)), i.e. these matrices have holomorphic
entries. Moreover, by the requirements of Definition 1.6,

Spec(A0(t)) =
{

Θ0,Θ0
}

and A∞ =
(

Θ∞ 0
0 Θ∞

)
,

where A∞ = A0 + A1 + At

t . Note that we may have Θ0 = Θ0 so that the
matrix A0(t) may be not diagonalisable. Let us choose P ∈ GL2(M(D))
such that

P (t)A0(t)P (t)−1 = J0 , (5.2)

where J0 is in Jordan normal form, with eigenvalues Θ0,Θ0.

– 1035 –



T. Dreyfus and V. Heu

Lemma 5.1. — For each i ∈ {0,∞}, there exists a matrix Li(x) ∈
GL2(O(C∗)) satisfying the q-difference equation

σq,xL0 = J0L0, σq,xL∞ =
(

Θ∞ 0
0 Θ∞

)
L∞.

Proof. — As explained for example in [24, p. 1024], for any a ∈ C, there
exists a meromorphic function eq,a(x) on C∗ satisfying the q-difference equa-
tion

σq,xeq,a = aeq,a .

Indeed, one may set eq,a(x) := ϑq(x)
ϑq(x/a) , where ϑq(x) =

∑
n∈Z q

−n(n+1)
2 xn is

the Jacobi theta function satisfying σq,xϑq(x) = xϑq(x). We may now choose
L∞(x) := diag

(
eq,Θ∞

(x) , eq,Θ∞(x)
)
. If J0 is diagonal, the construction of

L0 is similar. Let us assume that J0 =
(

Θ0 1
0 Θ0

)
is not diagonal. Let us

introduce the q-logarithm ℓq(x) = x∂xϑq(x)
ϑq(x) , that satisfies σq,x(ℓq) = ℓq + 1.

Then, we may take

L0(x) =
(
eq,Θ0(x) eq,Θ0 (x)ℓq(x)

Θ0
0 eq,Θ0(x)

)
. □

Remark 5.2. — Of course the choice of the matrices Li in the above
lemma is not unique. Moreover, some authors prefer to replace eq,a(x) and
ℓq(x) respectively by

a
ln(x)
ln(q) and ln(x)

ln(q) ,

which satisfy the same q-difference equations, and yield matrices Li whose
entries are defined no longer on C∗, but on the Riemann surface of the
complex logarithm.

Proposition 5.3. — Let L0, L∞ be as in Lemma 5.1. Let P ∈
GL2(M(D)) such that (5.2) holds. There exists a unique pair (H0,H∞) of
meromorphic matrix functions satisfying the following:

• H0(x, t),H∞
(
x−1, t

)
∈ GL2(M(C × D)),

• H0 (0, t) = H∞ (∞, t) = I2,
• the matrix functions U0, U∞ ∈ GL2(M(C∗ × D)) defined by

U0(x, t) := H0(x, t)P (t)−1L0(x) U∞(x, t) := H∞(x, t)L∞(x)

are both solutions of (5.1).

Proof. — We will closely follow [24, p. 1034], where an analogous result
for fixed t has been established, but we also need to take the t-dependency
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into account. We focus on the existence of H0 as in the statement; the con-
struction of H∞ is analogous. The change of variable Y = H0P

−1L0 leads
us to the q-difference equation

σq,x(H0(x, t))A0(t) = A(x, t)H0(x, t) . (5.3)

It suffices to show that for each t0 ∈ D, there exists a unique germ of
holomorphic solution H0 of (5.3) with H0(0, t) = I2 defined in a neighborhood
U × ∆ of (x, t) = (0, t0) ∈ C×D. Indeed, the functional equation (5.3) then
allows to extend this holomorphic solution to a meromorphic solution on
C × ∆. By uniqueness, we obtain a unique meromorphic solution on C × D.

Let t0 ∈ D and let ∆ ⊂ D be a sufficiently small disc with center t0.
Recall that D ⊂ C∗, so that we may assume there exists some R ∈]0, 1[ such
that |t| > R for each t ∈ ∆. Let D(0;R) = {x ∈ C | |x| < R}. Moreover, we
may assume that on D(0;R) × ∆, the matrix function A(x, t) is holomorphic
and given as the sum of a normally convergent series

∑
i,j⩾0 Aijx

i(t − t0)j

with Aij ∈ M2(C). In particular, on this product we may write A(x, t) =∑
i,j⩾0 Ai(t)xi with Ai(t) ∈ M2(Ob(∆)), such that the power series

α(x) :=
∑
i⩾0

αix
i , where αi := ∥Ai(t)∥∞ := sup

t∈∆
∥Ai(t)∥,

converges on D(0;R). Here ∥ · ∥ is some submultiplicative norm on M2(C)
and Ob(∆) denotes the ring of uniformly bounded holomorphic functions on
∆. For λ ∈ C∗, let us consider the map

Ψλ :
{

M2(Ob(∆)) −→ M2(Ob(∆))
X 7−→ λXA0(t) − A0(t)X.

As we may see for instance in [24, p. 1033], the set of eigenvalues of Ψλ is
given by

Spec(Ψλ) =
{
λΘ0 − Θ0, λΘ0 − Θ0, λΘ0 − Θ0, λΘ0 − Θ0

}
.

In particular, by the non-resonant assumption, for every n ∈ N>0, the
endomorphism Ψqn is invertible. If we write H0(x, t) =

∑∞
i=0 Hi(t)xi, with

H0(t) = I2, then equation (5.3) is formally equivalent to

∀ n ∈ N>0, Hn(t) = Ψ−1
qn

(
n∑

i=1
Ai(t)Hn−i(t)

)
.

In particular, Hn(t) is uniquely determined from the lower order terms. As
shown in [24, p. 1034], the inverse endomorphism Ψ−1

qn tends to zero as
n → ∞, and there exists a bound β such that

∀ n ∈ N, ∀ X ∈ M2(Ob(∆)) , ∥Ψ−1
qn (X)∥∞ ⩽ β∥X∥∞ .
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By induction, one deduces that for each n ∈ N, the value of ∥Hn(t)∥∞ is less
or equal to the n-th coefficient in the power series expansion of

∥H0(t)∥∞

1 − β
∑∞

k=1 αkxk
.

Since this power series has positive radius of convergence, we obtain that
H0(x, t) is holomorphic on U × ∆, where U is a neighborhood of x = 0
in C. □

Remark 5.4. — We may also solve order one equations having only mero-
morphic coefficients. More precisely, let C({x}) be the field of germs of
meromorphic functions at x = 0. Let 0 ̸= c ∈ C({x}), let v be its valu-
ation, and let c0 ∈ C∗ such that c = c0x

v + . . . . By [24, p. 1034], there
exists 0 ̸= m ∈ C({x}) solution of σq,xm = cc−1

0 x−vm. Consider the Jacobi
theta function ϑq and eq,c0 , that are defined in the proof of Lemma 5.1.
Then, eq,c0ϑ

v
qm satisfies σq,x(eq,c0ϑ

v
qm) = ceq,c0ϑ

v
qm and is meromorphic on

a punctured neighborhood of 0 in C∗.

Proposition 5.5. — Let U∞ be as in Proposition 5.3. The following are
equivalent.

(1) The family (5.1) is q-Schlesinger isomonodromic.
(2) The matrix B∞ := σq,tU∞ ·U−1

∞ ∈ GL2(M(C∗×D)) is rational in x:
B∞ ∈ GL2(M(D)(x)) .

Proof. — By definition, we have B∞ = σq,tH∞ · σq,tL∞ · L−1
∞ · H−1

∞ .
Since L∞ does not depend on t, we actually have B∞ = σq,tH∞ · H−1

∞ ∈
GL2(M

(
(P1 \ {0}) × D

)
and B∞(∞, t) = I2. Moreover, using σq,xσq,tU∞ =

σq,tσq,xU∞ and the definition of B∞, we find that X = B∞ solves the q-
difference equation

σq,tA ·X = σq,xX · A . (5.4)
It follows from [24, §1.1.3] and the non-resonant condition on the eigenvalues
of A∞, that this q-difference equation (5.4) admits a unique formal solution
X =

∑
n⩾0 ξn(t)x−n ∈ GL2

(
M(D)[[x−1]]

)
with ξ0 = I2. Hence the power

series expansion of B∞ at x = ∞ coincides with this unique formal solution.

On the other hand, by Proposition 2.9, the (non-resonant) family (5.1)
is q-Schlesinger isomonodromic if and only if there exists a solution B ∈
GL2(M(D)(x)) of the q-Lax equation (5.4) which satisfies B(∞, t) = I2. By
uniqueness of the formal solution of (5.4), the equality holds B = B∞. The
result follows. □

Given U0,U∞ as in Proposition 5.3, we may define the Birkhoff connection
matrix P(x, t) by

P := U−1
∞ · U0 ∈ GL2(M(C∗ × D)) . (5.5)
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Proposition 5.6. — Let U0,U∞,P be as above. The following are
equivalent.

(1) The Birkhoff connection matrix P is pseudo constant, i.e.
σq,tP = P.

(2) For B0,B∞ ∈ GL2(M(C∗ × D)) defined by Bi := σq,tUi · U−1
i , we

have B0 = B∞ .

Proof. — We have

P−1 · σq,tP = U−1
0 · U∞ · σq,tU

−1
∞ · σq,tU0

= U−1
0 · B−1

∞ · σq,tU0

= U−1
0 · B−1

∞ · B0 · U0 .

The result follows. □

Corollary 5.7. — If the Birkhoff connection matrix P given in (5.5)
is pseudo constant, then the family (5.1) is q-Schlesinger isomonodromic.

Proof. — Recall from the proof of Proposition 5.5 that B∞ = σq,tH∞ ·
H−1

∞ . Similarly, we obtain B0 = σq,tH0·σq,tP
−1·P ·H−1

0 , where P is as in (5.2).
Note that B∞(∞, t) = I2 and B0(0, t) = P (qt)−1P (t). By assumption and
Proposition 5.6, we have B∞ = B0. It follows that B∞ ∈ GL2 (M(C∗ × D))
can be meromorphically continued to x = 0 and x = ∞. Hence B∞ is
rational in x. We conclude by Proposition 5.5. □

The above corollary establishes the sought relation between the two no-
tions of q-isomonodromy (in the non-resonant case with |q| > 1): pseudo-
constancy of the Birkhoff connection matrix is a stronger requirement than
q-isomonodromy as in Section 2.2. Note that the Birkhoff connection ma-
trix in (5.5) is not canonically defined: it depends on the choices of L0, L∞
and P . However, for any choice, its pseudo-constancy implies q-Schlesinger
isomonodromy. As a final remark, we indicate that for example in [6, 12],
another type of (again non-canonical) Birkhoff connection matrix has been
considered, namely

P̃ := U−1
∞ · Ũ0 ,

with Ũ0 := U0 · P . It has been shown in [6, Proposition 1], see also [12,
Thm. 3], that the analogue of Proposition 5.6 for Ũ0,U∞, P̃ holds under
the additional assumption that A0(t) is either constant or proportional to
t. The choice of U0 in the above exposition was made to circumvent this
assumption.
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