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On a theorem of Enriques - Swinnerton-Dyer(*)

ALEXEI N. SKOROBOGATOV(1)

Annales de la Faculté des Sciences de Toulouse Vol. II, n° 3, 1993

RESUME. - On propose ici une nouvelle demonstration de l’énoncé

classique suivant : chaque surface sur le corps k qui, sur la cloture

algébrique de k devient isomorphe a un plan projectif avec quatre points
en position generale eclates, a un point rationnel. Nous retrouvons toutes
ces surfaces comme les "quotients" d’une variété de Grassmann G(3, 5)
par rapport a l’action de tores maximaux du groupe linéaire GL(5).

ABSTRACT. - We propose a new proof of the following classical state-
ment : every surface over a field k , which over an algebraic closure of k
becomes isomorphic to the projective plane with four points in general
position blown-up, has a rational point. In fact all such surfaces can be
obtained as "quotients" of a Grassmannian variety G(3, 5) by the action
of maximal tori of the general linear group GL(5).

1. Introduction

Let k be a perfect field. The aim of this note is to give a new proof of
the following statement formulated by Enriques [3] in 1897 and proved by
Swinnerton-Dyer [11] in 1970.

THEOREM . Any del Pezzo k-surface of degree 5 has a 

{ * ~ Resu le 12 mai 1992
(1) Institute for Problems of Information Transmission, The Academy of Sciences of

Russia, 19 Ermolovoy, 101447 Moscow (Russia)
Laboratoire de Mathematiques Discretes, U.P.R. 9016 du C.N.R.S., Case 930,
13288 Luminy Cedex 9 (France)
Partially supported by the Russian fundamental research foundation (project 93-
012-458)



This statement is usually used to prove the k-rationality of such a surface.
The proof of [11] is indirect, so it appears that the present proof, which is
conceptually very simple, is of some interest(2).

Recall that a del Pezzo surface of degree 5 is defined as a k-form of the
projective plane IP2 with 4 points in general position blown-up (we shall call
this a split del Pezzo surface of degree 5; ‘‘general position" simply means
that no three points are collinear). In fact, we prove that for any del Pezzo
k-surface X of degree 5 there exists a maximal k-torus T C GL(5), such
that X is isomorphic to the orbit space of T on the set of semistable points
of the natural action of T on the Grassmannian G(3, 5). If k is infinite we

have plenty of semistable k-points since semistable points form a dense open
subset of G(m, n). For arbitrary k the existence of a k-point on X follows
from a simple statement known as the lemma of Lang - Nishimura ([6], [9]).

The action of the group of diagonal matrices of GL(n) on G(m, n~ is

briefly discussed in Section 2. In Section 3 we show that for m = 3

and n = 5 the corresponding space of (semi)stable orbits is no other

than P~ with four points blown-up, a fact probably well known to experts
( c,f. ~2~ ). Note that the automorphism group of the split del Pezzo surface
of degree 5 is precisely the Weyl group W(A4), isomorphic to the group of
permutations on five elements. We prove the main theorem in Section 4

(Theorem 4.4) by combining these geometric facts with a formal argument
in Galois cohomology.

2. Torus action on Grassmannians : the split case

Les V = 1~ (B ... (B l~, dim(V) = n, be the vector space with a fixed
decomposition into the direct sum of one-dimensional subspaces. Let

SL(n) be the group of linear transformations of V with determinant 1,
and D C SL(n) be the subgroup of diagonal matrices. Consider the

Grassmannian G(m, n) of m-dimensional subspaces of V with the natural
(right) action of SL(n). The restriction of this action to D was studied in a
series of papers by I. M. Gelfand and his colleagues (see, for example, [4]).
Let us recall some of their constructions. In what follows A C B means

that A C ~ B.

~ After this paper has been sent to a journal, the author became aware that N. I.

Shepherd-Barron has recently obtained another simple proof of this theorem ( "The
rationality of quintic del Pezzo surfaces - A short proof." Bull. London Math.
Soc. 24 (1992), pp. 249-250).



Let In := {1, 2, ..., , n~. Choose ei e V to be a vector whose i-th

coordinate is non-zero, and all the other coordinates are zeros. For I ç In
define VI ç V as the subspace generated by ei, i E I. Let f be a function
from the subsets of In to non-negative integers. Define a constructible

algebraic set U f C G(m, n) whose points are the subspaces S C V such
that dim(S n VI) = f(l) ) for all I ç In. We have a decomposition
G(m, n) = U f U f. Obviously, Uf are D-invariant. The unique dense open
set Uo = U fo parametrizes the subspaces S in general position with respect
to all VI. It is given by

It is often simpler to work not with f but with another function defined by:

Let S C V be the subspace corresponding to a point of G(m, n).
Choose a basis in S, and decompose it with respect to the coordinate

system V = k (B ... ~ ~ k. Let M be the resulting matrix. One checks that
for a subset I C In the value r(I) is the rank of the submatrix of .V of size
(m x #I) consisting of the columns with numbers in I (see, e.g. [4, (1.1)]).
In particular, the function rQ(I = m - fo(In ~ I = m~ describes
the matrices whose every m columns are linearly independent.
We are interested in "the quotient" of G(m, n) by D. For this reason we

consider stable and semistable points of G(m, n) with respect to the ample
sheaf 0(1) corresponding to the Plucker embedding. (This makes sense
because SL(n) ) acts linearly on V, thus 0(1) has an SL(n)-linearization,
see [8, Chap. 4, § 4].)

LEMMA 2.1 . - The set G(m, n)S (resp. G(m, of stable (resp.
semistable ) points of G(m, n) u,ith respect to D and C’~(1) ~is the union of U f
for f satisfying f(I)  (m/n) ~-‘I (resp. f(I)  (m/n) ~-‘I~ for all I C In.

Proof. - This follows from the proof of ~8, Prop. 4.3~ . D

If m and n are coprime then (m/n) ~I is never an integer for ~I  n,

and the lemma implies that G(m, n)S = 

The condition of stability can be reformulated as follows:

r(I) > (m/n) ,~I for all nonempty I C In . . (1)

This implies that M does not contain a zero column.



By geometric invariant theory [8, (1.10)] there exists a quasiprojective
scheme Y’, and a morphism ~ : : G(m, --~ Y satisfying = 

t E D, which is the universal categorical quotient [8, Def. 0.5]. According
to the remark following the proof of [8, (1.11)], Y is proper over k.

Moreover, there is an open set Y~ C Y such that ~-1 (Y~) = G(m, n)s,
and (~ : : G(m, n)S --~ Y~ is the universal geometric quotient ~8, Def. 0.6]. Y~
has the property that every fibre E Y’, is an orbit of D. Note

that up to an isomorphism, Y and Y’ do not depend on the choice of a
decomposition V = k ~ ~ ~ ~ (B 1~, or, equivalently, on the choice of a split
maximal torus D C SL(n).

LEMMA 2.2. - Let ~ E GL(n) be a diagonal matrix [~i03B4ij], ~i E k*.

Define the decomposition In = Jr such that ~i = ~~ if and only if
~i, j~ C Jr for some r. A subspace S C V is e-invariant if and only if

Let i : SL(n) - PGL(n) be the canonical isogeny such that Ker(i) is

the center of SL(n). Let T := 

COROLLARY 2.3. - Let x ~ U f C G(m, n). . Then the stabilizer of ~ in
T is trivial if and only if there does not exist a decomposition

In particular, this is true for the points of G(m, n)S . .

PROPOSITION 2.4.- The restriction of ~ to --~ Y’ endows
the structure of a Y’-torsor under T. . In particular, Y’ is

smooth.

Proof. - If ~I = m the condition r(I = m defines an invariant dense
open set ZI C G(m, n) (given by the non-vanishing of the corresponding
determinant, or in other words, the corresponding Plucker coordinate).
These form an open covering of G(m, n). Let us construct a family of
invariant open subsets of ZI such that each of them is a trivial torsor

under T.



In fact, we shall use the constructions of chapter 3 of the book [8]. Assume
I = ~1, ..., m~. Define an R-partition of {1, ..., m} as an ordered set of
subsets 6’!, ..., Sn-m which cover {1, ..., m~, and such that ([8, Def. 3.3]):

To each R-covering we associate an open set ZR ç ZI defined as the
intersection of ZI with all such that

One then checks similarly to lloc. cit.] that

It is not hard to verify that the union of ZR’S for all possible permutations
of In coincides with the subset of G(m, n) consisting of points satisfying the
condition of corollary 2.3 ( cf. [8, Prop. 3.3]). These two facts imply the
proposition. 0

COROLLARY 2.5. - Let m and n be coprime. Then

and Y = Y’ is a smooth projective variety.

Remark 2.6. - Let jV be the normalizer of D in SL(n), then the Weyl
group VV = 7V/D of the root system .4n-l is the symmetric
group En permuting the components of the decomposition V = k (B ... (B k.
It acts on D, and thus on T. Clearly G(rrz, n~s and G(m, are invariant

under N, thus W acts by automorphisms on Y and Y’.

The following trivial remark will be important in what follows. The group
En of permutations of the components of the decomposition V = k ® ~ ~ ~ EB k
is naturally a subgroup of GL(n~. This makes it possible to identify W with
a subgroup of GL(n). As such, it naturally acts on G(m, n). This action
preserves G(m, n~s and G(m, and the corresponding morphisms to Y
and Y ~ are W-equivariant.



3. Del Pezzo surfaces of degree 5: the split case

DEFINITION 3.1. - j4 split del Pezzo surface of degree 5 is defined as the
b low in 9 - u p of IP2 in points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and (1 : 1 : 1).

Note that we could as well define a split del Pezzo surfaces of degree 5
as the blowing-up of four points in p2, no three of them collinear. Indeed,
PGL(3) acts transitively on such quadruples. By the universal property of
blowing-up ~5, II.7.15], there is a unique isomorphism of the corresponding
blowings-up extending this action.

PROPOSITION 3.2. - Let (m, n) = (3, 5), then Y = Y~ is a split del Pezzo
surface of degree 5.

Proof. - The stability condition (1) implies that every two columns are
not proportional. Let I C I5, ~I = 3. The condition that the columns

of with numbers in I are linearly independent defines a dense open set

Zj = ZI n G(3, 5)S. It is D-invariant, so its image ~(ZI) is also open.
Define a dense open set Z C G(3, 5)S as the intersection of the ZsI’s for
all possible three-element subsets of {1, 2, 3, 4}. Now let S C V be the

subspace corresponding to a point of Z. From the way we defined Z it

follows that:

. every three out of the first four columns of .M are linearly independent ;

. no two columns are proportional.

Changing the basis, and multiplying the columns of M by non-zero
numbers (this is the action of D), we can arrange that M is of the following
form: 

_ _

Here x, y, z are uniquely determined up to multiplication by a common
non-zero constant. Conversely, taking any point

one checks immediately that the corresponding matrix M satisfies the

stability condition (1), and so the space generated by its rows defines a

point in G(3, 5)S. Thus the map which sends S to (x : y : z) E IP2 is an



isomorphism of ~( Z ) c Y onto ~ 2 B ~ ( 1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),
(1 : 1 : 1)}. By Corollary 2.5, Y is a smooth projective surface, and this
isomorphism extends to a birational morphism u Y -~ IP2 (Zariski’s Main
Theorem [5, V.5.2]).

Let us denote L~ = Y B I C I5, ~I = 3. We now prove that:

(a) 

(b) every LI is isomorphic to 

It follows from (a) and (b) that Y B ~ ( Z ) is the disjoint union of four
smooth proper curves of genus 0. Thus is the blowing-up of the above
four points in IP2 ( cf. ~5, V.5.4]), and the proposition will be proved.

Note that the stability condition (1) has it that r(K) = 3 for any 4-
element subset K C I5. To prove (a) one checks that #(I U J) = 4 and
r(I) = r(J) = r(I n J) = 2 automatically imply that r(I U J) = 2, which is
not possible.

In order to prove (b) we can assume by symmetry that I = {3, 4, 5}.
Then covered by the following open sets:

Choose a point in ~-1 (A), and a basis in the corresponding vector space S.
Let M be the matrix obtained by decomposing this basis with respect to the
standard basis of V = We have r({1, 2, 3}) = 3, r({1, 2, 4}) = 3.
It follows from (a) that r ~~1, 3, 4~) = 3, r {~2, 3, 4~~ = 3. This means that
every three out of the first four columns of M are linearly independent. On
the other hand, the last three columns are linearly dependent. Now changing
the basis, and multiplying the columns of M by non-zero numbers, we can

arrange that M is of the following form:

Here x E k is uniquely defined, and 1 would do. This proves that

A is isomorphic to P 1 minus two points. We leave to the reader the routine
verification that A, B, C glue together to produce pl. This completes the

proof of the proposition. D



From now on we fix the notation Y for the split del Pezzo surface of

degree 5. Recall that Y contains precisely 10 exceptional curves of the first
kind (see, e.g., [7, Chap. 4]).

COROLLARY 3.3. - (of the proof) The genus zero curves Li are excep-
tional curves of the first kind on Y. There are 10 of these, therefore every
exceptional curve of the first kind on Y coincides with L i for some I ~ I5,
~I=3.

~’roof . The curves LI for I C ~1, 2, 3, 4~ can be smoothly blown down
as it follows from the proof of Proposition 3.2. By symmetry, the same is
true for any LI. 0

The following statement seems to be well known to experts ( cf. ~2, VII]).

PROPOSITION 3.4. - The natural map

is an isomorphism onto the group of automorphisms of Pic(Y") leaving
inuariant the canonical class Ky E Pic(Y) and the scalar product (.,. )
given by the intersection index. The group 03BD(Aut(Y)) is isomorphic to the
Weyl group W = W(A4), , implying Aut(Y) ’_-‘’ W.

Proof. - We know from Remark 2.6 that W acts on Y. We prove that

Ker(v) = 1, Im(v) == W. Indeed, let a E Ker(v), then a fixes the classes
[LI] G Pic(y) ) of exceptional curves of the first kind. Since LI is the only
curve in its class of linear equivalence, LI is a-invariant. By the proof of
Proposition 3.2, the complement in Y to the union of for I C ~1, 2, 3, 4~,
is isomorphic to IP 2 B ~(1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) , (1 : 1 : 1)}. Thus
a defines a birational automorphism which is in fact biregular by
Zariski’s Main Theorem. It follows that a comes from an element of PGL(3)
fixing the four points as above. Thus a must be the identity map. Next we
consider v ~Aut (Y ) ~ . This group fixes the canonical class Ky E Pic (Y ) . On
the other hand, the scalar product ( ~ , ~ ) given by the intersection index,
is also v(Aut(Y))-invariant. The restriction of ( . , . ) to the orthogonal
complement Kf is negative definite, and the elements with norm -2
form a root system A4 [7, IV]. By [7, IV.1] the subgroup of Aut (Pic(Y))
leaving invariant Ky and ( ~ , ~ ) is the Weyl group W = W(A4). Thus

v(Aut(Y)) ç W. By Remark 2.6, v (Aut (Y ) ) contains v( W ) ’-_‘’ W, implying
that W. . 0



4. Del Pezzo surfaces of degree 5 and Galois cohomology

Let us recall some standard facts on forms and Galois cohomology [10,
1.5 ; 2.1; 3.1]. Let X be a variety over k. We denote by k the algebraic
closure := X x ~, and r := is the Galois group. The group

Aut(X) of k-automorphisms of J~ is equiped with a continuous invariant
action of F:

In what follows this action comes from an action of a finite factor of I‘, so
we shall make this assumption from now on.

If k C K then x is the set of fixed elements ofAut(X) 
with respect to the Galois group Gal(l~/1~~. If K/k is a Galois extension, a
1-cocycle a E Z1 (~/~ ~ Aut(X x is a continuous map

such that ast = as The cocycles a and a’ are cohomologous if there
exists b E Aut(X x kK) such that as = 6’~ ’ as This is an equivalence
relation, and the pointed set of orbits is H1 (~7~ , Aut(X x kK)) (the neutral
element comes from the zero cocycle).
A k-variety Z is a K/k-form of X if Z x ~ is isomorphic to X x kK.

Let X) ) be the pointed set of such forms considered up to an

isomorphism, with the isomorphism class of X as the neutral element. Let
K / k be a finite Galois extension. Then there is a canonical injection of
pointed sets

Let Z E E(K/k, X), then a 1-cocycle a E can be chosen in the

following way. Fix an isomorphism

and take a = (as) to be the function Aut (X x kK) such that
the natural action of Gal(K/k ) on Z x ~.K (via the second factor) translates
as its twisted action on X x ~.K:

The cohomology class of a does not depend on p.



If X is a quasiprojective k-variety, and K / k is a finite Galois extension,
then 8 is bijective ~10, III.1.3~. In fact, the corresponding form is the quotient
scheme (X x ~K)/ Gal( K / k) with respect to the twisted action of Gal(K / k).

PROPOSITION 4.1.2014 Let X be a quasiprojective k-variety. Assume that

Aut(X) = and that this group is finite. Let Inn(Aut(X)) be the

group of inner automorphisms of Aut(X), and let

be the set of orbits of on Aut(X)) with respect to the
natural action. Then there is a canonical bijection of pointed sets

Proo, f . Since = this group has a trivial action of I‘.

Thus 1-cocycles are no other that homomorphisms, and the equivalence
relation of 1-cocycles is just the conjugation. A homomorphism F -

Aut(X) has a finite image, thus the corresponding form can be recovered
as a quotient scheme, and so 8 is bijective. []

DEFINITION 4.2. - A del Pezzo surface of degree 5 is defined as a 
form of the split del Pezzo surface of degree 5.

COROLLARY 4.3. - There is a natural bijectian between the follouting
pointed sets:

~i~ the set of isomorphism classes of del Pezzo k-surfaces of degree 5

with the class of the split surface as the neutral element;

the pointed set W);

the pointed set of orbits Hom(r, W)/ Inn(W) with the trivial homo-
morphism as the neutral element.

Proof. - By Proposition 3.4 we have Aut(Y) ’-_" W, but we also have

Aut(Y) ’’-_’ W by the same result, so we are in the situation of Proposi-
tion 4.1. ~



THEOREM 4.4. - Any del Pezzo ~-surface of degree 5 has a 1~-point.

Proof.- Let us consider a twisted version of the whole set-up of

Section 2. Let us identify W with the group ~5 of permutational matrices
in GL(5). . Fix a homomorphism h : F - W ’~’ E 5 . Define the following
action :

This obviously induces an action of r on G(3, 5) x kk , and thus on G(3, 5)S x
kk. By the general theory, we can consider the corresponding k /k-forms
hG(3, 5) and hG(3, 5)S.

The map ~ : G(3, 5)S --; Y gives rise to : hG(3, 5)S -> hY (recall that
W normalizes the torus D, and hence $ is W-equivariant). Clearly hY is a
form of Y. Since ~5 normalizes the diagonal torus of GL(5), we get from
(2) that the corresponding twisted action of F on Y is given by

Thus hY is a del Pezzo surface of degree 5 whose cohomology class is

represented by h E Hom( I‘, W ) . It follows from Corollary 4.3 that we obtain
all del Pezzo surfaces of degree 5 in this way.

Now let us go back to hG ( 3, 5 ) . This is a homogeneous space of GL ( 5 )
twisted by a cocycle h : r --> W. Due to the fact that W E5 E5 naturally lies
in GL(5), the cocycle h lifts to a cocycle with coefficients in GL(5). Any
such is a coboundary by Hilbert’s Theorem 90. It follows that hG(3, 5) is

isomorphic to G(3,5).
If k is infinite, then k-points are Zariski dense on G(3,5), and so there

is a k-point on ~G(3, 5)S, and hence on hY. Following (11~ we may end the
proof in the finite field case by refering to a general theorem of Weil [12]
that a smooth projective rational surface defined over a finite field k always
has a k-point (see also [7, 23.1]). However, a simple general argument is

available, which I owe to J.-L. Colliot-Thelene:

LEMMA (Lang [6], Nishimura [9]).2014 If f : X -~ Z is a rational map of
integral k-varieties, w~ere Z is proper and X has a smooth k-point, then Z
has a k-point.

Applying this with X = G(3, 5) and Z = hY we prove the theorem. 0
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One can interprete ~~(3, 5~S as an ‘‘almost universal" torsor on hY: it
is a torsor under the algebraic k-torus dual to the r-module KY . (Recall
that a universal torsor is a torsor under the dual torus of the whole Picard

group Pic(Y), see the details in [1].) Thus it is not surprising that in our
proof k-points are first traced on hG(3, 5~5: this agrees with the philosophy
of the descent theory [1] that the universal torsors over a rational variety in
a certain sense "untwist" its arithmetic.
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