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Lefschetz number and degree of a self-map(*)

ABDOU KOULDER BEN-NAOUM et YVES FÉLIX(1)

229

R,ESUME. - Soit X un CW complexe fini connexe. Deux self-applica-
tions de X induisant la meme application en homologie ont meme nombre
de Lefschetz et meme degre. Pour les espaces elliptiques 1-connexes et les
espaces formels, des formules relient le nombre de Lefschetz au polynome
caracteristique des applications induites en homotopie.

ABSTRACT. - Let X be a connected finite CW complex. Two self-
maps of X inducing the same maps on the homotopy groups have same
Lefschetz number and same degree. For simply connected elliptic spaces
and formal spaces there are formulae connecting the Lefschetz number
and the characteristic polynomials of the induced maps on (X } ® ~.

1. Introduction

Let X be a connected topological space that has the homotopy type
of a finite CW complex, and let f be a self-map. We denote by Hn( f)
the linear map induced by f in rational homology. The number Ay =
~z (-1) 2 tr ~i ( f ) is called the Lefschetz number of f . It is well known that
two homotopic self-maps f and g have the same Lefschetz number.

We here prove the following result.

THEOREM 1.1.- Suppose = then the Lefschetz
numbers of f and g are equal, .1~ = a9. Moreover, if X is a manifold then
deg(/) = deg (g ) .

~ ~ Recu le 27 avril 1995
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This results suggests the following problem: Is it possible to deduce the

number ~ ~ from the sequence of linear maps ® Q , when the space is
I-connected ?

In the general case the answer is negative. For instance the spaces

X = P2 (C~) x (,S3 v s2 ) and Y = s2 X (s5 v s2 v s4)

have the same rational homotopy groups but not the same Euler-Poincare
characteristic x(X) = 3, x (Y ) = 4. Moreover the spaces X and Y

appear as total spaces of homotopy fibrations with the same homotopy fibre
Z = Vn>_4 ,~‘n v 5n) and with basis X’ and Y’ finite CW complexes
with the same Euler-Poincare characteristic:

X 53 , Y’=S’2 x 55 x S’2. .

Recall that a finite simply connected CW complex is elliptic if

~ dim ® Q  oo .

n

In the elliptic case a result of Halperin [8] shows that the Lefschetz number
of a self-map f can be deduced from the induced maps in homotopy.

THEOREM 1.2 [8].- Let f be a self-map. Denote by An the matrix

representing the linear map ® ~ in some basis. We then have

a f = lim ~ det(l- t2n+2A2n-~1 2n ) ’f 
n det(1 - t2n A2n) 

°

An elliptic space is a Poincare duality space. Our next result is a formula

giving the degree of f in terms of the induced maps in rational homotopy.

THEOREM 1.3.2014 Denote by Ài the eigenvalues of ® C~ and by
the eigenvalues of 03C0even(f) ® Q, then

deg( f ) _ 
03A0j j 03A0i03BBi .. 

.



2. Bar construction

Let A be an augmented graded differential Q-algebra,

, , ~:A-~C~. .
n>0

The bar construction on A is the coalgebra (B(A), D) = (T(sA), D) with
sA = ker ~ the augmentation ideal, and D := Dl + D2. . The differentials Di
are given by:

k

D1 [sa1 | ... |sak] := - 03A3(-1)~i [sa1 | ... I sdai | ... I sa k]
i=1

and

k

D2 ( ... ~ := ~ (-1) ~t I ... ~ ... ~ 
i=2

with ~i = |saj |.

By filtering T(sA) by the coalgebras T « (sA), we obtain a spectral
sequence satisfying

(B(~*(A), D2)) , ~2 N H* ($(H*(A), D2))
and converging to H* (B(A)) ~3~ . One interesting property of the bar
construction is the following theorem of J.- C. Moore [11].

THEOREM [11]. - If X is connected, then there exists a natural quasi-
isomorphism of differential graded coalgebras

C*(X) -~ .

When applied to A = C* (S2x), the bar construction gives thus a spectral
sequence

H* (~ (~*(~x)) ) ~ H* ($ (C*(~x)) ) ’~ H*(x) 
This will be the main ingredient in the proof of Theorem 1.1.



THEOREM 2.1

a ) Let X be a connected space, and f g be endomorphisms of X inducing
the same map on the rational homotopy groups, = 

for n 2:: 2, and on the fundamental group, then for n > 0, we have

tr ~) = tr Hn(g; ~) .

b)  o, then a f = a9 .
c) If X is a manifold, then deg( f ) = deg(g).

Proof. - Denote by X the universal cover of X . For any field h, the
fibration

X --~ X -~ ,1 )

induces an exact sequence of Hopf algebras [4] :

k --; k) --~ k) -.~ -~ ~ .

When k = Q, the Milnor-Moore theorem [12] implies that

~) ~’ ® ® 

where U means the enveloping algebra functor. It clearly follows that f and

g induce the same maps on H* (SZX ; ~ ) .

On the other hand f and g induce maps:

, 
--~ ( )

and therefore morphims of spectral sequences

EiEi, EiEi.

At the E1 level, these are the morphisms induced by the bar construction:

B(~(nX;Q)) ~~~) 
~ ~ ~)) B(H*{~9)) --~ ~ ~ ~)) .

This implies that EZ ( f ) = for all i > 1 and thus E°° ( f ) = 



Recal now that Eoo(X) is the graded vector space associated to H* (X )
for some filtration. It follows that for n 2:: 0, we have

Example - Let X = S’~ V (,S‘1 x ,S’1 ) and f g be the maps

f 11 S2 i x , g 91 S2 i X

where

fl := id Vh et id V q .

Here h consists to collapse 51 x 51 into a point and q is the canonical

projection q : 51 x ,5‘1 -~ ,S’1 n S’2. Clearly = ~r*(g). However, f
and g are not homotopic because the maps h and q are not. Nevertheless,
by Theorem 2 .1, ~ ~ = a9

COROLLARY 2.1.2014 A self-map of a simply connected compact manifold
or of a simply connected finite CW complex that induces zero on the rational
homotopy groups has a fixed point.

3. Degree of a self-map of an elliptic space

In this section we prove Theorem 1.3.

THEOREM 3.1.2014 Let X be an elliptic space and f be a self-map.
Denote by ~Z the eigenvalues of ® ~ and by the eigenvalues
of ® Q , th e n

deg(f) = 03A0j j 03A0i03BBi.
We prove the theorem by induction on the dimension of ’1r*(X) Q9 Q by

using the theory of Sullivan minimal models [7]. When 0 (Q) = 1,
a Sullivan minimal model of X is given by {/~ u, 0) with u of odd degree.
Denote by g a model of f. . We have g(u)) = ~ ’ ~ u and deg(/) = ~c.
We now suppose the theorem has been proved for self-maps of elliptic

spaces Z such that dim ® Q  n and we suppose that f is a self-map



of an elliptic space X with dim ~ Q = n. We denote by (n Z, d) the
Sullivan minimal model of X and minimal model for ,f .
We denote also by r the minimum degree p with ® 0 ; we have
Z = Z~’’ and Z’’ ~ 0. We have to consider separately the case r is odd and
the case r is even.

When r is odd we form the KS extension (see [7] for the definition)

.

The naturality of the Serre spectral sequence implies that

deg g = deg g Zr . deg g ,

where g denotes the projection of g on n Z~~’ , g : : n ~ n . We

obtain the result by induction.

When r is even, we work over the field of complex numbers and we choose
an eigenvector x of Z~ : : g(x) = . As x is a cocycle of even degree, a power
of x has to be a coboundary: [xn] = 0 for some n. We can take n large
enough so that n > 1 + It for all nonzero homogeneous elements t in
Z. We form the commutative differential graded algebra A~ ~ ,
d ( y) = . We extend g to ® n y d) by putting g ( y) = and we

form the KS extension of elliptic spaces

-~ 

- ~ nZ,(nx . nZ) ,d _ n~’,d .
By induction the formula for the degree is true for (/B Y, d). The formula is
trivially true for (/B x ® A y, d) . By the Serre spectral sequence the formula
is thus satisfied for @ n y, d). A new application of the Serre spectral
sequence applied to the KS extension

yields the result. D



4. Computation of the Lefschetz number

S. Halperin has shown [8] how the Lefschetz number of a self-map f of
an elliptic space X can be deduced from the maps 0 Q

THEOREM 4.1 [8].2014 Denote by An Ae matrix representing Ae linear
map 0 Q in some basis. We then have

03BBf = limdet(1-t2n+2A2n+1) .°

This formula has been used by G. Lupton and J. Oprea [10] to prove that
powers of self-maps of a Lie group always have a fixed point.

Among all simply connected spaces a very interesting class of spaces is
given by the formal spaces. A I-connected finite CW complex is called
formal ifX and its cohomology algebra have the same minimal model. For
instance I-connected compact Kähler manifolds are formal [2]. It follows

from a general construction of Halperin-Stasheff [9] that a formal space X
admits a special minimal model (/B Z, d) called its bigraded minimal model.
This model is equipped with a bigradation Z Zj satisfying:

i)~:z~(A~~;
2)~(A~)=~(A~)-

Moreover if f is a continuous map from X into X, then / admits a model
f’ (/B Z,d)~ (A Z, d) satisfying

/(~)c(/B~. .
We denote by ~ the matrix representing the projection ()$ of f’ on Z~:

~ : ..

We then have the following formula.

PROPOSITION 4.1.2014 With the previous notations

n [dot (l - = 

p,q n



This formula enables the computation of the right hand side in terms of
the characteristic polynomials of the matrices §§ for p + q  dim X. .

Theorem 4.I and Propositions 4. I are in fact particular cases of a more
general formula obtained for spaces equipped with a weight decomposition.
A space X is said to have a weight decomposilion if X admits a minimal

model (fi Z, d) where Z is given a bigradation Z = Zj satisfying

d : z> - (li z) .

PROPOSITION 4.2. - if X is equipped with a weight decomposition, tve

have:

fl [det (i - (-t)p+q03C6qp) ](-1)q+1 = £ ( £ (- i)" tr Hl f>) tn .

P,q n p+q=n

Proof. - The Euler formula for the subcomplexes

o - ( /~ z) p ° - ( /~ z) ~ p-I - ( /~ z) ~ p-2 - ...
- ( fi z ) P o - o

gives the formula

" °

We then take the sum of these formulae and obtain:

£ f’)in-i) tn=(-1)n-1trHin-1(f))tn .

This gives the result. a

A formal space admits a weight decomposition with cohomology concen-
trated in lower degree 0. ProD osition 4. I follows thus from Proposition 4.2 .



Proof of Theorem .~.,~. . - Let X be an elliptic space, {n Z, d) its minimal
model and g : : (/B Z, d) --> (/B Z, d) the map induced by f. . We denote by do
the pure differential associated to d [6]. This differential is defined by:

d03C3(Zeven) = 0

{ (d - dj )(Zodd) ~ + Zeven)(d-d03C3)(Zodd) c (+ Zodd) ~ ( Zeven).
By [6], , H* ( Z, is finite dimensional. It is then easy to see that g
induces an endomorphism gi of the differential graded algebra {/~ Z, d~).
It follows that

~Ig~ _ ~ig . .

As {n Z, da) is equiped with a weigth decomposition satisfying = Z1
et zeven = Zo , Theorem 4.2 follows from Proposition 4.2. ~

An other case where Ay can be deduced from the characteristic polyno-
mials associated to the maps ® ~ is the case when the Lie algebra

has a finite dimensional cohomology:

Q)  o .

In this case, for a self-map f, we have the formula

{-1 )ptq tr Tor p q {~’~’~){C~, (~) Hn{S2 f = 1 .

p,q n 

Therefore, denoting by Q(t) the rational function ~n tr we

have

(-1)p+qtr TorH*(03A9f;Q)p,q(Q,Q) = lim 
1 

.

On the other hand, there is a natural Milnor-Moore spectral sequence

Ep,q2 = TorH*(03A9f;Q)p,q(Q, Q)~ Hp+q(X ;Q) .

We deduce the following result.

PROPOSITION 4.3. -  oo, then

03BBf = lim Q/tl ’

where Q(t) denotes the Poincaré series 03A3n tr 



Example. 2014 Let X be a formal space. For each ~c E ~ ~ ~0~, the map

~ : : H*(X) --~ ~*(X) , x f--~ := . x

can be realized by an automorphism  of X. Denote by ( Z, d) the

bigraded model of X. The restriction of the map  at Zqp consists in the
multiplication by . We remark that the formula given by Proposition
4.1 is a generalization of the formula given by Halperin and Stasheff [9] in
the case f = id:

1 - (-t) 
(-1)q+1 

= .

The left hand side of the formula has a nonzero radius of convergence R.

We now replace t and we take   R. The infinite product

11 1 _ 
p,q

converges and we thus have this following corollary.

COROLLARY 4.1.2014 l~f 0  ~C  R, then

~ 1 _ ~~) 
( -1 ) q+ 

.

p~q

5. Self-maps with finite image in homotopy

Let X be a simply connected space and let f be a self-map such that the

image of ~r* ( f ) Q9 Q in finite dimensional. In this case, we have the following
result.

PROPOSITION 5.1.2014 The space X admits as retract an elliptic space Y
with ~*(Y) @ Q-isomorphic to the subspace of ~r*(X) ® ~ generated by ~the
eigenspaces of nonzero eigenvalue.



COROLLARY 5.1. - Let X be a simply connected finite CW complex and
f be a self-map satisfying  o. Denoting by r the

multiplicity of 1 as eigenvalue of 03C0even(f) ~ Q and by s the multiplicity
of 1 as eigenvalue of ® ~, we have:

(2) if s > r, 
(3) if s = r, then

af 
~i) 

’~ 1(1 Pi ) 
’

where the ~i are the eigenvalues of ~ ~ and the ~ci the eigenvalues
~f ® ~ .

Proof of the proposition 5.1. . - Denote by (n Z, d) the minimal model
of X , by g a minimal model for f and by ~p the linear part of g. We

decompose Z as the direct sum of the eigenspaces ~~ associated to ~p. We
write Z = V ® W with

V = ~ t~~ and W = .

a ~o

We will show by induction on the degree that we can modify V and W
in order to have d(V) C /~ ~, g(V) c n V, d(W) C W and

g(W) C /~+ W ® n V . We take homogeneous basis vn of V and wn of W
satisfying > |vn-1| and - E n(v1, ... , , vn-1 ), and a similar
formula for the elements Wn. .

Suppose the properties are satisfied for v1, ... , vn_1 and w1, ... , 
We then have

03B2n ~  Vd(vn) = 03B2n + 03B3n 
03B3n ~ V ~ + W

g(vn) = 03BBnvn + un + 03B4n
03B4n E V ®n+W .

There exists integers rand s with gOT (,n) = 0 and = 0. We
choose an integer p greater than rand s, and we replace vn by (vn ) . We
have

- E l B ~

g(gop(vn)) - 03BBnvn E ~2 V ® .., vn_1) .



We now consider the element Wn. . Suppose

+

d (wn ) = am + ,Qm, with am E n W ® n V and ~3~.,z E n V .

Then g°‘ (~3n) is a coboundary for some integer s. By the next lemma the
element ,Qn is therefore also a coboundary, !3m = d(yr,.~,). Now by definition
of W, is a decomposable element. We can therefore replace wm by

in order to have d(wm) E W ® n Y.
We now write

~2 +

g(wm) = + with E and 03BDm E n W tl .

Of course by induction hypothesis, g°y is a cocycle, so that is also

a cocycle. We replace wm by where g-1 denotes the inverse
of the function g : (n ~) t --~ (n ~) t with t = deg( wm). . ~
LEMMA 5.1.2014 Let EE be a finite type vector space over the complex

numbers, let f : E ~ E be an isomorphism, and let ,S be a graded sub vector
space of E invariant for f . Suppose f °‘ belongs to S for some element ~
and some integer s, then the element x belongs to S.
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