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Hardy Spaces on Compact Lie Groups(*)

BRIAN E. BLANK(1) and DASHAN FAN(2)

Annales de la Faculté des Sciences de Toulouse Vol. VI, n° 3, 1997

RÉSUMÉ. - Nous démontrons que l’espace de Hardy atomique Ha (G)
d’un groupe de Lie connexe compact semi-simple peut etre caractérisé par
des opérateurs maximaux associés aux noyaux de Poisson et de la chaleur
si 0  p ~ 1, par l’opérateur maximal de Bochner-Riesz S’* pourvu que
8 > n/p - (n + 1)/2 où n = dimR(G), et, si p = 1, par des noyaux non
différentiables satisfaisant une certaine propriete de Dini.

ABSTRACT. - We prove that the atomic Hardy space of a
connected semisimple compact Lie group G can be characterized for
0  p  1 by maximal functions based on Poisson and heat kernels,
by the maximal Bochner-Riesz operator S‘* for 6 > n/p - (n +1)/2 where
n = dimR(G), and, for p = 1, by certain nonsmooth kernels satisfying a
Dini condition.

KEY-WORDS : Hardy space, atoms, maximal operators, Poisson kernel,
heat kernel, Bochner-Riesz kernel, Dini condition

AMS Classification : 43A77, 42B30

Atomic decompositions of Hardy spaces of real functions on Euclidean
spaces first arose in the work of R. Coifman [6] and R. Latter [13]. An
abstract theory of atomic Hardy spaces was later developed by R. Coifman
and G. Weiss [7] in the context of spaces of homogeneous type. These spaces
include Euclidean spaces and compact Lie groups but do not in general have
the structure on which to base a theory of Hardy space defined by maximal
functions. It was noted by R. Coifman, Y. Meyer and G. Weiss in [7] and
by A. Uchiyama in [18] that when a space of homogeneous type admits a
certain family of kernels, a maximal function based Hardy space can be
defined and shown to be equivalent to atomic Hardy space. Although the
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kernels in question are well-suited to an argument of L. Carleson [3], they
are not necessarily intrinsic to any additional geometry (such as Riemannian
structure) that a space of homogeneous type may possess. For example,
compact Riemannian manifolds have Laplace-Beltrami operators which give
rise via Poisson kernels to maximal function based Hardy spaces. In such

cases it is of interest to obtain the atomic decomposition of Hardy spaces
defined by maximal functions as was done for spheres by L. Colzani [8].
Moreover, the atomic Hardy spaces in [7] and [18] are, of necessity because
of the more general structure, defined by duality. Where polynomials are
available, such as is the case with compact Lie groups, it is desirable to

have a direct definition of atoms in analogy with those in [7] and [13]. In

this paper we establish the equivalence of the Hardy spaces on compact
semisimple Lie groups that arise from their homogeneous type structure
with those that arise from their Riemannian structure. We also characterize

Hardy spaces by several standard maximal functions. In doing so we also
set up a frawework which will be used elsewhere to generalize a number of
familiar Euclidean results concerning Littlewood-Paley theory and Lipschitz
spaces.

Let G be a connected semisimple compact Lie group with invariant
distance d and Laplace-Beltrami A induced from the Killing form. The

operators 9/9~ - A and 9~/9~ - A on G+ = G x (0, oo) give rise to heat
and Poisson kernels Wt(x) and Pt(x) respectively. In Section 1, we describe
some relationships among Pt, Wt, and the Bochner-Riesz kernel ?j~ {b > 0).
The geometry reflected in these kernels is most easily seen via a metric d,
obtained in Section 1 from the Lie algebra g of G, which is equivalent to d.
It is this Riemannian geometry on which the analysis that follows is based.

In Section 2, we study the (maximal) Hardy space HP(G) of all distribu-
tions f satisfying

Using the Poisson kernel, we define other maximal functions P~ f , P~ f ,
PM ef and the grand maximal function f*. . Then we prove that f is in

HP(G) if and only if one (and hence all) of these maximal functions is in
LP(G) (0  p  1). . The proofs in this chapter are broadly based along
standard arguments, but are technically more difficult since the Poisson
kernel on G is considerably less tractable than its and sphere Ln
equivalents. Careful estimation of the kernels involves a combination of

previous analysis of Cowling, Mantero, and Ricci [9] and J. L. Clerc [5].



Ellipticity is used to obtain estimates that are obtained in the Euclidean
setting by harmonicity.

Section 3 deals with the atomic characterization of HP(G) . We have cho-
sen to work with the atomic Hardy space introduced by J. L. Clerc
in [5]. This atomization, by making use of the availability of polynomi-
als on compact groups, resembles the Euclidean atomization more closely
than those in [7] and [18], avoids the use of Lipschitz spaces and duality
arguments, and is eminently suitable for analysis as was demonstrated in
[5]. Unfortunately, it is considerably more difficult to work with polyno-
mials on G than on Rn or 03A3n. We first use geometric arguments to study
the classical group U (n) of unitary isometries. A result from approxima-
tion theory is then used to prove that any distribution in HP (U(n)) has an
atomic decomposition. Next, unitary embedding, a well-known consequence
of the Peter-Weyl theorem, allows us to transfer this result to G, yielding
HP( G) = It should be noted at this point, that both atomic and
maximal function Hardy space appearing here are defined differently from
those in [18].

In Section 4, we define maximal functions by the heat kernel instead of
the Poisson kernel; these give rise to HP-spaces which we prove coincide
with those defined by the Poisson kernel. We also investigate an analogue
of a theorem of Fefferman and Stein pertaining to C~-functions 03C6 on Rl
that can be used to construct a kernel "’t(x) = that characterizes

Here, the obstacle to obtaining a simple analogue comes from the
lack of dilation of R+ on G. We also give, this time generalizing work
of Y. Han, a Dini condition sufficient for a (non-smooth) central function
on G to characterize H1 (G). In the case of the Bochner-Riesz kernel

,5’~(x), characterization of HP(G), is shown to hold for 6 > n/p - (n + 1)/2
(n = dim1lR(G))

The two main techniques of Hardy theory dilation of space and
Fourier transformation of functions, are largely unavailable in compact Lie
groups. Some basic ideas are adaptable but are technically more
difficult to execute; other ideas do not transfer at all and must be replaced
with new ones. Another difficulty arises in the handling of polynomials
which are necessarily more cumbersome than in the Euclidean setting. Our
expositional strategy is to omit proofs which are obtainable in purely routine
fashion from similar Euclidean proofs, but to give essentially full details
where new techniques are needed. We have found in the literature occasional
laxity in distinguishing between these two types of proof and have taken
pains not to use the phrase "by a standard argument" unless justified. On



the other hand, the analysis undertaken in the two papers [5] and [9] is so
essential to our program, and so difficult to briefly recapitulate, that an

attempt to allow our work to be read independently would have resulted in
substantial and needless lengthening; where appropriate, we have utilized
constructs from those papers, identically notated in our work, with no more
than a reference to the source. Occasionally, we have taken the path that
best allows for further investigation of the harmonic analysis of compact Lie

groups; the second named author will pursue those matters in a series of

papers elsewhere. In particular, in part because of this ulterior motivation
and in part to fully utilize the available geometric structure, we have not
directly compared the maximal Hardy spaces defined here with those defined
by Uchiyama, which would have obviously been another way to proceed. A

preliminary manuscript, differing from the present paper only in detail, was
circulated in 1990; a number of matters that arose in the interim delayed
publication until now.

1. Notation and Basic Material

Let G be a connected compact semisimple Lie group of dimension n. Let

g be the Lie algebra of G and t the Lie algebra of a fixed maximal torus T
in G of dimension .~. Let A be a system of positive roots for (g, t); then A
has (n - .~)/2 elements. Let

Let t+ denote the open Weyl chamber of t associated with the root ordering.
The regular elements tr of t consist of those H E t for which a(H) f/. 2xiZ
(cr E A). Let A be a connected component of tr contained in t+ such that
0 is cl(4), the topological closure of A. Then A is a fundamental domain
for the exponential map up to conjugacy in the sense that every element of
G is conjugate to a unique member of exp(cl(A)). We let M : G --~ 
be the resulting map.

Let [ . be the norm on g induced by the negative of the Killing form B
on gC, the complexification of g. Then [ . induces a bi-invariant metric d
on G. Futhermore, since nondegenerate, given A in C)
there is a unique element of tC such that A(H) = B(H, for each

H E tC. We let (’, ’) and [) . [[ denote the inner product and norm



transferred from t to hom c(t, iR) by means of this canonical isomorphism.
Let N = {H E t | exp H = 1}. The weight lattice P is defined by

with dominant weights defined by

Then A provides a full set of parameters for the equivalence classes of
irreducible representations of G: for A E A the representation 7~ has
dimension 

~ .

and its associated character is

where W is the Weyl group, is the signature of s E W, and (v , H) =
v(H) for H E t and v in hom(t, C).

For a positive constant y and xo in G define the cone r.y(xo) in
G+ = G x with base point Xo by

We will also have occasion to consider the truncated cone 

(G x (0 , ~o J~ . It is convenient to have another distance function

d defined by

PROPOSITION 1.1. - The metric d is equivalent to d.

Proof. - We will show that there exists an ~o on (0, 1) such that
In fact it is known [5] that I ?~(x) - ?~(y) I  y)

(x, y E G), whence d  d. Taking h = y-l in (1.3), it is enough to show
the existence of ~0 depending only on G such that I
or, equivalently, )~(~)( I for all g in G. Indeed, if 6 > 0 is



small enough so that exp : g --~ G is a diffeomorphism for I  6, then

d(x, e) = I ?-l(~) I whenever I ?-~(x) I  6. Otherwise, I ?-~(x) I > e).
where D = maxgEG d(g, 1) is the diameter of the group. Thus, ~o = ~D-1
will 

Let Xl, X2, ..., Xn be an orthonormal basis of g. Form the Casimir

operator A = X2. Then A is an elliptic bi-invariant operator on G
which is independent of the choice of orthonormal basis of g. The solution
of the heat equation

for f E L1 (G) is given by t) = Wt * f(x) where

is the Gauss-Weierstrass kernel. Here and throughout this paper, unspec-
ified measures on G and T are bi-invariant Haar measures normalized to

have total mass one; Lebesgue spaces, in particular, are defined with re-

spect to these measures and E ~ denotes the Haar measure of a subset E of
G except for the Weyl group W, in which case ] . denotes cardinality. The
solution of the Poisson equation

is given by t) = Pt * where

is the Poisson kernel. We will also consider the Bochner-Riesz kernel:

These three kernels are central functions on G and are determined by their
restrictions to T as given in (1.4), (1.5) and (1.6).



Let = (.c E G) and put = 

for f E L1(G). Then f has Fourier expansion

and in particular

There are relationships among these three kernels that we shall make use
of. The first we list is Bochner’s subordination formula [14] :

In order to describe the relationship between Wt and S’t we will briefly
introduce classes of functions discussed more fully in [16]. Let oo)
be the space of local absolutely continuous functions. Let C[0, oo ~ denote
the space of uniformly continuous functions e(t) on 0 , oo) such that
e(oo) = limt~~ e(t) exists. Let BV 1 denote the class of functions on [0 , oo)
of bounded variation. We define BV1+03B4 for 03B4 ~ 0 as follows. Set a = 6 - [$]. .
To begin with, suppose 6 E N+, in which case a = 0 and define

where

For 6 non integral, in which case 0  a  1, define .



and set

For l~ = 0, 1, 2, ... , [6] set

With these interpretations of e(03B1), ... , e(8), we define BV1+03B4 as above.

Also, define

for 03B4 ~ 0 and b > 0. Finally, we consider the normalized subclass

For any e in this class it is known [16] that

For each f E L 1 ( G ) and e E we define the e-summation of f by

Then, by (1.1), (1.11) and Fubini’s theorem,



whence

It is easy to verify that e(t) = e-t belongs to for all $ ~ 0 and b > 0.
With this choice of e(t), (1.13) gives for f E L1 (G):

Another important formula, the details of which may be found in [9], is
obtained by Poisson summation:

where x = exp X E T and D(x) is the denominator in (1.2). Also to
be found in [9] is a useful approximation of the heat kernel in a Sobolev
norm. To wit, choose a radial function ~ e C°°(t) that is supported in a
neighbourhood of 0 whose translates by distinct elements of N are disjoint
and that is identically one in a smaller neighbourhood of 0. Let be
the central function on G defined on T by

For s E N+ let denote the Sobolev space consisting of functions
f with derivatives of order up to s in L2 (G) and with finite Sobolev norm

In [9] it is shown that for each pair (s, N) of positive integers and each t > 0
there is an integer q = q(s, N) and a bi-invariant differential operator Aq,t
of degree q with coefficients whose dependence on t involves only powers of
t up to q such that



Let S(G) be the class of infinitely differentiable functions on G. For any
f in S(G), we have f(x) = and by the Peter-Weyl

theorem, II f I) 2 2 ~2 where the norm of a finite dimensional
operator A on a complex Hilbert space is taken to be the Hilbert-Schmidt
norm = (tr AA*)1 ~2. The following proposition is the analogue for

semisimple compact connected Lie groups of a standard torus result which
is often used in the theory of multiple Fourier series and which is in fact
used in the proof of its analogue below.

PROPOSITION 1.2. - A function f belongs to S(G) if and only if for
every positive integer m there exists a constant C(m, f) such that

Proof. - If f E S(G), then f (y) = fG d~ belongs to S(G)
and

by the Weyl integration formula. Now the inner integral is infinitely
differentiable on the £-torus T, whence I) Sp~ ~ f ) I (  G(1 + for some

constant C = C(m, f ) by the well-known result of multiple Fourier series
that we referred to.

Now suppose that for each m > 0 there exists a constant C = C(m, f )
such that II ~p~ ( f ) II  + ~~ () ’~’~’ . Clearly f~ = is a

C°°-function on G. For each Y E g and for every matrix coefficient

~p~’~’(x) = , v~ we have (as in ~14, p. 43~):



Hence, converges uniformly on G and Y f (x) =
is continuous on G. By induction we obtain Y~ f E

C(G) for all multi-indices J = { j1, j2 , ... jn) and for all Y1, Y2 , ... Yn E
g, which proves that f E S(G). . 0

A complete topology on S(G) can now be defined in the standard way
by declaring the family

to be a local base at 0. The subspace S’(G) of the space of formal
Fourier series (where each C~ is an operator in the
representation space of consists of Fourier series for which I) Ca I) =

for some m E N+. We topologize the space S~(G) of Schwartz
distributions by defining the local base at 0:

For f = and 03C8 = 03A303BB~ tr (c03BB03C603BB) in S’(G), the
convolution of f and 03C8 is defined by

The space of Schwartz distributions is closed under convolution and the
Dirac distribution = an identity element for convo-
lution. If f E S’(G) and 03C8 E S, then

2. Maximal Functions

For any distribution f in S’(G), Pt * f is a measurable function on G+.
With the interpretation of G as boundary of G+, we have maximal functions
associated with three different boundary approaches. The radial maximal



function P+ f the nontangential maximal function P,y f and the tangential
maximal function P**M f are defined for x in G by

When y = 1 we write P* f for Pi f . We also define local maximal functions
for ~~ > 0 as follows:

We observe that we have the following pointwise inequalities:

The following two constructs play the same role in the current setting
as they do in Euclidean space. For a measurable function f on G, the

Hardy-Littlewood maximal function M f is defined by -

where B(x,h) = ~ y E G  h ~ . The distribution function a~ of a
measurable function f on G is defined by



The weak (1,1) property

although not universally valid on Riemannian manifolds, is well-known and
easily obtained in the present setting.

For each x e G we choose T small enough so that exp-1oLx-1 :

B(x, T) -~ g (where L denotes left multiplication) gives a coordinate
chart (y1, ... , yn) where x-1y = exp(y1X1 + and d(y, x)2 ~
y1 + ... + . Since G is compact, T may be uniformly chosen. We do not
fix such a T once and for all at this time but it is to be understood that

any future reference to a parameter labeled T entails that it is small enough
that this condition is satisfied.

LEMMA. - For any t > 0 and y > 1, there exists a constant C which
does not depend on t or 03B3 such that , (03B3 + |-1|B(x, t )I > 

Proof. - It is clear that the inequality is only at issue for 0  t  D

(where D denotes the diameter of G) and by invariance we may take x to
be the identity element e. In the case that (y + it follows from

Proposition 1.1 that we may find positive constants ~ and v such that

from which the lemma follows. In the remaining case, i.e. when (y + l~t >
D, we prove, as in the first case, that > Cy-’~ and
IB(x, , (y + = 1, whence the required estimate. D

PROPOSITION 2.1.2014 If 0  p  oo, M > n/p, and 0  ~o  T there are
constants Cl and C2 depending only on G, p, and M such that



Proof. - First we prove

We let

where Co is the fixed geometric constant of the previous lemma. Then

since the Hardy-Littlewood operator is of weak type (1,1). We will show
that

which together with (2.9) implies that

We obtain (2.8) from (2.11) by the standard distribution function argument:

We prove (2.10) by working with the complements of the indicated sets. Fix
g ~ ~a. Let (g1, t) E (g). We claim that the ball t) cannot be
contained in Ea . If it were, we would have , t) C Ea n B (g , , (y + 1)t)
by the triangle inequality and therefore, by the lemma preceding this

proposition,

which contradicts g ~ Ea. Thus, for each g ~ Ea and E 

we may pick a go E B(g1, t) n . Then |Pt * f (gl ) I  I  a and

since (git) E is arbitrary, which proves (2.10).



We can now establish the first required inequality, without regard to the
size of êO:

For fixed (y, t) E G x (0, ] and for any x E G, fix a y = 2"z (m E N+)
such that d(x, y)  yt. Then

whence

Therefore, by (2.8)

for M > n/p where C = C(M, p, n).
We now prove the remaining required inequality:

Since the Hardy-Littlewood maximal operator is bounded on L2 (G) it
suffices to show that for ê1 small enough



Applying Theorem 1 of [17] (together with the remark following that
theorem) to the function Pt * f on G+ (which is a solution of the elliptic
operator A + C~2~f~t2) we have for t  ~114 and d(y’, y)  t

and (2.13) holds for T = ~1~4. ~

PROPOSITION 2.2.2014 If 0  p  oo and M > n/p, then

Since the proof of Proposition 2.2 only uses ideas found in the proof of

Proposition 2.1 it is omitted.

We now define another maximal function associated with distributions

on G which is more flexible in some way than those discussed above. For

N E N+ and x E G we define the subclass of S(G) as all those

~p E S(G) satisfying:

i) Supp 03C6 C h);

ii) sup (Pt * 03C6)(x) | ~ h-N-n .

iii) ~03C6~~ ~ h n for some h > 0.

We note that h = D, the diameter of G, is permitted.

For distributions f in S’(G) and 03C6 in we use the pairing ( f, 03C6~ =

fa dg. The grand maximal function f * is defined by



in analogy with the C. Fefferman-Stein grand maximal function for ~8n
~1 l~ . Of course, the dependence on N is concealed by the notation. The
restriction of N to even integers below is made only to simplify computations
and is not essential.

PROPOSITION 2.3. For N E 2N+, there is a constant C depending
only on N and G such that

Proof. - Let to = T/2 where T is as in Proposition 2.1. Then

We estimate the maximal function Q f first. It will be clear that 
C f * (x) with C independent of f and x if we prove that there exists a
constant C independent of t and x such that

In fact, if Pt(y) = 

whence

It follows that

with C dependent only on to . In the same way we obtain

which yields (2.18).



We turn to a similar estimate of . For each x E G, exp-1oLx-1
(where L denotes left multiplication) gives a coordinate chart for the

ball B(x, to). For a fixed t in (0, to), there exists a jo E N such that

2~~ +1 t  b  . For 0  j  jo let

Set

Then Aj(x) C ~(x, b) for these j and d(y, x) > ~0/1~ for y E A(~). Using
the indicated chart we may choose a Coo partition of unity 
jo) , ~p ~ relative to the covering ~ A~ (x) ~ j U ~ A(x) ~ of G with the property:

where Cj does not depend on k. In terms of the modified kernel given by
(1.17), for a fixed element t of (0, to) we have by (1.9) :

which we write as -1- ~{2~(y) + Pt{3~(y), noting that each term is in
S(G). Now for s > n/2 we have by Sobolev’s theorem

Also



by (1.18). For N even and z C {1,2},

the last equality resulting from iteration. The same argument used to

estimate ~P(i)t~~ now yields C. Thus,

where C is independent of y E G, t  to and s > 0.

To recapitulate our progress, we have shown that

The task of showing that the last term is pointwise dominated by f * is
most nettlesome. We write

By choosing the cut-off function in (1.17) with sufficiently small support,
we may assume that the kernel Kt is supported in B(e, T). As in [9] we
have for x = exp X. .

For a > 0 and 2~-1t  ~~X~~  2~+1t one easily sees that

whence



Hence,

for all s > 0 and 2/ E G. Thus ~Ps* 03C8j ~~ ~ C2-j (2jt) ". We deduce that
03C8j = where 03C8j ~ We similarly obtain

for all s > 0 and C. Therefore C~ _ ~ for ~ E where C

depends on N and T but not on j. . Thus

which completes the proof. D

Although there is no pointwise converse of Proposition 2.3, it is still

true that the grand maximal function f * is dominated pointwise by the
tangential maximal function P~ f as we shall show by a standard technique
involving an auxiliary kernel closely related to the Poisson kernel but better
adapted for the approximation of smooth functions.

Let L be an integer to be specified later and let ~.~o, .~1, ... , , .~L~ be
distinct positive numbers with 1/4  £j  1/2. There exist co, cl, ..., , cL
such that Cj = 1 and = 0, s E ~1, 2, ..., L~. Define

For these kernels we will need to show that there exists a constant C

such that

Indeed,

whence (2.19).



We will also need the estimate

We may easily reduce this to the case where w = e, .c E B(e, T) - B(e, 9t),
and 0  u  T. Using (1.9), elementary calculations give

(k odd) where

In Proposition 2.3 we obtained ~~{2} ~  C. For we estimate

Since from [9], we have

Now if ~x~  s, then |I(1)j| ~ s-1-n-2k+2j+1+k-2j  the same
estimate is immediate if ~x~ > sand (2.20) follows.

If d(x, z,c~)  gt it is an immediate consequence of (2.20) that



If d(x, w) > 9t,

and (2.21) again follows from (2.20).

LEMMA .- Suppose p E CL(G) and

Then

If is valid only for s E (0, T), then remains valid for 0  t  T.

If, in addition to ~ E B(x, h), 1 and M  L + 1, then

Proof. - Since Ps * ~p is harmonic on G+ and all its derivatives up to
order L are continuous in G+ we have

whence



Note that the left side of (2.24) is bounded by

the first term of which is obviously bounded by a constant depending only
on M and a. For the second term, notice that since y ~ B(x, 9h) and
supp ~p C B{x, h) it follows that d{x, y) > 2d(y, w) and d{y, w)  2d(~, y)
and the second term is bounded by

We also note that the left side of (2.25) is bounded by

the first term of which is bounded by

and the second term is similarly bounded as per the treatment given for
(2.24). 0

. 

PROPOSITION 2.4.- If N = L + 1 > M > n/p, then f * {x) 
f E S’(G), with C independent of f. .

Proof. - Let ~p E with supp ~p C B(x,1~). We may without loss
of generality suppose that 1~  1. Note that satisfies the assumptions in
the last part of the lemma. Choose h  ~o. Let



Then

whence limt~003C3t * 03C3t * = 03C6(x). In particular, if we set ho = 2-k0 h,

and define ut * similarly, we have

and therefore for any f E S’(G)

Define

and define ~~+~ ~~~o f(x) by replacing ~t above with Since

we get



Therefore, in view of the preceding lemma,

Also,

It follows that I ( f , ~p~ I  (~p E with C independent of
~p. We may finally conclude that f * {x)  D

For 0  p  oo the Hardy space HP( G) is the collection of all
distributions f E S’(G) for which P+ f E LP(G). The HP "norm" of f
is defined by = Although not a norm in general,

provides a complete metrizable topology in HP( G). The spaces
HP( G) (1  p  oo) are known, to be Lebesgue spaces (~1~, [15]) and so we
assume that 0  p  1 in the remainder. The next theorem can be culled
from the preceding results.

THEOREM 2.5. Let f be a distribution in S’(G). Suppose that M >
n/p and N > n/p with N even. The following are equivalent:

i~ f E HP(G);
ii) P+ f E LP(G);

iii) P~ f E Lp{G) for some ~ > 0;
iv) P~ f E LP(G), ~ > 0;
v) f* E LP(G);
vi~ E 0  ~  T;

E 0  ~  T.



Moreover, we have, for 0  ~  T and suitable constants C~ and C:

THEOREM 2.6. - S(G) is dense in HP(G).

Proof. - Let f E HP(G). For fixed t > 0 the function Pt * is in

S(G) . By the semigroup property we have Ps*(Pt* f - f) = Ps+t * f - Ps * f
whence P + ( f - Pt * f ) ( x )  2 P+ f ( x ) ; the right side is finite almost

everywhere since P+ f is in LP(G). . By proving that for almost every x,
limt~0 P+( f - Pt * f)(x) = 0, the theorem will follow from Lebesgue’s
theorem. Since for harmonic functions existence of non-tangential limits
and nontangential boundedness are almost everywhere equivalent [17],
t -~ E (0, 1 J, admits a uniformly continuous extension to [0, 1 J
for almost every x in G. This implies that for almost every x E G, given
ê > 0 there exists a to = tp(x, ê) such that

Therefore * f ) (~ ) I - 0. D

3. Atomic characterization of HP (G)

Elements in the closed unit ball of L°° (G) will be called exceptional
atoms. In order to define regular atoms, we consider a faithful finite
dimensional unitary representation 7r of G; one such exists by consequence
of the Peter-Weyl theorem and the choice of 7r will not matter as will be seen
in Theorems 3.3 and 3.4. We may therefore identify G with a Lie subgroup
of UL = { U E GL(L, C) ~ U = e ~ for some L and by extension regard
G as a real submanifold of the real vector space E underlying End(CL).
For 0  p  1 let no = [n(p-1 - 1)]. We let Ps(E) denote the vector
space of polynomials on E of degree no larger than s EN; for a given p
we will take s = no as above. As in [5], we define a regular (p, q)-atom for
0  p  1  q  oo to be an element a of L q (G) satisfying the following
three support, size, and cancellation properties:



(i) supp a C B(x, p) for some p > 0;

(iii) ~’G d~ = 0, P E 

Since G has finite diameter, (i) is only meaningful in conjunction with
(ii). For such pairs {p, q); is the space of all f E S~{G) admitting
a decomposition f = ckak Ip  oo) where each a~ is either
a regular {p, q)-atom or an exceptional atom. The "norm" I) is the

infimum of (03A3|ck |p)1/p over all such decompositions of f . These definitions
are evidently valid in the larger class of compact Lie groups; we will in
particular use the definition for the unitary groups On the face of it,
these atomic Hardy spaces seem to depend on the particular embedding,
but, by obtaining their equivalence with maximal function based Hardy
space, we will show this to be illusory. In the more general context of spaces
of homogeneous type it is known that the index q is ultimately superfluous:

= [8]; therefore we need only consider . By a
p-atom we mean either an exceptional atom or a regular (p, oo)-atom. The
constant (n - 1)~2, arising frequently, will be denoted by v. Our first result
is that maximal Bochner-Riesz operators of p-atoms are uniformly bounded
in LP( G) for suitable exponents. We let

PROPOSITION 3.1. There exists a 6 > v and a constant C depending
only on G, b and p such that  G for all p-atoms a.

Proo f - If a is exceptional, then

and the conclusion follows for these atoms. For a regular p-atom a, we have

Therefore,

and we need only estimate



Fix N as in [5, p. 108]. For t  2N p we argue as in [5] to obtain

and

Since d{e, y) > d(e, x) - d{y, x) and d{y, x)  p  d(e, x)/2 we have
d ( y, x ) > p > t / 2 N . Therefore,

By setting 6 = n/p + 60 - v - 1, the task of finding 6 > v becomes
equivalent to that of finding 60 > 0. In terms of this parameter our estimate
above gives

for 0  ~ 2N p.
Now suppose that t > 2N p. The argument of Proposition 6.2 of [5]

provides a Taylor polynomial {,Ss ) ( y~ such that

where A~ is as in [5] and R = 1 /t . Since -no - 1 + 1)  0 we can

choose 60 sufficiently small that -no - 1 + n(1/p - 1) + 60  0. Then, since
t ~ 2 N p, we have



Thus

for d( e, x) ~ 2p and C independent of the particular p-atom a. Therefore,

In analogy with the maximal operators P+ and ?._ we define the radial
maximal heat operator

We prove in Proposition 3.2 that W+ and P+, like ,S+, are uniformly
bounded on p-atoms; this is the standard procedure for establishing the
containment C HP(G) which is recorded in Theorem 3.3 which
follows.

PROPOSITION 3.2.2014 There is a constant C depending only on G and p
such that C and C for all p-atoms a.

Proof. - Let a be a p-atom and define the maximal operators Wi and
W2 by



For t > 5 there is a Taylor polynomial (as in Proposition 3.1)
such that

for some s > n / 2 + 1 + no. Therefore

This shows that

By (1.15),

Thus

by Proposition 3.1 and (3.1). By (1.9) we have

and the required bound for P+ follows from that for W+. 0



THEOREM 3.3. - There exists a constant C depending only on p and G
such that II f II HpH G  for all f in Ha’°°(G). In particular,H( ) a ~ )

C 

Proof. . Each f E Hp,~03B1 (G) has a decomposition f - 03A3 cjaj where
{03B1j} is a sequence of p-atoms and 03A3|cj |p  oo. Thus

It remains to establish the reverse inequality between the norms of
and HP(G); that will complete the proof of the equivalence of

the two Hardy spaces. The idea of the proof below is not new, but minor
errors have appeared in the two instances that we know of where it has
been used. We first state two lemmas, the proofs of which use only standard
partition of unity techniques and are omitted. We then consider the classical
unitary group Un (where, in this discussion, n is arbitrary and not dimR G)
and prove Lemma 3 which establishes atomic decompositions for Hardy
functions on the unitary groups. Although the technicalities of Lemma 3
are specific to unitary groups, the broad generalities of the decomposition
have been previously carried out for balls and spheres. The case of general
compact Lie groups may quickly be reduced to that of Lemma 3.

LEMMA l. - There exist constants A, a, ,~3, y and 6 with 0  6  y 
1  ~3  a such that for any nonempty open subset S2 of G there is a

collection of balls , rj ) } j, , 0  rj  ~o, for which

i~ 

ii~ B( x j, , cxr j ) is not contained in S~,

iii) UjB(xj, 03B3rj) = SZ,
iv~ B(x j, 6 r j) n B(xi, 6 r j) = ~, i # j,

v) C ~~

vi) B(xi, ri) intersects at most A of the B(xj, , rj) for all i.



LEMMA 2. - Given S2 and 
j 

as in Lemma 1, there is a

collection of positive functions C with

1) supP C 

2) E Pj = Xo’
3) For each j there exists a yj E G B S2 such that E

Next we consider the classical unitary reductive group

The identity map on ~In is a faithful finite dimensional unitary repre-
sentation of !7~ which allows us to embed Un in E = 1I82’~2. For each

f E let S2~ = = ~ ~ E G > 2~ ~ . For each fixed
k. . Let , rjk and be the items of the previous two lemmas associated
to Let P(x : j, k) be the unique element of Ps(E) such that

for each P in Ps(E) and let be the unique element in Ps(E)
such that

for all P in ~s(.E). Of course, in the definition of these polynomials we have
suppressed dependence on f, s, G and 7r.

LEMMA 3. - For G = Un if X E B(x y, Crjk), then P(x : i, k) (  C2~
and I P(x : i, j,1~) (  C2k.

Proof. - We will denote the general element of Un by x = (ujj + x’ 
where Vij E IIB. It is an elementary fact that or (Vij) may be taken
as a coordinate system for Un; we will give explicit arguments in the cases
where the latter provide the more convenient coordinates, writing 
and x(v) = + i v) , v = accordingly. A general 2n2-tuple of



nonnegative integers will be denoted i = with = 
.

We order these multi-indices so that J  1~ if  we need not specify
the ordering ofy and k when they have equal length. Let {~r ~ 0  !~! ~ s~
be the basis of Ps(E) such that

For the first set of polynomials that is, those for which 03A303BEij > 0, we
will use v = (Vij) E as a coordinate system of For the second
set of polynomials, (Uij) is the more convenient coordinate system; the
discussion for these, differing in no essential way from that of the first
set of polynomials, is omitted. Let be the orthonormal system
obtained by orthonormalizing with respect to the measure =

(~) ’ . II 

where = (p~-~ 9y)~(~ )’ We denote the numerator of (3.2) by ~-.
We assert that is uniformly bounded on Crjk) independently

of 03C6jk and rjk. Using a standard argument we need only show that
|Qi(u)| ~ C for u ~ B(e,Crjk) and supp 03C6jk C B(e,Crjk). The proof
of this is by induction on i, the case |i| = 0 being obvious. We will drop the
subscript j during this argument. For any multi-index z we first estimate

the numerator of (3.2). If > 0, one easily sees that Cr03A3 03BEij
for .r G B(e, Cr) and that

It follows that Cr03A303BEij . Therefore,



when i = with > 0. . Also,

Since ci dv = ci fl dvij  dz  c2 dv, there exist C and 60 > 0 such that

]] qi~2 ~ Cr03A3 i" Ar where

Our assertion concerning the uniform boundeness of the Qï will therefore
follow from the existence of a constant M such that

If (3.3) were invalid, we could find a sequence ~rn~ such that Arn  1/n
and lim rn = ro E ~ 0 , Eo ~ . If ro > 0 we can find an 6:1 > 0 such that

~0 for all n. But since {03C6n} is uniformly bounded and equi-
continuous, we may, by the Ascoli-Arzela theorem, assume without loss of

generality that ~p(x). This gives us a pair (ro, ~p) with  1,
y~ ~ 0, and supp ~p C B(e, ro). Now we have by [10]

where is the best approximation in 1/2)~ of by
means of the family of functions



This contradiction forces ro = 0 and we have

But tends to the identity matrix as -~ 0 and therefore

for almost all E J9(0,1/2). Furthermore () = and by our
induction hypothesis we have

where the constants depend on rk but in such a way that = O(1).
Therefore, we can choose r~~ such that

This contradiction establishes (3.3).

Now we may complete the proof of Lemma 3. Since the are

uniformly bounded and since C . E for some y ~ Qk
we also have C. E - Now



and therefore

Since

and is orthonormal with respect to the measure dpjk, the remaining
estimate follows analogously. 0

THEOREM 3.4. if f E HP(G) then f admits a decomposition f =

~ ~ where the aj ’s are p-atoms and -  for
some constant C depending only on p and G.

Proof. - Fix f E HP(G) n S(G). In the notation already established,
we may use the embedding ~r : G -~ C) to transfer the estimates of
Lemma 3 to G:

for all x E rjk). . The atomic decomposition is now obtained in a
standard way. We write

We have C2k and 6~ = 0 for every (x,~) for which

2~. Choose an h such that

and gh = C2hah with ah an exceptional atom. We observe that



Also, S2k+1 and soon as 2~ > ’

Moreover, by the geometry of the covering, if rj,k+1 ~
0, then Crik (for C = (1 + ~)/(/? - 1)). Therefore, for fixed
j, only a finite number of balls of the collection intersect

and only a finite number of the P{ ~ : 1) are

different from 0. Since E = we have

for any This implies that Ei P(. : : i, j, k + 1) = 0. Hence

where each ai~ is a (p, oo)-atom with support contained in 
Consequently,

and since C is independent of f and since this right side of (3.4), being locally
a finite sum, converges to f pointwise and in each Lebesgue space Lq (G)
(q  oo), this series furnishes an atomic decomposition of f. Movever,

This proves the theorem for f E S(G). . The transition to an arbitrary
distribution f in HP(G) is now, in view of Theorem 2.11, a routine



denseness argument. Since there is a sequence C S( G) such that
f~, = ~~ (an atomic decomposition),

we have f = cjnajn and

which concludes the proof of Theorem 3.4. ~

4. Heat kernels and Hardy space

As in Euclidean space, it is useful to have a heat kernel characterization

of Hardy space. Define the kernel

the second equality exhibiting the positivity of . The associated

maximal operator is W+ f = supt>0|t * f I . We define a nontangential
maximal operator by

It is convenient to have some auxiliary operators:



Then we have the following result :

PROPOSITION 4.1. - For any p > 0 there exists a constant C such that

Proof. - By an argument that originates in ~11~, the proposition follows
from the following inequality

which in turn, by Propositions 2.1 and 2.2, follows from

where

By the semigroup property, f * Wt = ( f * Wt/2 ) * Wt/2 
Hence, for any ( y, t) E G+ such that y~ 2  t, we have

Therefore, (4.5) will follow by showing there is a C independent of t in (4.6) :

From Section 1 we recall that

for any 6 > 0 and M > 0. After substituting into (4.5) we arrive at
It = ~1 + 12 with 7i an integral over G x (0, Mt) and 12 an integral over



M x [Mt, oo). We vill estimate ~1 and 12 separately. First, we break up
12 further by

denoting the first summand by J1 and the second by J2. By Theorem 5.4
of [5], for 6 > 2N, we obtain by a simple calculation

Again using the same theorem in [5] we get

where = and D~ are as in [5].

Since ~t1 ~2 + d(y, e)~ ~  d ~y, (1 + (2S)1~2~ N we obtain

Let 03B4 = ( n - 1)/2 + 80 for some $o > N. . Then



Also, from the definition one easily sees that

This shows that ~2  CM. For Ii we use the estimate [5, Theorem 5.2],

This shows that C for any t > 0 completing the proof of (4.6). D

By consequence we see that for f E LP(G), 1  p  oo,

lim Wt * f { y) = , f { x ) for almost every x in G. (4.8)t-o

d2 (x,y)t

For N a positive integer and x E G we define a (new) class in a

way similar to that of Section 2:



We draw attention to the 2N in (ii). For a distribution f in S’(G) and
~p E k’N(x), we use the notation ( f, ~p~ = f~ ~p(x). The corresponding
grand maximal function f * of f in S’(G) is then

By methods too similar to those already given in Section 2 to bear repeating,
we have W + f (x)  Cf*(x) for all x in G and therefore, by Proposition 4.1,

From here there is no difficulty in repeating the arguments of Section 2
and 3 to obtain the analogues of Theorem 2.10 and Theorem 3.5.

THEOREM 4.2. - The following are equivalent:

i~ f * E LP(G), 

ii) ~W*1f~p  oo,

iii) Wt f E LP(G),

iv~ W * f E LP(G),

v~ W+f E LP(G),
vi~ W + f E LP(G). -

THEOREM 4.3. - W+ f E LP(G) if and only if f E 

We now show that any central ~p E S(G) satisfying fG ~p d~ = 1 also

characterizes the HP(G) spaces. In addition, we will prove that some non-
smooth kernels (including Bochner-Riesz kernels) characterize HP(G) as
well. For 03C6 satisfying .

~p E S(t) is a radial function satisfying ~p(H) dH = 1 (4.10)

we define



THEOREM 4.4. - If 0  p  oo, then for all f E S’(G) the following are
equivadent:

i) sup |03C6t * f I E Lp(G) for some 03C6 satisfying (4.10),
t>o

ii~ sup * f(y)1 I E Lp(G) for some ~p satisfying ~,~.10~,
d(x,y)t

iii) f *(x) = sup sup * f(y)1 I E Lp(G) where
03C6~A0 d(x,y)t

for some No = No(p, n).

Proof. - For the most part, the proof of the original result for Euclidean
spaces [11, Theorem 11] carries over and we need only show that i)-~ii). As
in [11], it suffices to prove

where !7*(.r) = f (y) ( and

Choose ( e C~([0, 1]) such that ((~) = ~/7V! for 0 ~ ~ ~ 1/2,
0 ~ ((~)  ~/~V! for 1/2 ~ ~ ~ 1 and ~((1) = 0 for 0 ~ ~ ~V + 1
where ~s = ~/~s. Let (03C6s)*(N) = (03C6*(N)1)s be the N-fold convolution
product of Let

Then by integration by parts we have



But

for another radial function ~ in S(t) . Therefore

Hence, for any X E g

Now for any fixed (y, t) E G+ such that y)  t,

By the argument given in the proof of Proposition 4.1, if d(x, z)  t,



If d(x, z) > t, then

whence

Hence, I t J2 ( y) I  whenever y)  t .

We turn to a similar estimate for ~J1 ( y) . It’s easy to see that

For z-ly conjugate to exp 0 E Tl there exists a differential operator 
of order N -~- 1 such that

Now using Theorems 3.3 and 5.4 of [5], our estimate for J2 and Propo-
sition 4.1, we get )  C, y)  ~ from which the required result
follows. D

We note that from Theorem 4.4, it is easy to see that for ~ =

and 03C6 as in Theorem 4.4, we have 
since get



Heretofore our kernels have been infinitely differentiable. The following
theorem shows that such smoothness is not a necessary condition for the

characterization of HP( G). .

THEOREM 4.5.- For the maximal Bochner-Riesz operator =

supt>0|S03B4t * f (x) I ,

Proof. - Suppose that 6 > (n + 1)/2. If f E HP(G), then f has
atomic decomposition f = Z~ cjaj and

Conversely, if  ~ then

We will now further relax the regularity assumption, admitting even non-
smooth kernels, by generalizing a Euclidean result of Y. Han concerning the
characterization of Hardy space by kernels satisfying a Dini condition. For
a function ~p E C(t) satisfying:

i~ supp ~p C ~8 E ~ 1~ ,

it) has 
n 

2 

~ 
derivatives ’

iii) ~p is radial: ~0(8) _ for a function ~po (4.13)
of one variable,

set ~(~) == and define the central kernel ~t on G by



We do not assume that the kernel is smooth; instead of a smoothness
assumption on § we assume that § satisfies a Dini condition:

where = ~t~)I~ We define a maximal operator ,c*
on functions on G by

and an space by

norm by = 
°

THEOREM 4.6. - Suppose that 03C6 E C(t) satisfies (4.13) and =

is bounded and satisfies ~J~ Then = 

Proof. 2014 We may assume that J~(~) d0 = 1. For any exceptional atom
a(.c) and any (~) E G+, a(?/)j ~ C, where C does not
depend on (y, t). Let a(.c) be a (l,oo)-atom with support in some ball B.
Without loss of generality, we can assume B = B(e, p) for p sufficiently
small. Now for any 0  ~ 1 and y ~ G such that d(.r, ~/)  t

Therefore, for any ~ > 0 as in (4.15), there exists a constant C = 
independent of a(x) such that

where [E] denotes the subset of G conjugate to exp E for E C t. For fixed
y E G, and for 03BE E G, let 03B8 = 03B8(03BE) E t exponentiate to a conjugate of y03BE-1.
Then



Notice that ~~8~~  d(y~ 1, e) = d(y, ~) and is supported in 8  t.

Thus, for any ~ E B ( e, p) we have ~ot * a ( y) = 0 for 0  t  d ( y, ~ ) and so
we need only consider  t  1,  t, x E and

ç e B(e, p). But for such x, y, ~ and t,

Thus

Now, using Taylor’s formula, we obtain

For exp ( conjugate to y, we have

By (6.3) of [5] (as noted in the proof of Proposition 1.1 above) II 8 - ~
= d(~, e). This shows that

Recall from (4.18) that t-1  4d(x, and d{~, e)  p. Therefore,

But



Therefore, for m which we may assume is integral,

and on substituting s = 4p/6

as required. Since the constant is independent of the atom, a similar esti-
mate for any f E H1 (G) follows immediately from the atomic decomposi-
tion, yielding

Conversely, if f E H03C6(G), let 03C8 be a Coo radial function on t that is
supported in ~~9~~  1/2 and 0. Let ~(9) - ~p * ~(?). Then ~
is a radial tempered function with t 03A8(03B8) d03B8 ~ 0. We define 03C8t and 03A8t on
G by 

Then Wt(x) _ ~p~ * But for any fixed 0  t  1 and y E G such that
d(x, y)  t we have



Thus,

Also, for t > 1,

Furthermore, since limt~003C6t * = C f( x) for almost every x E G, we
get

By Theorem 4.4, we conclude that  ~ ~

We now pick up two corollaries:

COROLLARY 1. - Suppose that ~ is radial, compactly supported, It y~ d0
~ 0 and ~p~9) = as 0 --~ oo for some ~o > 0. Let ~ be obtained

from ~p as above and suppose that ~ satisfies (,~.15~. Then f E if
and only if

COROLLARY 2. - If ~p and ~ are as in Corollary 1, if It ~p d0 = 1, and
if f E H1 (G~, then

for almost every x E G.
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