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GLOBAL BEHAVIOUR AND SYMMETRY PROPERTIES OF

SINGULAR SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS

Laurent Véron(1)

Annales Faculté des Sciences Toulouse
Vol VI,1984, P.1 a 31

(1) Département de Mathématiques, Faculté des Sciences, Parc de Grandmont, 37200 Tours.

Resume : : Nous etudions le comportement des solutions de (E) : Au = g(u) dans un domaine
exterieur S~, lorsque g est une fonction croissante. Si g ne s’annulle qu’en 0 et

u(x) = o( I x I ), I x I N 2 u(x) admet une limite isotrope quand x tend vers l’infini. Quand g se

comporte asymptotiquement comme une fonction puissance nous recherchons a quelle condition
sur cette puissance toutes les solutions de (E) dans t 0 ) sont a symetrie sphérique. Sous
des hypotheses plus restrictives portant sur g nous montrons Funicite d’une solution de (E) avec
une singularité donnee en 0.

Summary : We investigate the behaviour of any solution of (E) : Au = g(u) in some exterior domain
S~, where g is a nondecreasing function. If g vanishes only at 0 and u(x) = o( I x I), ~ 1 N~2 u(x)
admits an isotropic limit when x tends to infinity. When g has a power-like growth we study under
what condition on’that power all the solutions of (E) in 0 } are spherically symmetric.
Under a more restrictive assumption on g we prove the uniqueness of a solution of (E) with a

prescribed singularity at 0.

INTRODUCTION

This paper deals with the study of some local and global qualitative properties of any
solution of the equation



2

in some exterior domain Q of IRN, where g is a nondecreasing function defined on IR. More pre-

cisely we shall investigate the three following problems

(I) What is the asymptotic behaviour of u(x) when x tends to infinity ?

(II) If we suppose that Q = IRN - { 0 and that u is possibly singular at 0, is u spherically
symmetric ?

(III) When any possibly singular solution of (E) in IRN - { 0} } is uniquely determined ?

As that type of equation appeared in the modelisation of many physical phenomena,
it has been intensively studied in supposing first that u is positive and radial and g(u) = uq. For

example the Thomas-Fermi theory of interaction among atoms leads, as a first approximation, to

the following differential equation (see [12], and [9] )

The singularities and the asymptotic behaviour of any solution of (0.1 ) are now well known (see
[12] and [9] ). Recently some new results concerning the asymptotic behaviour and the descrip-
tion of the isolated singularities of non positive solutions of (E) when g(u) _ ~ u I q ~ u has been

given in [14] and [16] . Those results where strongly linked to the existence of a very simple solu-
tions of (E) in {0} if 1  q  N N-2 :

Moreover when 1  q N+1 an infinite family of non-isotropic solutions of (E) was obtained
N-1

under the following form

where v is any non constant solution of

A 
S 

being the Laplace-Beltrami operator on 

However, as a physical law is just an approximation of a phenomena, it is natural to

replace the exactitude of the definition of g by a less restrictive assumption if we want to take into

account some secondary effects, for example g(r) ~ c rq (q = 3 in the Relativistic Thomas-

Fermi Theory). So we no longer have explicit solutions of the equation (E), but in using some of



the methods introduced in [5] and [16] we can give answers to the three problems

( I ) Suppose g vanishes only at 0 and u (x) = o ( I x I ) or g vanishes at 0 and l i m u (x = 0 then
I x I N 2 u(x) converges to some real number y as x tends to infinity. I x I -> + ~

( I I ) Suppose g satisfies

then any solution u of (E) in IR N - { 0 ~ is spherically symmetric.
( I I I Suppose g vanishes only at 0 and

then any solution u of (E) in IRN - { 0 } is uniquely determined by its isotropic singularity at 0. .

y ~
If we réplace A by L a;. 

-20142014 a strongly elliptic operator with constant coef-

ficient all our results remain true provided |x| is replaced by some (03B1ijxixi)1/2, the coeffi-

cients being obtained after the diagonalisation of the matrix +’i.) ).

Results concerning symmetry and singularities of positive solutions of equations of
type (E) when g(r) = - r~ have been given in [7] and in [8] . For general g, symmetry of positive
regular solutions vanishing for I x I = R is also given in [8].

The contents of our work is the following :

1. Behaviour at infinity.
2. Spherically symmetric solutions.
3. Uniqueness of solutions.



1. - BEHAVIOUR AT INFINITY

In this paragraph 03A9 is an exterior domain (that is C 03A9 is compact) of IR N, N  3,
and g is a nondecreasing function defined on IR and vanishing at 0. The equation we consider is

the following

For the sake of simplicity we prefer to deal with C2 solutions of (1.1) in n, so we shall suppose
that g is Holder continuous although our results remain true when g is discontinuous and u is a

C~ solution of (1.1 ) in D’(S2).

vanishing in some weak sense at infinity has a compact support (see [1 ] ).

When g(u) = I u I q 1 u, q > 1, the behaviour of any solution u of (1.1 ) has been given

by Veron in [14] :

Moreover, when q > 1 and when u vanishes at infinity, the hypothesis on g can be weakened and

replaced by lim 

Our main result which generalises strongly the last one of [14] is

THEOREM 1.1. Suppose u is a C2 solution of (1.1 ) in Q and



Then I x I N 2 u(x) converges to some real number when x tends to infinity.

We call (r,a) the spherical coordinates in = IR+ X and u(r ) the average of

u(r,a) on and we suppose that x I I x I > R ~ I C S2. The following estimate is fundamen-
tal.

PROPOSITION 1.1. There exists a constant C(N) such that if the hypotheses of Theorem 7.1 are
fulfilled the following estimate holds

We first need the L2 version of (12) )

LEMMA 1.1. Suppose u E C2(S2) is a solution of ~7.7J such that lim u(x) / I x 1= 0, then

for any R  r.

Proof. N_~ is the Laplace-Beltrami operator on SN ~, the function u satisfiesS
, ? . , - - .

in [R,+~) X In averaging (1.4) we obtain



on the first eigenspace of - A and N-1 is the second eigenvalue of-A (see [3]), so we
deduce

on r. By the maximum principle w cannot assume a strictly positive maximum value, so the set r

can only be of two types

Let us consider now the following differential equation

That equation admits two linearly independant solutions

_ 
r 1-N

Now we set = er + II u(R,.) - u(R) II 2 N 1 (- ) , e % 0. As satisfies (1.8), we
L (S ) R

have

on r. If we are in the first case or in the second when T  + 00, we take e = 0 and we deduce by
the maximum principle that 0  w(r)  on (R,T), which is (1.3). In the second case with



T = + oo, or on (T’,+ we take e > 0. As 

r 

lim w(r)/r = 0, is non positive at the end
r-~+oo

points of the interval, so w - remains non positive. Making E -~ 0 we deduce which

ends the proof.

Remark 1.1. In Lemma 1.1 we need not assume g(0) = 0 (see Theorem 2.1 for an application of
this method).

We set u~ = Max(u,0), u = Max(-u,0) and we have

LEMMA 1.2. Under the assumptions of Theorem 1.1 we have

for any x such that I x I > R. .

Proof. Multiplying (1.4) by u and integrating over yields

By the maximum principle r H ~N-1 u2(r,Q)do is asymptotically monotone so there exists
~N-1

1 E IR+ U {+ ~} such that 
r 

lim 
00 

II u(r,.) II L2(SN-1 ) - y2 i I . From the estimate (1.3)

and the continuity of r H u(r), either lim u(r) =y or lim u(r) =-y and lim u(r,.) =

lim u(r) in 
r-~+ oo

We first suppose that y = 0 (which is an hypothesis if lim u(x) = 0) and set p a

convex function vanishing on (- oo,0), increasing on (0,+ oo) and such that 0  p’  1. We set

B (x) = ( ) 2-N II u+(R,.) II 
L~(SN-1). 

B+ is a positive harmonic function and we have

As we have



we deduce from the monotonicity of g that

The function vanishes at R and as p(u-0398+)  (u-o) , we have :

r lim 
= 0. By the maximum principle ( 

which is (1.11). In considering B (x) = - ( R ) II u (R,.) II 
L~(SN-1), 

we obtain (1.12) in the

same way.

We suppose now that y > 0 (so g vanishes only at 0) and, for example, lim u(r) = y.
The function ( satisfies r-~ + ~

it vanishes at R and as p(B -u) ~ p(B -u) + I u-u I , we deduce from (1.3) that

lim ~ p(B (r) - u(r,Q))dQ=0. By the maximum principle we get (1.12) which implies
’

that u(x) is bounded below on { x I R ~ .
As g(r) =g+(r) -g-(r), we set g) (r) = min(N,g+), N > 0 and we have in averaging (1.4)

But g (u) = g (u ) and lim u (r,.) = 0 in As u is bounded below,

lim g (u ) = 0. On the other hand, by Lebesgue’s Theorem, lim = 

I I min(N,g(y)) = a > 0. There exists R’ > R such that

on (R’,+ Integrating (1.20) twice yields



on (R’,+ ~) which contradicts the fact that lim u(x) / I x I = o. So ~y = 0 which ends the

proof. ( x I -~ + ~

LEMMA 1.3. Suppose g is a continuous nondecreasing function vanishing at 0 ; then for any p > 0

and any real a there exists a unique function v twice continuously differentiable satisfying

Proof, Uniqueness : Consider the following change of variable and unknown

The function w satisfies

Suppose another solution of (1.24) with the same initial data, then

pN-2
so the function s -~ ! w - w ! I (s) is nonnegative, convex, vanishes at 201420142014 and

lim 2014 ! w(s) - w(s) ! = 0, so it is identical zero. N-2

s+oo s

Existence : For any T > p set vT the solution of the following two points problem

The function v-p exists and is unique ; moreover decreases. Thanks to the uniqueness of the
solution of (1.26), the function T ~ |vT(r)| is nondecreasing for any r > p. As  ! |a|

. 

and g is continuous, we deduce in integrating (1.26) that - and - remain bounded on every
dr dr2



compact interval of [03C1,T) ; so converges uniformly on every compact interval to some C2
function v, as T tends to + -. Moreover I v~ l is majorized by the function gl defined on [p,+ -)

by gl(r) = (03C1 )N-2 l al I (which satisfies (1 .22) with g > 0). So v(r) remains bounded on
r

[p,+ -) and (1 .22 ) is satisfied.

LEMMA 1 .4. For any p > 0 and a G L2(SN-1) there exists a unique function m G L"( (p,+ -) ; ;
L2(SN-1)) m C°(lP,+ -) ; L2(SN-1)) m C2((03C1,+ -) x SN-1) satisfying

Moreover there exists a constant C = C(N ) such that the following estimate holds

N

for any s > p.

Proof. For the uniqueness set c.~ a solution of (1.27) taking the value a for s = p. We have :

52 a2 2 (03C9 - )(03C9 - )d03C3  0. Hence s H (03C9 - )2(s,03C3)d03C3 is a convex func-

tion. As it is bounded it is nonincreasing.

For the existence we set t = log s and ~(t,a) = w(s,a). The function ~ satisfies on

(log p,+ oo)

tf (T(t)) is the semigroup of contractions of ) generated by

- ( - 2014201420142014 A + 2014 ! ) it is easy to check that exp((t - log p)/2) T(t - log p)o: satisfies

the equation (1.29) with initial data a and is bounded ; so it is 03C6.

Set HQ the subspace of L~(S~) of constant functions and H’ = (H ) . We have
the following hilbertian direct sum : ) = H’ ~ and both H~ and H’ are invariant
under (T(t)) 



the restriction T’(t) of T(t) to H’ satisfies (see [4] )

for any u G H’: Moreover we have the following regularizing effect (see [15] )

for any u E L2(SN ~ ) and any t > 0. In combining (1.30) and (1.31 ), and using the semigroup
property, we have for any u G H’, any t > 0 and any e > 0 : :

Now we write a = 03B10 + a’ with 03B10 E H0 and a’ E H’ (and in fact 03B10 = 1 |SN-1| J f cx(Q)dQ). We have

but T(t)a0 = exp(-t/2)O:O . In taking e =- in (1.32) we get

In replacing t by log s - log p, we obtain (1.28).

Proof of Proposition 1.1. Consider the change of variable and unknown

The function v satisfies

~N-2 ’ 
- .

in [ - , + -) X SN-1. Let y be the solution (from Lemma 1 3) ofN-2 - 

°



We set w = v - y and we have for s > p’

The function h is nonnegative as g is nondecreasing. If is the solution of (1.27) taking the

value (v(p’,.) - a) for s = p’, is nonnegative and satisfies

Introducing the nondecreasing convex function p as we have done it in Lemma 1.2, we

get s - p(w - 0 ; hence w  03C9+. In the same way w is minorized on

d~ 

(p’,+ oo) by the solution of (1.27) taking the value -(v(p,.) - a)" for s=p’. Combining those
estimates with (1.28) we get .

In averaging (1.40) we deduce

We take now a = v(p’), s = , p’ - 201420142014 and apply (1.3) between Rand p, we get (1.2).
N-2 N-2

Remark ?.2. We can deduce from Lemma 1.1 a first property of symmetry of the solutions of

(1.1) : : suppose g monotone nondecreasing function and u is a C2 solution of (1.1) satisfying
lim u(x)/ I x = o. If u is spherically symmetric on ~ x I I x I = R { then it remains spherically

symmetric on ~ x I I x ( > R ~ .



Proof of Theorem 1.1. I n Proposition 1.1 we take r = 2p and make r ~ + oo. I n taking the nota-
tions of the transformation (1.35) we get

As { v(s) 1 is bounded, there exists a sequence s -~ + ~ such that converges to some number

c when n ~ + ~.

C
If C > 0 (or C  0 in the same way) there exists some nO such that > - for

n > nO (it is a consequence of (1.42)). If we apply the maximum principle to the function 2 v in
the spherical shell (s ,s ) X SN 1 , we deduce that v(s,a) > 0 in that shell and therefore in

(sn ,+ °°) X I n averaging (1.36) on we deduce s - > 0 for s > sn . Hence v is0 ds2 0

convex and, as it is bounded, it converges when s goes to + ~. The only admissible limit is C and

finally lim v(s,.) = C in ).
.

If C 0 then 

s 

lim I) v(s,.) II ~ N-1 
= 0, otherwise there would exist a sequence

+ ~ 
and e > 0 such 

that 
II I) 

L~ (S N-1 ) > E e for sn 0 and there would exist a se-
quence extracted from and a number A, I 03BB| >-, such that lim 

+ _ 

=A. Applying

what have been done when C ~ 0, we would have lim v(s,.) = A in which contra-

dicts lim v(sn) =o..
s 

2. - SPHERICALLY SYMMETRIC SOLUTIONS

In this paragraph g is a continuous nondecreasing function defined on IR (not necessa-
rily vanisbing at 0) and we still consider the equation

but the equation is taken in {0 ~ ) and u may have a singularity at 0. The following
result is fundamental and its proof is very similar to the one of Lemma 1.1 (comparison of w with

+e’~,e,e’>0). 
,

THEOREM 2.1. Suppose u E { 0 ) is a solution of (2.1) //7 { 0 ) such that



where (r,a) G X are the spherical coordinates in and f(r) = 1 |SN-1| SN-1 u(r,a)da,
then u is spherically symmetric.

The following «universal» estimate on u when g has an asymptotic growth corres-

ponding to a power greater than I is originated in [5 ] .

LEMMA 2 . I Suppose g satisfies, for some q > 1 ,

and u E C2(IRN - f 0 ~) is a solution of (2.1 ) in to }) ; then

for x ~ 0, where C and D depend on g and N. .

Proof. From the hypothesis (2.2) there exist two constants A and B > 0 such that

which yields

!x-XQ!2014 and consider the function



where X and ~u are to be determined in order that

in G. For simplification set v(r) = ~(RZ - ~2)-2/(q-1 ) + jn. We have in G

Set 03B2 = max ( 2N q-1, 4 
q+1 

2 
) and we take A = ( A ) /3 1/(q-1) R2/(q-1) and  = ( A ) B 1 /9 

, so we get

(2.6). 

By Kato’s inequality (see (10] ) we have as in [5]

in D’(G). Moreover (u - v) vanishes in some neighbourhood of 8G, so (u - v)+ = 0 in G and

In the same way 

From that result we get

THEOREM 2.2. Suppose g satisfies

and u E C2(IRN - { 0 ~) satisfies (2.1 ) in 0 ~ ) ; then u is spherically symmetric.

Proof. From (2.9), for any n > 0, there exists Bn  0 such that



From (2.8) we get I u(x) I 5 ( 16 a ) ~/~q-~) I x I ~_N + ( - ) Bn ~N-~)/~N+1) 
, for x ~ 0, which

n n

implies lim sup rN-1 
’ !!u(r,.)-u(r) II  2 (1603B2 )1/(q-1). Letting n ~ + ~ we obtainr --> 0 ) n

the condition ii) of Theorem 2.1 ; as for the condition i) it is an immediate consequence of (2.3).
N+1

When the rate of growth of g at infinity is of order - , it 
is not enough to make a

hypothesis on g but we have to make it on g’ and we get :

THEOREM 2.3. Suppose gsatisfies

for some C > 0, D ~ 0 and all rand s real. l f u E to ) ) is a solution of (2.1 ) in

D’(IRN - 0 }), then u is spherically symmetric.

We first need the following result

LEMMA 2.2. Under the hypotheses of Theorem 2.3, we have

for 0r~ R.

Proof, The function u satisfies

in (0,+ oo) X We set y(r,a) = u(r,a). From Lemma 2.1 y is bounded on every compact
or [0,+ oo) X and it satisfies

Now we set

The function v satisfies



in (0,+ oo) X S If v is the average of v on SN-1 we get, as in Lemma 1.1,

hence s ~ II v(s,.) - v(s) II L2(SN_~ ) ) is convex. As it is bounded, it admits a limit when s -> 0.

From (2.11) we get

As ~N-1 I v - v~ 2N/(N-1 )dQ ~ C,C f N-7 ~~ _ ~~2 d~~~~ ~ we see in integrating (2.18)
l 

’

twice that the only admissible limit for II v - v II ) is 0. From (2.17) we also deduce that
the function s H II (v - v)(s,.) II 

L2(SN-1 ) 
is convex (see the proof of Lemma 1.1 ). As it vanishes

at 0 we get, for 0  s  03C3 :

which is (2.12).

Remark 2. I. The assumption of monotonicity on g can be avoided for obtaining estimates of the

type (2.12) : if we suppose that g satisfies

. N+1
for some C and D > 0, q > - and all r and s real, we first deduce from Lemma 2.1 the boun-

N-1
dedness of I x I 2~(q 1 ) u(x) on every compact of With the change of variable of Lemma 2.2
of [16] we obtain the following estimate

where d depends on D and a > 0. If we suppose moreover that g is differentiable and satisfies



for some C’ and D’ > 0 and all r, then we can obtain as in the Appendix of [16]

Such a relation can be used for proving that the isolated singularities of the solutions of (2.1)
are radial. .

Proof of the Theorem 2.3. From Lemma 1.1, we have for any p  r,

and from the Lemma 2.2, lim 0 
II u(p,.) - u(p) II 

L2(SN-1) = 0, which implies

II u(r,.) - u(r) II L2(SN-1) = 0 for all r > 0 and ends the proof.
N+1

When 1  q  - there exist non spherically symmetric solutions of
N-1

in IRN - { 0 }. For example if v is a non constant solution of the equation

(such a solution exists as ( q21 ) (2q - N) > N-1 which is the second eigenvalue 
then I x v( ) is a non isotropic solution of (2.25). However such a solution

cannot keep a constant sign, so we shall restrict ourself to positive solutions of (2.1). Our first

result is an extension of Theorem 1.1 of [16].

PROPOSITION 2.1. Suppose g satisfies

for some c > 0 and 1  q - and 03A9 is an open subset of IR N containing 0. lf u E - . 0 )
N-2

is a non negative solution of (2.1 ) in D’(S~ - 0 ) then we have the following alternative



Proof. We shall just sketch it as it is not far from the proof of Theorem 1.1 of [16J (at least in its
first part). Moreover we need not suppose that g is nondecreasing. The two assertions are distinct

according I x N 2 u(x) is bounded or not near 0.

Part I : I x I N 2 u(x) is bounded in some neighbourhood of 0 (and we can even suppose that u
has not a constant sign if I g(r) / is bounded when r -~ - oo). We make the change of variable

(1.35) of Proposition 1.1 and we deduce from Lemma 6.4 of [16] that lim II u(r,.) -
u(r) II 

L~N-1 ) 
= 0. We end the proof as in Theorem 1.1 of [16]. 

Part 2 : I x I N 2 u(x) is unbounded near 0. If we write (2.1 ) as follows

we deduce from (2.27) and Lemma 2.1 that 20142014 C !x! ’ + D. Using Trudinger’s estimates in
Harnack inequa!ities as in the Lemma 1.4 of [16] , we deduce that  |x|N-2 u(x) =+ oo.

For any c’ > c there exists p > 0 such that g(u(x))  c’(u(x))~ on {x ! I !x!p~ so
- Au + > 0 on such a shell. For any o; > 0 set v the solution. of

Such a solution exists (see Lemma 1.6 of [16] ). Moreover, from the maximum principle,
u(x) for any x with 0  I x I  p. When a goes to + oo, va(x) increases and converges to

v~(x) and

from [16]. If we set



and make c’ ~ c, we deduce lim inf |x|2/(q-1)u(x)  l. Now suppose lim 

x-~0 x--~0

There exist a sequence xn -> 0 and C’ > Q such that lim I xnl 2~~q ~~u(x~) = ?’. Set
n -~ + oo

vn(x) = |xn|2/(q-1)u( |xn|x) ; vn satisfies

By compactness there exists a subsequence nk and a function v such that v~ (x) converges to
v(x) uniformly on every compact of IRN -f 0~, and v satisfies 

From Lemma 1.4 of [16] there exist two constants K > 0 and T > 0 such that the following

inequality holds for any R > 0 and any 0  I x I  R/

Making R ~ + ~ we deduce v(x)  Q I x I 2(a 1 ) for x ~ 0. For any E > 0 there exists nk0 such
that for nk > nk and I x I =1

0

X
If we take x = - and make nk ~ + 00 we deduce Q’ - Q  e which contradicts Q’ > Q ; so

Q=Q’= lim 

_L N+1
THEOREM 2.4. Suppose g is defined on IR + and satisfies for some c > 0 and some 1  q -

/

lf u E to } ) a non negative solution of ~2. 7~ in D’(IRN - to }), itis spherically sym-
metric.

Before proving that result we introduce the generated Sommerfeld exponant T (see



[12] and [16] ) which is the positive root of the equation

We have the following result which will also be used in Section 3,

N q-1
PROPOSITION 2.2. Suppose q and p are two real numbers such that 1  q  - , 0  p  - T

and g is defined on IR+ and satisfies for some c > 0 
N-2 2

lf u E C2(IRN - ~ 0 ~ ) is a positive solution of (2.1) in D’(IRN - ~ 0}) satisfying
lim I x l 2~~q ~ ~ u(x) = Q (defined in (2.31), then for any e > 0 there exist p > 0 and k > 0

such that

.

Proof, First we shall prove that for any e > 0, there exist p > 0 and k > 0 such that the following
inequality holds for any 0  I x I  p : :

Step 1. We set = Q I x l 2~~q ~~ and we define as in the Proposition A.4 of [5]
~(x) = u(x)). From Kato’s inequality we get

As A~/ = we get ~~ > ~ or

Moreover there exists D > 0 such that



Step 2. Set w(r,a) = ~~(r,a) and w(r) its average on We have w(r,a)  Q
and

As w is bounded on { x I 0 G I x I  1 } we deduce in averaging (2.43) that

r2~9+~ )/~9-~ )-N
for 0  r  1, D. being a constant. Now we set s = and v(s) 

= w(r). We have
’ 2(q+i)/(q-i) N

on { s ) 0  s  20142014201420142014201420142014 } where D2 is non negative and 03B8 = 2p (2(q+1)-N(q-1). Hence the
) 2(q+1)-N(q-1)~ ~ 2(q+1)-N(q-1)

~2
function s ~ V(s) + 2014201420142014 s~ is convex (or s ~ v(s) + log s-s) = 1) which implies that

~(~-1)
 V(0) + s D3 , where Do depends on 03B8, q, Nand u(1) ; so there exists a constant A such that

for 0  r  1. Moreover that relation is true for any 0  p.

Step 3. We set c.a(r) = Q r 2~~q ~~(1+e/Q r2p~~q ~~) and we claim that we can find a
such that

on t x I 0  i x I  03C3 } . For a given 6 > 0, there exists a’ > 0 such that c(w(r))q -
8 for 0  r  a’. We get



So we get

And the right hand side of that inequality can be written as

2p
and, as 0  20142014  ~ , the coefficient of e !s positive. So we first choose Oi such that

q-1 ’

(1 + e/C r~~~’~ ))~P  2 for 0  r  ~ . We then choose 6 such that

and then we take Q = a’), which implies (2.47).

Step 4. We follow now the end of the proof of Proposition A.4 of [5] . Set
k = Max ~(x). As g is nondecreasing we have

on { x I 0  I x I  Q ~ . Let ~~ be a sequence of smooth functions such that

Let 9 be a smooth nondecreasing function vanishing on (- ~,o] , strictly positive on (0,+ ~) and
such that 6 = 1 on [1, + ~) and set j(t) = j 

t 

8(s)ds. We have from Steps 1 and 3, in setting
10 IxlQ , 

, 

0



So we get : Kn~ / j(u-cD-k)dx  KA ~2014 n ~ ~. As n - + oo we get by Fatou’s
~1 1 2q

Lemma 2014 
2n n

which implies that both terms are 0. If we make e (r) -> r+ we deduce that a.e.

But vanishes on 8Q so it is identically 0 and we have

for 0  I x I  a, which is (2.40).

For proving the reverse inequality

we do the same in introducing ~~ (x) = Min(~(x), u(x)) which satisfies

With the same change of variable we obtain by concavity



for 0  r  1. We then construct a subsolution (r) = Q r 2~~q ~ ~(1 - E~Q ~2p(q 1 )) for the
equation (2.1) (the only slight change being in the estimation of (r))q where we have :

~W1 ~~~~q ~ ~q r 2q/(q-1 )~~ _ q’E/Q r2p~~q ~ ~) where 1  q’  q but q - q’ can be as small as

we want in restricting r). We end the proof as in the Step 4.

Proof of the Theorem 2.4. From (2.36) and Lemma 2.1 any solution of (2.1 ) is bounded at infi-

nity. So, if lim I u(x) =y, we deduce from Theorem 2.1 that u is spherically symmetric.
xO

Now suppose that lim I xl 2~~q ~~ u(x) = Q. We have 2p = 2q - (N+1) > 0, and
x ~ 0 q-l q-1

q+1 2 q+1 q+1 2q
( - - N) - (2 - - N) ( - - N) - 2 (- - N)  0, so we have (2.39) and

q-1 q-1 q-1 q-1

- ~ ~ II u(r,.) - u(r) II 
L~ (SN_~ ~ ~ 

)/~q-~ )-N + 2k r2/~q-~ ), for 0  r  p. So we

deduce

Making ~ ~ 0 we obtain lim 

0 

rN-1 (I u(r,.) - u(r) II L~(S N-1) =0 and then we conclude with

Theorem 2.1. 

Remark 2.2. The following nonlinear Liouville-Hadamard type result is a consequence of Theorem
2.1 : a C2 solution u of (2.1) in IRN such that u(x) = o( ( I x I ) ( I x I -~ ~) is a constant.

3. - UNIQUENESS OF SOLUTIONS

I n that part we shall still suppose that g is a continuous nondecreasing function defi-

ned on IR (Holder continuous as we want to deal with strong solutions) and we consider the

equation

taken into D’(IRN - ( 0 ) ) and we investigate under what assumption on g is a (possibly singular)
solution of (3.I ) uniquely determined. If u is a solution of (3.I ) and 0 G 0(n), u O 0 is also a solu-
tion of (3.I ) ; so if u is uniquely determined, u must be spherically symmetric. The following
easy-to-prove resu lt is the key-stone of th is section.

THEOREM 3. I . Suppose u1 and u2 belonging to to ) are two solutions of (3. I) in
to ) . If they satisfy



then u ~ 
= 

u 2.

Proof. We make the change of variable

The function vi satisfies

in (0, + -) X SN-1. If we set w = v1 - v2 , then we get: s2 
( - w w d03C3  0 which implies

that he function s F+ 11 w(s,.) ll ~ is convex. As it vanishes at 0 and satisfies
L (S )

lim ~ ll w(s,.) ll ~ ~_~ 
= o, it is identically o.

~ _ + _ s L (S )

As a consequence we have the following .

COROLLARY 3 . I Suppose g vanishes only at 0 and satisfies

Then the only u E C2 ( I RN - ~ 0 ~) in D’( I R N - the zero function.

Proof. From a result of Brezis and Veron [6] the function u can be extended to whole IRN into

a C2 function. Moreover from Lemma 2.1 and Theorem 1.1, I x N 2 u(x) admits a limit when
I x I goes to + oo. Applying Theorem 3.1 to u and 0, we get u = 0.

Remark 3.1. The assumption g 1 (0) = 0 can be cancelled if we consider the solutions of (3.1 )



vanishing in some sense at infinity, for example such that lim II u(r,.) II ~ N-1 - o. Some
other conditions are discussed in [1 ]. 

When the growth of g at infinity is comparable to some power q with 1   Ng g Y P p G a 
N-2 ~

there exist two types of isotropic singularities at 0. We deduce from Proposition 2.1 and Theo-
rems 1.1 and 3.1. .

COROLLARY 3.2. Suppose g vanishesonly at 0 and satisfies

for some c > 0 and 1  q  - . l f u E f 0}) is a solution of (3.1 ) in 0})N-2

such that I x I N 2 u(x) remains bounded in some neighbourhood of 0, then u is uniquely deter-
mined by the value of 03B3 = lim IxIN-2u(x).

In fact in Corollary 3.2, we have not only the uniqueness with respect to the singula-
rity at 0, but also the existence, as a consequence of

N
LEMMA 3.1. Suppose g vanishes at 0 and satisfies (3. 6) for some c > 0 and some 1  q  - .

Then for any 7 there exists a unique u E C2(o, + ~) satisfying 
N-2

~N-2
Proof. If we set s=~ and u(r) = r2 N v(s), then (3.7) is equivalent toN-2

The uniqueness comes from the same argument of convexity as the one of Lemma 1.3. For the



existence, we consider for any e > 0 the solution v~ (coming also from the Lemma 1.3) of the

equation

As the function s H I is convex it is nonincreasing. From (3.6) we have

for any r and some c, d > 0 ; so we have for any 0  s  T

d2v~ dv~
But as I vE I  y, I g(vE) I is bounded and it is the same with - and -- on any interval

ds2 ds
(a, + ~), a > 0. I ntegrating again (3.11 ) yields s

for 0  s  t  T. As the functions t H tN/(N-2)-q and t ~ tN~(N-2) are uniformly continuous
on [O,T+1 ] , the set of functions (v e G (0,1 ] ) is equicontinuous on [O,T] . Using Arzela Ascoli

theorem and the diagonal process, there exists a continuous function v on [0,+ oo) and a sequence

en  0 such that ve n converges to v on [O,T] , for any T 
> 0. The function v satisfies the equation

(3.8), is nonincreasing and v(o) = ~. ~

Remark 3.1. If we define u on B by u (x) = u( ( xl ), where u satisfies (3.7), one can see

that u is a solution of

in D’(lRN), unique if g vanishes only at 0.

N
THEOREM 3.2. Suppose g vanishes only at 0 and satisfies for some c > 0 and some 1  q 

N-2



Then there exists only one u E { 0 ~ ) solution of (3.7J such that
lim Ixl2/~9-~) 

Proof. Existence : For any y > 0 set uy the solution of (3.7) on (0, + ~). From the Lemma 2.1,
there exist A and B > 0 such that

N-2
for any r > 0 and 7 > 0. Setting s = - and u (r) = r2-N v (s), the function v satisfies the

equation (3.8) with initial data 7 and vanishes at + oo. From the uniqueness, for any s > 0, the
function 7 t-~ v (s) is nondecreasind and as

it converges as 7 -~ to some function v~ satisfying (3.8). Setting u~(r) = r2 N v~(s) the
function u~ satisfies (3.7) and lim rN-2 u~(r) =+oo. If u(x) I x ), u satisfies (3.1) and,

r -~ 0
from the Proposition 2.1, lim I x I 2~~q ~ ~ u(x) = Q.

Uniqueness : Set u~ and u2 two solutions of (3.1 ) such that lim Ixl2~~q ~ ~ = Q

N 
’ 

for i = 1,2. We apply the Proposition 2.2 with p = q - - (q-1 ) and we get from (2.39)

which implies lim I x I N 2 I u~ (x) - u2(x) 1 = 0. As u1 and u2 vanishes at infinity we deduce
x -~0

u~ 
= 

u2 from the Theorem 3.1.

Remark 3.2. When g(r) = c I r I q ~ r the solution u of Theorem 3.2 is

ACKNOWLEDGMENTS. The idea of looking for symmetric singular solutions originated in dis-
cussions with R. Jensen and A. Friedman. This paper was written while the author was visiting
Northwestern University on leave from the University of Tours during the academic year 1 980-
1981.



REFERENCES

[1] Ph. BENILAN, H. BREZIS &#x26; M.G. CRANDALL. «A semilinear elliptic equation
in L1(IRN)». Ann. Scuola Norm. Sup. Pisa, 2, 523-555 (1975).

[2] Ph. BENILAN &#x26; H. BREZIS. «Nonlinear problems related to the Thomas-Fermi
equation». I n preparation.

[3] M. BERGER, P. GAUDUCHON &#x26; E. MAZET. «Le spectre d’une variété reimannien-
ne». Lecture Notes in Math., Springer-Verlag (1971).

[4] H. BREZIS. «Equations d’évolution du second ordre associées à des opérateurs mo-
notones». Israël J. Math., 12, 51-60 (1972).

[5] H. BREZIS &#x26; E.H. LIEB. «Long range atomic potentials in Thomas-Fermitheory».
Comm. Math. Phys., 65, 231-246 (1979).

[6] H. BREZIS &#x26; L. VERON. «Removable singularities of some nonlinear elliptic equa-
tions». Arch. Rat. Mech. Anal., 75,1-6 (1980).

[7] B. GIDAS. «Symmetry properties and isolated singularities of positive solutions of
nonlinear elliptic equations.». Nonlinear Differential Equations in Engineering and
Applied Sciences, ed. R.L. Sternberg, Marcel Dekker Inc. (1980).

[8] B. GIDAS, Y.M. NI &#x26; L. NIRENBERG. «Symmetry and related properties via the
maximum principle». Comm. Math. Phys., 68, 209-243 (1980).

[9] E. HILLE. «Some aspects of the Thomas-Fermi equation». J. Analyse Math., 23,
147-170 (1970).

[10] T. KATO. «Schrödinger operators with singular potentials». Israël J. Math., 13,
135-148 (1973).

[11] E.H. L I E B &#x26; B. SIMON. «The Thomas-Ferri theory of atoms, molecules and solids».
Adv. in Math., 23, 22-116 (1977). 

[12] A. SOMMERFELD. «Asymptotishes integration der differential-gleichung des Thomas-
Fermischen atoms». Z. für Phys., 78, 283-308 (1932).

[13] E.M. STEIN. «Topics in harmonic analysis». Annals of Math. Studies Princeton Univ.
Press (1970).

[14] L. VE RON. «Comportement asymptotique des solutions d’équations elliptiques semi-
linéaires dans IRN». Ann. Mat. Pura Appl., 127, 25-50 (1981).



31

[15] L. VERON. «Coercivité et propriétés régularisantes des semi-groupes non linéaires
dans les espaces de Banach». Publ. Math. Univ. Besançon, 3, (1976).

[16] L. VERON. «Singular solutions of some nonlinear elliptic equations». Nonlinear

Anal. T.M. &#x26; A., 5, 225-242 (1981).

[17] L. VERON. «Equations d’évolution semi-linéaires du second ordre dans L 1». Rev.

Roum. Math. Pures et Appl., 27, 95-123 (1982).

(Manuscrit requ le 18 aout 1982)


