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NEW OPERATORS ON JET SPACES

L. Mangiarotti (1) and Marco Modugno(z)

(1) Istituto di matematica, Universita, Camerino (MC) - Italia.

(2) Istituto di matematica Applicata, Universita, Firenze - Italia.

Résumé : Nous introduisons des opérations et des techniques fonctionnelles nouvelles dans I’étude
des espaces de jets d’un espace fibré. Ces méthodes permettent d’obtenir en particulier une carac-
térisation canonique des transformations infinitésimales d’ordre quelconque et des prolongements
de champs des vecteurs. Les expressions locales explicites des formules intrinséques sont aussi
présentées. Ces résultats peuvent étre utilisés dans le cadre du calcul des variations d’ordre supé-

rieur.

Summary : New operators and functorial techniques are introduced on the k-jet spaces of a fibe-
red space, which lead to interesting characterizations of the infinitesimal contact transformations
at any order. Canonical prolongations at al! orders of vector fields are obtained as an application

useful in the calculus of variations. Global results as well as explicit local formulas are given.

INTRODUCTION

There is growing interest in jet spaces with respect to Mathematical-Physics, for they
allow a structural and unifying analysis of differential equations. Jet spaces may be considered to
be a natural framework for higher order field theories, in particular for the calculus of variations.
We might also expect that they will play a role in the quantization via deformation. So we are
concerned with all the prolongation techniques which naturally involve higher order jet spaces.

In this paper we introduce some new operators and techniques on jet spaces, and

obtain results which are useful, for istance, in the calculus of variations [8].
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We will start with a systematic recall of functorial techniques -widely used in the
paper-, giving intrinsic as well explicit local formulas. In particular we will make a broad analysis
of affine structures involved in jet spaces (for the classical results see, for istance, [3] ).

Then the contact form ¢ at any order will be investigated with respect to different
possible global definitions (see also [12] and [4] ) and to the functorial invariance properties. We
will consider the kernel A of ¢ at any order, which is a non involutive distribution. For some pour-
poses it is more important than ¢ itself.

Then we will introduce a new operator r at any order, which will allow the exchange
between jet and tangent spaces and maps and which will be shown to have analogies and relations
with &. We will investigate its functorial invariance properties and also the close connection with
different affine structures.

At this point we will be in the position to introduce the set of infinitesimal contact
transformations of any order, which are composed of the vector fields which preserve A. In this
way we may avoid non-essential connections, which may be involved with the vector valued form
¥ (see, for istance, [2] ). Moreover we can give several new characterizations of this set by means
of the operator r and also explicit local formulas thus obtained.

For useful application -for istance in the calculus of variations [8]- we will show a ca-
nonical prolongation at all orders of any vector field, by using the jet functor and r. This new
approach may also be applied to non-projectable vector fields and moreover will naturally produce

explicit local formulas.

1.- THE JET FUNCTOR

We start with the basic notations on jet spaces and we give explicit formulas with res-
pect to the functorial techniques which will be widely used in the following. All spaces and maps
will be C*°.

1.1 - Henceforth p : E > M is a fibered space (i.e. a surjective submersion), with
m=dimM and m+1=dimE.

The standard chart of E is denoted by (xk,yi), withT<A<m, 1<i<I.
In some cases we will deal with a further fibered space q : F = N, with n = dim N,

whose standard chart is denoted by (z%w)).

1.2 - JkE is the k-jet space and J°E = E, with 0 <k. It can be viewed naturally as a fibered space

and a bundle

pk:JkE—>M and plﬁ:JkE%JhE,
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respectively, with 0 < h < k. Moreover

p'ﬁ° p{‘=p}‘ and p'ﬁoph=pk.
The standard chart of JkE is denoted by (xx,yiA), with 0 < I Al <k, where A= (Aq,..,A) isa
multi-index and | Al= A+ ...+ AL We put

0=(0,..,0), A+A=(Aq,..,Ay + 1,...,Am)

N R R i =
Y'=EY0o YATYo+n Y = Yo+atu

k

If s:M—>Eisa (local) section, then j<s : M - JkE is its k-lift, whose expression is

(X)\,Yi ik5=(X>\,a Si), where
N A

. . A A .
s'=ylos and Ips' =9, L Oy s’

Moreover whe have p'ﬁ o jks = jhs.

1.3 - PROPOSITION. Let H : E = F be a morphism over the diffeomorphism h : M > N. Then
there is a unique morphism JkH : JkE -> JkF over h : M > N, such that, for each (local) section

s : M = E, the following diagram commutes

J¥E — JkF

M — N

where H*s is the section H¥*s =H o s o h™| :N->F.

Its expression is given by

2%, JkH = h% ,

ij ° ij =0/ aIHj yf]V|(1’]) y;]w(Ll]) "'YIIVI(I’]) y:Vl(l’Il)
aB(H)g] oh.. "’B(Lb(‘l))’g oh B ()™ e h 2 (m,b(m))g" * h,

where h*=2z%o h, Hi=wo H, g}\Exxo h_1,
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A, M“’”,...,M(I’Il) are multi-indices in (1,...,m)

(L)) glmb(m) »  w

I is a multi-index in  (1,...,1)
and where the summation is extended to all the multi-indices whith the conditions
Mm=MﬁMSm+m+Mgm,1<u<m
A=B1) 4 4 g(mb(m))
L, >0 = im0 MBI i>o0, 1<h<),
b(u) >0 = 18W1) __ 1pkbM)|> 0,
Proof. It will follow by induction on | Alsuch that 1 < | AI<k (after a long calculation!).
If His over M, then we have a simpler expression.

COROLLARY. Let H : E > F be a morphism over M = N. Then there is a unique morphism
JkH : JkE -> JkF over M, such that, for each (local) section s : M - E, the following diagram

commutes
k
H
JKE ) — J*F
J;\\\\‘M ////;;09

Its expression is

A Ky — (oA il |
&,wwoJPL4XﬁA%WyM“J%yM“mL
where the summation is extended to all the multi-indices with the conditions
A+MLT) 4 MmO =

1, >0 = IMimtuln) s

1.4 - Coming back to the general case, we can see that the following diagram commutes, for
0<h<k,
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k
J¥H
k k
Ph § L %
h JH h
J'E > | F
o | g
Y h y
M > N

1.5 - Moreover, from the uniqueness of JkH, it follows that Jk is a co-variant functor in the cate-

gory of fibered spaces, namely
JH o JkH = JK(H o H") and Kidg =idjkg-

1.6 - Sometimes, the following remark, which is a simple consequence of the local expression,

will be useful. Let N =M and let s : M = F be a section such that the following diagram commutes

H
E -> [
\ /
P M

Then the following diagram commutes

. .
Jke J°H JkE
FN A
M

A further consequences is the following. Let r : G - F be a further fibered space, so

that g o r : G > Misalso a fibered space. Let S : E > G be a morphism over the section's : M > F,

so that the following diagram commutes

E

p l
s

M

Then the following diagram commutes (putting H=r o S and taking all the Jk over M)

Y

T e ()
-

\

Jks

JkE - JkG

-k

M > JkF
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1.7 - If we consider the fibered space ph :JE > M, with 0 < h, then we have the two bundle

structures, for 0 <Kk,
MK gkPESJPE  and  gRpR K gPE S kg,
whose expressions are
My o (MK =(dylyg) and  (xMyiy) e 156N = (YD)

1.8 - There is a unique morphism a(k’h) : Jh+kE -> JthE over ]hE, such that the following dia-

gram commutes, for each (local) sections :M > E,

k,h
jh+ke olkh) -~ J&hg

ih+ks\ / ikihs
M

is an embedding. By identification of Jh+kE with its image, we have

JheHkg m JK g

bk’ = htk

Moreover o(k’h)

The expression of o(k’h) is

oh) — (A

(X%YKM)°U( ;Yk+ML

The subbundle Jh+kE C—>*JthE is locally characterized by
‘/i/\M:yi/\;M) - A+M:A'+M’.

Moreover the following diagram commutes

h+k ]kE

ph/' k
k_h
“(kh) o

pll:-l—k | (p

1.9 - We will often use the canonical isomorphism

K(E X F) - [KE x (K
J(EM) JJERITF.
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2. - THE TANGENT FUNCTOR AND JET SPACES

T denotes the covariant tangent functor in the category of manifolds and V denotes

the covariant vertical functor in the category of fibered spaces.
2.1 - We will be concerned with the tangent bundles of M and of | kg
7:TM->M and ﬂkZTJkE—)JkE
and with the bundles tangent to pk :JkE - M and to p'lfl : JkE -> JhE
TpK . T)kE > T™ and Tef : TJKE > TJME.

The standard charts of TM and of TJkE are, respectively

(x*Y) and PULTUTN)
and we have the expressions
Noer=xh Myl e m =06y,

A o Tok = (A, (Pl sxyiy) o Tek = kg5 50 50),

witho < | A I<Kk, o< IMI<h.

The following diagram commutes

Tpk
’ k h
Tp T
TIkE h . 1P Y
g
pk ph
k JKe h . Jhe - M
- )
pk
and Tpﬁ and Tpk are linear morphisms.

2.2 - The vertical spaces of pk : ]kE - M and of pﬁ : ]kE - JhE are the linear sub-bundles of
m :TIKE > e
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VJKE = ker Tpk and  VpJKE =ker Tpf,

which are locally characterized by

sh=o and XM=y}, =0, with 0<IMI<h.

And so naturally we have the following sequence of inclusions
Vi JKE S SV JKE S vikE S TkE,

The transverse spaces of pk :J°"E->Mand of pﬁ : JkE -> JhE are the pull-back bundles

of m: TM -> M and of 7y, : TJhE -> JhE with respect to pk :JkE - M and to pk :JkE —>JhE, res-
h h

pectively,

HXe=J%E XTM and  HJXE=J%E X T,

whose standard charts are

OAGN  and Myl Ky

with o< A I<K, o< IMI<h.

And so naturally we have the following sequence of projections
TIE = Hy_q JKE > .. > H_JKE > HJ¥E.
Moreover one has the following exact sequences
0 VJKE > TJKE > HJkE >0
0> Vi JKE > TJKE > Hy JKE > 0.

2.3 - Moreover we will be concerned with the k-jet spaces of the fibered spaces 7 : TM - M and
phom :TJPE > M

™ kTM > M and (1o m ) kT NE > M,
with o < h,k, whose standard charts are
M) and Pyl

with o <IAI<k, o<IMI<h.
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In (5.2) we will use the following result.

2.4 - LEMMA. Let s : M = E be a (local) section. Then the following diagrams commute

k kT
KTE— 3 Mo ke JKTE SIS Y
JkTs 1ks JkTs
k id
m k
JkT™ -M JkTM™ J'T™

Proof. The first one follows from (1.6). The second one follows from the functorial properties

oka and T.

3. - AFFINE STRUCTURES ON JET SPACES

3.0 - Let a : A > M be an affine bundle (see also [3] ). Then we denote by 3 : A -> M its vector
bundle. We note that VA = A >M< A.

Let b : B > N be a further affine bundle and F : A - B be an affine morphism over
f : M~ N. Then we denote by DF : A > Hom(A,B) the «fibre derivative» of F.

3.1 - In order to exploit further affine structures coming from a given one, we need the following

lemmas.

a) LEMMA. Let a : A = M be an affine bundle. Then ak : JkA = M js naturally an affine bundle,

whose vector bundle is Ek : Jk/T\ ->M.

Proof. 1I'(he covariant functor Jk prolongs naturally the translation + : A X A - A and its proper-
tiesto + = Jk+ : jkﬂ ﬁ JkA - JkA, so that, for each (local) section s :M > Aand v :M—>A,

we have

k k
jks+jkv:jk(s+v) and o:jko.

LEMMA. Let f : F > E be a linear (affine) bundle (whose vector bundle is f : F — E), so that
q=fo p:F—>M(@=fo p:F —>M)isa fibered space, f and J¥f : JKF > JKE (Fand KT :

JkF—> J I(E) are morphisms over M.
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b) Then ka : JkF -> JkE is a linear (affine) bundle (whose vector bundle is JkF: JkF—> JkE).

c) Then qui : JkF -> ]hF is a linear (affine) morphism over pk :JkE -> JhE (whose fibre derivative
is alﬁ : ka -> jhl?), so that the following diagrams commute

k -
k k
Jke Ph jhe Jke Ph jhe

d) Then (J%f,K) : JKF > JXE J%<E JDF is an affine bundle.
Proof. b) It follows, in the same way as (a), by taking into account the commutative diagram

<

JKE X JF ~ J&F

JKe

and sections (s,v) :M > F r>v1( Fsuchthatfos=fov:M-E.
k
c) It follows from q'é o (jks + jkv) = qg ° jk(s+v) =s+v.

d) The fibre of JkF over (0,y) € JkE %( ]hF is the affine subspace of the fibre of JkF over
J'E
o € JXE which is projected onto y € JNF.

3.2 - We will be concerned with different structures of the space T JkE. Besides the vector bundle
a* TR > ke
we will consider the affine bundle

xy = (m,, TpK) : TIKE > HJKE = | ¥E XT™,
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whose vector bundle is (up to an obvious pull-back) V) KE and the affine bundle

(i) = TP : TIKE > Hy R = )XE J?‘(E TP,

whose vector bundle is (up to an obvious pull-back V kg,

3.3 - We have a basic affine structure on jet spaces. Namely

Pk )%~ K TE

is an affine bundle, whose vector bundle is (up to an obvious pull-back)

JE=VT*M @ VE

where\lg is the symmetrized tensor product.
Then (see 3.0) we have

Vi )¥E= JEX( VT*M 8 VE).

3.4 - Moreover, the previous lemmas allow us to discover further linear and affine structures, which

will be useful in the following.

PROPOSITION. ) J¥n_:JKTE > JXE  isa vector bundle.
b) J o, I(VE -> JkE is a linear sub-bundle of the previous bundle.
k ky.(k k . ,
c) () To(po 770)0 ) J°TE > J*E XTE is an affine bundle.

d) () 770,(77 ) _1) JkTE -> JkE X1 Jk 1 TE is an affine bundle, whose vector
bundle is (up to an obvious pull-back) V T*M ~> TEJ

e (J Tl kTp) : JkTE - JkE ﬁ JkTM is an affine bundle, whose vector bundle
is (up to an obvious pull-back) JXVE.

Proof. a) It follows from (3.1b), taking into account the fact that M, : TE > E is a vector bundle.
b) It follows from (3.1b) and (3.4a), by taking into account the fact that VE is a subbundle of TE
over E. )

c) It follows from (3.1d), by taking into account the fact that m, : TE = E is a vector bundle.
d) It follows from (3.1d), by taking into account the fact that my - TE > E is a vector bundle,
and using (3.3).



182 L. Mangiarotti and M. Modugno

e) It follows from (3.1b), by taking into account the fact that (see 3.2) »,:TE > E >N<I TMis

an affine bundle.

4. - THE FIRST FUNDAMENTAL STRUCTURE ON JET SPACES

4.1 - The exact sequence (2.2)

0->VIKE > TJIKE>HJKE >0
has not in general a canonical splitting, but its pull-back over Jk+] E splits.

PROPOSITION. There is a unigue morphism

Vopktle v Tyke

over pt_H : jk+] E - jkE, such that, for each (local) section s : M - E, the following diagram
commutes
k+1
k'HEXTM Tk
( lson 'dTM) \ /
Moreover ck1 is a linear morphism, with respect to the fibres, which induces a splitting of the

previous sequence over | k+1 E.

Its expression is

(Ayhy s 3y o KT =My, ;>'<>‘,yfv|+#>'<“) , o< IMI<k.
Proof. Uniqueness. Let (o,u) € Jk+1E X TM be a point over x EM. Lets : M = E be one of

k+1 s

the (Iocal) sections such that j x) = 0. Then we have ckt1 (ou) = (x>‘,y|iw ; >'(>‘,)'/iv|) ° Tjks(u) =

(x ,aMs ; X 'aM+uS x>‘)(u).

Existence. The previous formula does not depend on the choice of s.

The complementary linear epimorphism is denoted by

FRHT ok TykE S vyKE,
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Its expression is

. . - . .. . .#
(v s Vi) o T = Ay s Vi~ Y X ) o< IMI<K,

Moreover, taking into account the projection ("k+1 ,TptH) :T) k+1 E-~ pt+1 *T) kE,

we can also characterize gkt by means of the vector valued form
SkHT Lkt E ekt TE g vKe,
Its expression is
T = (dyly ~ Vs M) B, o< IMI<K.

We call X1 (or, equivalently, 31 or 9KT1) the FIRST FUNDAMENTAL
STRUCTURE of order k+1 on jet spaces.

4.3 - k1 and chH, with o < h <k, are related by the following commutative diagram, which

follows immediately from the local expressions,

KeH
pkt1x T > TJKE
K+ | k
Pht1 X idTy TPh
1
p 1 Tm - TJME

4.4 - The first fundamental structure is functorially invariant

PROPOSITION. Let H : E — F be a morphism over the diffeomorphism h : M - N. Then the

following diagram commutes

KH
pkt1 « M ~ TJkE
JHTH X Th TJkH
. K+
qk T« TN > TJ kF

Proof. 1t follows by taking into account the diagram
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TjKs
( (k+ - Y
o ,id
o U semidm) kg XM TJkE
Th JKFTH X Th TJkH
K+ ,
H*s o m,id
w U 5o midry) ]kHFK‘(TN TIF
TiKH*s

which commutes by the properties of the covariant functors | K and T, and the diagrams

TiKs
( (jk+1s o m.id ) Ck+1 w
™ CIMT kg XM TJKE
. . K+1
( kg o m,idrn) c
™ LLLON L 3 L I
TikH*s '
k+1

which commute by the definition of ¢*" ', where s : M = E is a (local) section and

H*s=Hosoh | :N>F.

4.5 - The form 9k*1 determines a differential system AKFT = ker okt <, T]kH E or, equi-

valently,

Akl

Locally, is generated by the vector fields a“ + y;w_l_# a%\d and a{\ and (Akd"1 )‘L

is generated by the forms
ay =dypy Yy F, o<IMISK, 1A I=kH,

ARFT hag constant rank and is not involutive. In fact we can easily prove that the

exterior product of da;v‘ times all the a is different from 0.

Moreover we note that (da;VI)m A a;w = 0. Hence a;Vl can be viewed as a «contact
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form». More precisely, in the particular case of E=M X IR, we have JE =IR X T*M and 91 is the
veritable contact form induced by the Liouville form. For this reason, we call AKFT the
CONTACT SYSTEM of degree k+1.

4.6 - The fundamental form characterizes the sections of pk+1 : ]k+1E - M which are the lifts

of their projections on E.

PROPOSITION. Let S : M —~ Jk+1E be a section. Then the following conditions are equivalent

¢

0) S ___]- k+1 (pk+] ° S)

b)  TS:TM—akKtT
Proof. It follows from the local expression by induction on |M Isuch that o < IM I< k+1.
4.7 - PROBLEM. Is there a way to get a splitting of the sequence
0~V JXE > TIKE > Hy JKE >0

up to a suitable pull-back ?

5.- THE SECOND FUNDAMENTAL STRUCTURE ON JET SPACES

We can introduce a new fundamental map, which accounts for the exchange between
-k
I

and T, in terms of a morphism between the spaces | KTE and TJkE.
5.1 - First we recall the following map (see also [3]).

LEMMA. There is a unique morphism

ik . JkVE > vjkE

over JkE, such that, for each 1-parameter family of (local) sections o : IR X M = E, the following

diagram commutes

JkvE —  ~ vike

K
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where 0 is the «variational derivative», i.e. the derivative with respect to the parameter evaluated

at o € IR. Moreover i is linear over JkE (see 3.4b) and is an isomorphism. Its expression is
Ayl sy o i =0yl vy

Proof. We have

(vl s yh) o (Koo = (<Mool 5 84007) = (xMap0h 5 98,400) = (XAl 5 ¥iy) o Ko,
5.2 - PROPOSITION. There is a unique affine morphism (see 3.4d and 3.2)

K JKTE > TJKE

over
id X7 JKE X Jkm - ke X T™
JkE M M
such that
a)  for each (local) section s : M = E, the following diagram commutes
r
J*TE ———TJkE
J5Ts TjKs
k
()
JkT™ 0 ™
b)  Drf=iK (see 3.0).
Moreover rk is a surjective map and its local expression is

(i xRy o k= Ay 5y, - Yotu X))
with o < | A | < k and where the summation is extended to all the multi-indices such that
p+yY=A 1y I1>0.

Proof. Uniqueness. Let (o,uk) € JkE X JkTM be a point which is projected on
(o,u) € JkE K(/l TM by the map idJkE X 7K and let x € M be the common basis of o, uk, u. Let

s : M —> E be one of the (local) sections such that jXs(x) = 0. Then (see 2.4) a= | kTs(uk) € JkTE
andb= Tjks(u) €TJ kg are, respectively, points of the affine fibres of
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(Jkﬂo,JkTp) : JkTE > ]kE >l\§l JKTM over (a,uk)
and of

(m, TPX) : TIKE > JKE X T over (0,u).

Hence there is a unique affine morphism rK between these affine fibres, such that rk(a) =b and
k_:k
Dr* =i,

Existence. The local expression shows that this map rk does not depend on the choice

of s.

We call rX the SECOND FUNDAMENTAL STRUCTURE of order k on jet spaces.

The local expression of rK shows the further properties.

5.3 - PROPOSITION.

a) K is a linear morphism (see 3.4a) over JkE.

b) K js an affine morphism (see 3.4c) over jkE >E( TE.

k

5.4 - We can view i as the restriction of rk.

PROPOSITION. The following diagram commutes (see 5.1 and 5.4b)

ke — L & T)ke
Yoo

JKVE ———— vk

55-rKand rh, with o < h <Kk, are related by the following commutative diagram

r
JTE —— 1)k
K k
(P°770)h Tph
h
ME —————— Tjhe

5.6 - We have a relation between rk and 19].

PROPOSITION. rK js an affine morphism (see 3.4d) over

, k=1 .k k=T1p (K k-1
ldJkEXr .]EJk_XlEJ TE JEJk>_<1ETJ E
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whose fibre derivative is (up to an obvious pull-back)

id, ey & ¥ :yT*M B TE >y T*M & VE.
v K K

5.7 - The second fundamental structure is functiorially invariant.

PROPOSITION. Let H : E - F be a morphism over the diffeomorphism h : M —~ N. Then the follo-

wing diagrams commute

k i k k r k
. J"VE =——V|J"E J"’TE ——TJ"E
a) JH vjKH 5)  J*TH
ik rk
JVF o vKE JKTF ——— TJ%F
Proof. a) Leta € JkVE be a point which is projected on x € M. Then there is a 1-parameter

family of (local) sections ¢ : IR X M = E, such thatjkao(x) =a. Then the proof follows from the

commutative diagrams

M
/ \ a0 diKo
JRVE — L L vk JkVE vJKE
JkVH H ViKkH
Jk i k k
VF ————— V&F JkvE VJKE
kaH\*\ %kH* iKoH*o diKH*o
\
N

b) Let (o,u) € JkE ﬁ JkTM be a point which is projected onx EM and lets : M > E

be a (local) section, such that jks(x) =

Then, from the commutative diagrams
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k
m
JkT™ o 1w
JkTs TiKs
l'k k
5 TE - TJKE
k S Tk
T s
k™ ) > J&TE TI*E ™
)%Th J&TH TJkH Th
k K
TH* TikH*s
JRTN ) TH™ - JkTF uks ’ ™
K
P L TikF
JRTH*s TikH*s
K
m
JKTN Mo 7

it follows that the following diagram commutes with respect to the point ]kTs(u) € ]k-TE which
is on the fibre (o,u) € JKE X JkT™

K
Ik TE -~ T)KE
J&TH TJkH
k
JkTF - T)KF

Moreover, the diagram (a) can be viewed as the fibre derivative of (b). Then (b) commutes for
each point of the fibre (a,u) | KE X 1kTM™.

5.8 .rk allows the exchange between d and Jk. This result will be utilized in (7.5).



190

L. Mangiarotti and M. Modugno

PROPOSITION. Let H : IR X E — E be a 1-parameter family of morphisms over the 1-parameter
family of diffeomorphisms h : IR X M > M, such that H = idg (hence h o = idpy)- Then

%t =rK o JkH : JKE > TykE,

Proof. We have (see 1.2)

for

with

for

hence

and with

a) xaoJkH=hg=x°‘

b)  yio AH=3HL vl (3;h))P) (3 h)P(m) — i,
HL:yI ’ hg:xa,
B(a,‘l ) =.,.= B(a)MCt) =0+ a,

BN 4 +BMbM) = A hence M=A;
c) x%o 3JkH = an% =y,
d) Vi o 3JKH =
=07 93 vy 0,1y @1kl - (oG -

i i (3511000 b(u)-1 b
RE )...aB(”,])ah“(a“hg) W (3, hm)o(m)
_ i1 | i u
=AY (1,1)Y (11 T YN+ OBY

(IJII) —

A+ 4 4m A,

h,I
1, >0=mb1)) m h)|>o,

(1)

= (1,1)
b(u) = Ay + M+ M,

BT) 4+ b)) Z g 4 p(u),

A+MUD) 4 MV o a

N+ B=A,
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for b(A) = M>\,
A1 =M; +Bq .., A#=BM+MM~1 o A =M+ B“,
hence N+ B=A, where M=N+u.
5.9 - rK also allows the exchange between 0 and jk.
PROPOSITION. Let h : IR X M > M be a 1-parameter family of maps such that ho = idM. Then,

for each (local) section s : M — E, the following diagram commutes

JkTE ~ TJ¥E
S°\ /1 so h)

Proof. It follows from the following commutatives diagrams

| k
j1kTE JRTE o TRE
i¥(so h) ks gkTs TiKs
M o ~ J5T™ k™ _ﬂ)g_.TM
TIkE
3iK(so h TiKs
Mo 1™ (")gﬁwm
L _ J

5.10 - By replacing p : E > M with p JhE = M in the definition of rk we obtain the map
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((kh) . jkyyhg o jkghg 0<hk.

Its expression is

A

Ayi iAo h) = (WA i oAl i :
My s 30 ig) o rloR) = Ayt i = v o+ Y )

with

0<IAI<h, 0<IMILk, ¢+y=M, [y 1>0.

In particular we have r(k’o) =K. we may also note that the image of r(k’h) is larger

than the subspace

T)PHRE = 1)k hE,

6. - INFINITESIMAL CONTACT TRANSFORMATIONS ON JET SPACES

We can introduce the infinitesimal contact transformations of any order, by using

both the first and the second fundamental structures.
6.1 - DEFINITION. An INFINITESIMAL CONTACT TRANSFORMATION is a vector field
u: ) KHE S pykHIE
such that
Lu Ak+1 - Ak+1 )
Of course, if u, v are i.c.t., then [u,v] isani.c.t.
PROPOSITION. Let u : Jk+1 E-~>T]) k+1 E be a vector field, whose expression is
u=uhoy +uh ol +uh o, with 0<IAI<K, lol=Kk+1.

Then the following conditions are equivalent :

a u isanic.t

i i aM o i M ou
b) up4n= (ByUp + 37 up Vi) ~ Y Oguf + 97" uH vl i)
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i =y 0t witn  0<IMI<K.

Proof. It follows from the expression of Luv, withv : Jk+1 E ->Ak+].

By extension we may naturally consider each vector field u : E - TE as an i.c.t. of

order 0.

k ((1,k=1) (1,k)

6.2 - We can characterize the i.c.t. by means of r andr
LEMMA. Let u : JkE -> TJkE be a vector field. Then
r(],k"]) ° 11(Tp||§_] ° U) =TJ]Pt_1 ° r(],k) ° J1U Jk+]E —>TJ1Jk—1E

Proof. It follows from the local expression.

PROPOSITION. Let u : JkE -> T]kE be a vector field. Then the following conditions are equiva-
lent :

a)uisanic.t.

b) The following diagram commutes

2k _ J(Tpge

— JkTE
pEk rk
JkE . TJKE
c) The following diagram commutes
g Ko g Trpk o u) 1 k-1
J°TE T )N 'E
pllz+1 Tol(1k1)
JkE u . TJkE

d) The following diagram commutes
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1k (1K), (1
jertg T P o Ko T

plet1 To(Lk=1)
u
JkE TJkE
Proof. a) < b). It follows, after a long calculation, by induction on | A | such that

0 < | AI<Kk, by the formula

vi o rko JK(TpK o u) =0, a,ul.yh . . —
YA JH( Po u) A%l y01+w(h,1,1) y0 L+w(h,|k,[(h»|k))

. u h h
VB4 2% Vg1 40 151) = Vgl y ol ()
with

0<IAISk, 0<16%I<k, 1<h<I
A+ 4 4 G0 =g 4 ¢+ 611 4 4 gUll(LIK) = o
I(a,b) >0 = 1y(a,b;1) I,..., [¥(ab;l(a,b)) I>0
J(a,b) >0 = I¢(a,b;1) I,..., | ¢(a,b;J(a,b)) I>0
Ic+o 1D 4 4 shlicI ) 15 o
a) < ). Itfollows from the formula
(v PR o 1 Tpl g o ) = (uh0,uk + M b Vi, ~ Vi 0,0 + 2Nl )

with
0< 12 I<k1.

c) < d). It follows from the previous lemma.
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7. - PROLONGATION OF VECTOR FIELDS ON JET SPACES
7.1 - We recall the following

DEFINITION. Let uX : JkE -> TJkE be a vector field. Then we say that uk s projectable on
u:M->TM, oron uh : JhE -> TJhE, with 0 < h <K, if the following diagrams commute, respec-

tively,
u u
JKE ————TJkE JKE - TJKE
pk TpK p'ﬁ Tp'ﬁ
h
u u
M ————— ™ I — TR

7.2 - THEOREM. Let u® : E - TE be a vector field. Then there is a unique i.c.t. uk : JXE > TJKE,
which is projectable on u®. Namely, we have
ko ko Jkyo,

ut=r

The expression of
uK=uha, +uh 3, 0<IAI<K,

is given by

i _ i1 1 |
uI/\“‘ 3¢ al ul Uw(-l,-l) eoe yw“,l]) .ee yw(l”l) .o ylllj(l,ll) -

. 1 1 I |
Y-+ 29 3yu¥ Y1) =Y (1,01) =% 0,1) Y (,))

with

o+ 4 4 ybllamtg+s01) 4 4 xlI)=A
1,>0= [y yhln)isg
jy>0 = 1200 s>

IMI<IAL
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k

Proof. Uniqueness. If u” is an i.c.t. which is projectable on u®, then it is determined by u®,

taking into account its inductive expression (or more precisely 6.2b).

Existence. %o Jkuo is an i.c.t. for (6.2b).

We call
ukErk. uoErko Jkuo

the PROLONGATION of order k of u®.
7.3 - There is a natural relation among the prolongations of u® at different orders.

PROPOSITION. Let u® : E - TE be a vector field. Then uK is projectable on uP, for 0 <h<k.

h

I(andu .

Proof. It will result from the local expressions of u

7.4 - PROPOSITION. The map u®+ uk is a homomorphism of Lie algebras, i.e.
ik [uPv°]= [rk .u®, rkvo] .

Proof. It will result, after a long calculation, by induction on | A |such that 0 < | A I<k, taking

into account the local expression.

7.5 - We find an equivalent prolongation in the particular case of projectable vector fields.

First we recall the following obvious

LEMMA. Let u® : E > TE be a vector field. Then the following conditions are equivalent.

a) The flow of u® H : IR X E = E is a 1-parameter group of (local) isomorphisms
over the 1-parameter group of (local) diffeomorphisms h : IR X M > M.

b) u® is projectable on u :M > TM.
Moreover, in such a case, we have
u® =9H u = oh.
In particular, the following conditions are equivalent.

a’) The flow of u® H IR X E > E is @ 1-parameter group of (local) isomorphisms
over M.

b’) u® is vertical.
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PROPOSITION. Let u® : E » TE be a vector field projectable on u : M > TM and let
H: IR X E > E be its flow over h : IR X M > M. Then we have

uk = 3)KH.
Proof. It results from (5.8).

7.6 - We could try to prolong any vector field uh JhE -> TjhE to uk : JkE - TJkE, with
0 <h <k, by means of r(k_h'h), but we find that

ukEr(k—h,h) o Jk—huh :JkE —>Tjk_hjhE
generally does not take its values in
TJkE = Tjkyhg,

We can find the local necessary and sufficient condition for it to hold. In particular we have the

following condition.

PROPOSITION. Let ul : JNE = TJPE e a vector field. 17 k) o Jk=0N i oo vorizable through

a vector field uk :JCE->T) kE, i.e. if the following diagram commutes

r(k=h,h)
jkhojhg » Tjk~hjhe

Jkhyh 1o(k—hh)

JkE TIkE

h

then u'jsani.c.t

Proof. It results from the local expression.
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