
ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

LUIS A. CORDERO

MARISA FERNÁNDEZ

MANUEL DE LEÓN

MARTÍN SARALEGUI
Compact symplectic four solvmanifolds
without polarizations
Annales de la faculté des sciences de Toulouse 5e série, tome 10,
no 2 (1989), p. 193-198
<http://www.numdam.org/item?id=AFST_1989_5_10_2_193_0>

© Université Paul Sabatier, 1989, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de
Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AFST_1989_5_10_2_193_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 193 -

Compact Symplectic Four Solvmanifolds
Without Polarizations

LUIS A. CORDERO(1), MARISA FERNÁNDEZ(2),
MANUEL DE LEÓN(3), MARTIN SARALEGUI(3)

Annales Faculte des Sciences de Toulouse Vol. X, n°2, 1989

On obtient une famille de variétés symplectiques com-
pactes de dimension 4. La variété M03BB (k) est l’éclatement d’une variété com-
pacte, résoluble et symplectique M4(k). La variété M4(k) ne posséde aucune
structure complexe (donc kahlerienne) mais elle a toutes les propriétés d’une
variété kahlerienne. Alors M4 (k) ne posséde aucune polarisation totalement
complexe ni kahlerienne. En outre M03BB (k) ne posséde aucune polarisation
avec index different de zero.

ABSTRACT. - In this paper a class of compact 4-dimensional symplectic
manifolds M~, (k) is obtained by blowing up a certain compact symplectic
solvmanifold ~V14 (k) at A distinct points. Although has all the

topological properties of a Kähler manifold it has no complex (and hence no
Kahler) structures; therefore, M4 (k) has no totally complex (and hence no
Kähler) polarizations. Moreover, we prove that M03BB (k) has no polarizations
with non-zero real index.

1. Introduction

In order to quantizate a symplectic manifold, three additional structures
are needed : a prequantization, a polarization, and a metaplectic frame
bundle. Thus, the existence of symplectic manifolds which do not admit
polarizations has significant implications for geometric quantization theory.
In fact, few examples of such manifolds are known. For instance, 82 x S2
has no polarizations with non-zero real index, but it admits a Kahler
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polarization (see [9,11]). On the other hand, a symplectic manifold carries
totally complex (resp. Kahler) polarizations (that is, with zero real index)
if and only if it admits compatible complex (resp. Kahler) structures.

Therefore, the manifolds E4 of [3] (which are circle bundles over circle

bundles over a torus T~) with first Betti number 2 or 3 have no Kahler
polarizations and, moreover, if = 2, then they have no totally
complex polarizations. But all of these symplectic manifolds often have real
polarizations.

Recently, Gotay [6] described a class of symplectic 4-manifolds which
do not admit polarizations of any type whatever. These manifolds are

constructed by repeatedly blowing up E4 with b1 (E4) = 2. This construc-
tion has been extended by NI. Fernández and M. de Leon [5] by considering
circle bundles over circle bundles over a Riemann surface of genus g > 1.

In this paper, following Gotay’s construction, a class of compact 4-
dimensional symplectic manifolds is obtained by blowing up a certain
manifold l,Vl ~ ( k) at .~ distinct points. Here ~’VI ~ ( ~) is a compact symplectic
solvmanifold constructed in [4]. Although has all the topological
properties of a Kahler manifold it has no complex (and hence no Kahler)
structures (see [4] for the details) ; therefore, has no totally complex
(and hence no Kahler) polarizations. Moreover, we prove that Mx(k) has
no polarizations with non-zero real index.

W’e don’t know if admits or not totally complex polarizations ; if
they do, this fact would be very interesting for the Kahlerian Geometry
realm because they would provide, using [8], new examples of compact
Kahler manifolds.

2. Geometric Quantization

First, let us recall some well-known facts about the theory of geometric
quantization (for more details, see [10,12,13]).

Let (X,03C9) be a 2n-dimensional symplectic manifold. The supplementary
structures on X needed for geometric quantization are the following :

(1) A prequantization of (X, 03C9), that is, a complex line bundle L over X with
a connection V such that the connection form a satisfies the preq-uantization
condition



where h is Planck’s constant. Further on, we shall suppose that there also

exists a V-invariant Hermitian structure  , > on L.

(2) A polarization of ~X, w), that is, an involutive n-dimensional complex
distribution F on X such that

and dim (F n F) is constant, where F denotes the complex conjugate of F.

A polarization F defines two complex distributions F n F and F + F on
X which are the complexifications of certain real distributions D and E,
respectively :

(Note that D is the w-orthogonal complement of E.) Since F is involutive
D is too, so that D defines a foliation on X . Let X/D be the space of leaves
of D and 7TD : : X --; X/D the canonical projection.
A polarization F is strongly admissible if E is involutive, the spaces

of leaves and X/E are quotient manifolds of X and the canonical
projection X/D --~ X/E is a submersion. The dimension d of D is
called the real ind ex of F. When d = n, F = F and F is said to be a real

polarization. Then D = E = F n T_~.

Now, let J be an almost complex structure on X determined by cv (see
[12]). Then, there is a Lagrangian splitting TX = D EÐ JD so that (TX, J)
may be identified with As a consequence, it follows that the odd real

Chern classes of (TX, J) vanish.

On the other hand, when d = 0, F is said to be a totally complex pola-
rization. Then F n F = 0, E = and F determines an almost complex
structure J on X, , which is actually a complex structure because F is
integrable (see [12]). Moreover, since Jv) = cv(2c, v) for all u, v E TX,
we can define an Hermitian metric  , > on X by  u, v >= 

If  , > is positive definite then (X, J,  , >) is a Kahler manifold and
F is said to be Kähler. Then a symplectic manifold (X, w) carries totally
complex (resp. Kahler) polarizations if only if it admits compatible complex
(resp. Kahler) structures.

(3) A metaplectic structure on X, that is, a right principal Mp(n, R)-
bundle over X, where Mp (n, R) is the metaplectic group (the double co-
vering of the symplectic group Sp (n, R)). The metaplectic structure is used



to dcfine the complex line bundle the bundle of half-forms relative
to F. This bundle has a ca,nonically defined partial flat connection.

Then the elements of the quantum state space H corresponding to the
geometric quantization structures given above are sections of the complex
line bundle L ~ which are covariantly constant along F. If F is

strongly admissible then the wave functions are represented by sections of
L ~ nF which are covariantly constant along D and holomorphic along
the fibers of Such sections have supports contained in the subset S of
D which is the union of those leaves of D for which the holonomy group of
the induced flat connection in L 0 11 n F is trivial. The set S is called the
Bohr-Sommerefeld variety, since it is locally determined by the generalized
Bohr-Sommerefeld conditions. Each leaf of D has a canonically defined
parallelization. When F is strongly admissible and complete (that is, the
leaves of D are complete manifolds) it is possible to decompose S as follows :

where Sa is the union of all those leaves of D contained in S which are

affinely isomorphic to the cylinder Ta x Rd-a . Thus dim Sa = 2n - a.

3. The manifolds 

First we recall some facts about the manifolds M4(k) of [4]. The space
M4(k) is the product manifold X ( k) x S’r , where X (k) is the compact 3-
solvmanifold S1/D1 considered in [1, p. 20]AG H, S1 being the 3-dimensional
solvable non-nilpotent Lie group of matrices of the form

where ~, ~, z E R, and D 1 being a discrete subgroup of S’1 such that

the quotient space S1/D1 is compact. The spaces M4(k) have symplectic
structures but can have no complex structures. The key for this is Yau’s
Theorem 2 in [14].

Next, we prove that ~~’(~;) can be seen as the bundle space of a 2-torus
bundle over the circle 51. Let p : : Z ---~ Diff (T~) be the representation



defined by p(m) = [A(m)], where represents the transformation of
T2 covered by the linear transformation of R2 corresponding to the matrix

Now, p induces a representation p’ : Z -~ Diff (R x T 2 ) as follows : Z
operates on R by covering transformations, and on T2 by p. Then we have
a bundle structure for X(k) over with fibre T2, that is

Now, blow up M~(1~) at a distinct points using the technique of Gromov
and McDuff (see [7]). The resulting manifolds are compact 4-

manifolds diffeomorphic to where CP2 denotes CP2 with
the reversed orientation. Then Ma ( k ) has signature = -a and

Betti numbers

Thus, the Euler number of is = ~.

PROPOSITION 1..2014 The manifolds M03BB(k) have symplectic structures.

Proof. - This is a direct consequence of [7, proposition 

Finally, we prove the main result : 
’

THEOREM 1..2014 The symplectic manifolds M03BB(k) have no polarizations
of nonzero real index d.

Proof shall only consider two cases, depending upon the value of
the real index d, 1  d  2.

~l = 1 : In this case D would define a field of line elements on But
this is impossible since ~(N~a(k)) _ ~ ~ 0.
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d = ? In this case the first real Chern class of J~ must vanish.
But we have

J) = 3~C~r,,C~~) + -~ ~ o.
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