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On the geodesic connectedness of
simply connected Lorentz surfaces(*)

MOHAMMED GUEDIRI(1)

Annales de la Faculté des Sciences de Toulouse Vol. VI, n° 3, 1997

R~SUM~. - Nous montrons que les surfaces lorentziennes simplement
connexes globalement hyperboliques sont geodesiquement connexes. On
a 1’equivalence pour ces surfaces simplement connexes cocompactes.

ABSTRACT. - We discuss geodesic connectedness for simply connected
Lorentz surfaces, and show that it holds for those which are globally
hyperbolic. In the compact case, we establish the equivalence for the
universal covering.

1. Introduction

It is well known that, according to Hopf-Rinow’s theorem, any complete,
connected Riemannian manifold is geodesically connected; that is, any two
of its points can be joined by a (minimizing) geodesic.

By contrast, for Lorentz manifolds, geodesic completeness does not imply
geodesic connectedness (Sect. 2).

Throughout this paper S denotes a smooth, connected and simply
connected surface. If g is an indefinite metric on S, then we say that (S, g)
is a Lorentzian surface.

Two Lorentzian surfaces (S, g) and (S’, g’) are said to be conformal if
there is a diffeomorphism j~ : ? 2014~ 5~ such that ~~ = / . ~ where f is a
non-vanishing smooth function on S. So, a conformally flat surface will, in
this paper, mean a Lorentzian surface which is globally conformal to a flat
one.

(*) Reçu le 16 octobre 1995
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Globally hyperbolic spaces

Let denote by J+ (p) the set of all points q E M which are related to
p by future-directed nonspacelike curves. Similarly we define J- (p) with
past-directed instead future-directed. If q E J+(p) we say that q is causally
related to p and we write p  q. .

DEFINITION . Given a Lorentzian manifold (M, g), we say that (M, g)
is globally hyperbolic provided that it is strongly causal and for each p  q

the set J+ {p) n J- {q) is compact.

Recall that (M, g) is said to be strongly causal if for each p E M

nonspacelike curves that start arbitrarily close to p and leave some fixed

neighborhood cannot return arbitrarily close to p.

We point out that Claim 1 in Section 3 shows that all simply connected
Lorentzian surfaces are strongly causal, and therefore every Lorentzian sur-
face which is conformal to the Minkowski plane is globally hyperbolic.
The converse is not true as can be seen on the universel covering of

(T2, dx dy + d y2 ) where f is a smooth function which vanishes some-
where without being identically null. (For more about globally hyperbolic
spaces, we refer to [1] and [4]).

The main purpose of this work is to study the geodesic connectedness
of simply connected surfaces. Our first and main result states that a

simply connected Lorentzian surface is geodesically connected if it is globally
hyperbolic, and specially when it is conformal to the Minkowski 2-plane Ef ,
where this latter space denotes JR2 with the metric dx dy.

We remark that simply connected, geodesically connected surfaces are
not all globally hyperbolic (and so are not all conformal to 

Consider the strip shown in diagram 2 with the metric dx dy. Of course,
this region is geodesically connected since geodesics are exactly straight
lines. However, it is neither globally hyperbolic nor conformal to Ef by the
fact that each boundary point is approached by two null geodesics.

In the compact case, we prove that the universal covering of a Lorentzian
2-torus 1f2 is geodesically connected if and only if it is globally hyperbolic.

Completeness is also obtained for Lorentzian, conformally flat 2-torus (a
proof is given in [2]).



2. Generalities

2.1 Example. A non geodesically connected,
complete Lorentzian manifold

Let Rn+11 denote the usual vector space Rn+1 with the indefinite metric
9 - + d~1 + ... + .

In II81 +1, we consider the hyperquadric

Clearly, g induces a Lorentzian metric on Also, it is well known [4]
that, with this metric, S 1 is a geodesically complete Lorentzian manifold of
constant curvature 1.

The geodesics of S 1 are just the intersections of S1 with planes through
the origin of Rn+11 which meet S1.

The hyperquadric S 1 is called either the de Sitter space or the unit

pseudo-sphere.

By contrast with Riemannian case, the de Sitter space S1 is never

geodesically connected since it always contains non-antipodal points p, q
for which there exists no geodesic joining p and q (see [4, Prop. 5.38]).

2.2. The two null foliations of a Lorentz surface

Let (,5’, g) be a simply connected Lorentzian surface. Then the inex-
tendible null geodesics of (,S, g} may be partitioned into two transversal
families ~’1 and :F2 such that each of them covers S simply; that is, each
point p E ,S’ lies on exactly one null geodesic of each family. Thus, ~’1 and
~2 determine two transversal foliations by the null geodesics of (,S’, g). We
call them the null foliations of the Lorentzian surface (S, g).

For example, we remark that Sf is a ruled surface generated by each
of null foliations. Also, each leaf of 01 meets any leaf of ~’2

except one. This fact can be well understood if we work with
the universal covering of Sf. This space is represented by the strip

in with the Lorentzian metric ds2 = sec2 s( -d02 + ds2).



Thus, the universal covering Si of the de Sitter space Si is conformally
flat. In contrast, it is not conformal to Ef since each boundary point is

approached by two null geodesics (compare with diagram 2). Of course, Si
is not geodesically connected since Si is not.

Together, the two null foliations define a grid of null geodesics on ,S’ called
the null grid. Locally there is a system of (local) coordinates x, y on 5’ for
which g = f (x, y) dx dy for some non-vanishing function f. .

Thus, locally, the null grid can be made as the net of level lines for the
above system of coordinates.

A basic fact of Lorentz geometry is that a diffeomorphism is conformal if
and only if the induced map on the tangent bundle preserves the null-cones.
This means that, for Lorentz surfaces, a diffeomorphism is conformal iff it

preserves the null grids.

Diagrams 1 to 4 show the null grids for the metric dx dy on four open
subsets of the plane I~81. The strip shown in diagram 1 is conformal to Ef,
but none of those in diagrams 2 to 4 is conformal to This fact is related

to the behaviours of ~’1 and ~’2.

Diagrams 1 and 2



Diagrams 3 and 4

2.3 The conformal boundary

Let I, m be two leaves of the two null foliations 01 and ~’2 respectively,
and let us attach ideal boundary points /-}-, 1- and m+, m- in the positive
and the negative directions respectively.

The conformal boundary of (S, g) denoted by 8cS (and which is due to
Kulkarni [3]) will be the set of equivalence classes relatively to a certain
equivalence relation on the set of all ideal boundary points. Thus, it is
invariant under conformal changes.
A topology is then defined on S = S U 8cS which induces a topology on

8cS. In general, 8cS may be complex and need not be Hausdorff. (See [3]
for more details).



Now, it is not difficult to see that the four regions in diagrams 1 to 4

represent different conformal classes. Of course, not every simply connected
Lorentzian surface is conformally flat. In fact, for the region shown in

diagram 4, some boundary points are approached by infinitely many null

geodesics. Note also that this region may be seen as the universal covering
of a punctured disc with the metric dx d y.

A remarkable conformal invariant

Let i(p) be the number of all possible null geodesics in S ending at the
boundary point p. It is a conformal invariant of (S, g) .

In the examples of the diagrams above, 8cS can be identified with the
subset of all topological boundary points which are end points of null

geodesics living in S. Then, i(p) ~ 0 for all points of 8cS.

Thus, in diagram 1, i ( p) = 1 for all points of In diagram 2, i ( p) = 2
since each boundary point is approached by exactly two null geodesics, one
of each of the two null foliations. In diagram 3, the six boundary points
at outer corners are approached along by no null geodesic, while those at
the two inner corners are approached by exactly two null geodesics. This

means that only the latter (i.e., the two inner corners) are in 8cS. Thus,
i(p) = 1 except at the two inner corners on 8cS where i(p) = 2. In diagram
4, i(p) = oo for every boundary point on 8cS corresponding to the origin of
the punctured disk. This is an example of a simply connected Lorentzian
surface which cannot be conformally flat.

The following result will be easily proved, by a close reading of [3].

PROPOSITION 2.1.2014 Let (S, g) be a connected, simply connected Lorentz
surface with smoothable Then,

1) (8, g) is (globally) conform ally flat iff i(p)  3 for every p in 8cS;

2) (S, g) is conformal to E1 iff i(p) = 1 for every p in 

3) (S, g) is conformal to S21 iff i(p) = 2 for every p in 

The boundary points p E such that i(p) ~ 2 were called, by Kulkarni,
characteristic points.

Remark. - Another conformal invariant is the number of corner points
on 8c8. Thus, by varying the number of horizontal and vertical line

segments making up the polygonal boundary of a certain region, we can



construct an infinite number of conformally distinct simply connected
Lorentz surfaces. This contrasts completely with the three well known
conformal classes of simply connected Riemannian surfaces.

The next result points out an equivalence between the fact to be confor-
mal to a subset of Ef and certain assumptions on the behaviours of ~"i and
~’2. But, before stating it, we shall need a definition.

DEFINITION . We say that the pair ~~1, ~2) make up a product (which
is always true locally) if there exist global coordinates (x, y) such that the
metric is given by g = f (x, y) dx dy for a certain non-vanishing function f
on S.

PROPOSITION 2.2.2014 Under the assumptions of proposition we have:

1) (S, g) is conform ally fl’at iff (F1, F2) is a product;

2) (S, g) is globally hyperbolic iff each leaf of 01 intersects each leaf of
~’2 and conversely.

3. Geodesic connectedness

In this Section we shall discuss the main purpose of this paper.

3.1 General case

In the simply connected case, we shall prove that geodesic connectedness
is obtained when (,5’, g) is globally hyperbolic.

The idea is to prove that every inextendible geodesic starting at a fixed
point p of S may be unbounded, that is, it does not remain in any compact
subset of S. Therefore, we can apply the implicit function theorem to
conclude that every point of S can be joined to the fixed point p.

We are going to state our main result, but first we need the next lemma.

LEMMA 3.1.2014 Let y : [0, b ~ ~ S be a given null geodesic of a simply
connected Lorentzian surface (S, g). Then, each other geodesic intersects y
at most once.

Proof. - Suppose that 03C3 is another geodesic in S which intersects y
twice (possibly at the same point). Then, by the transversality of the



null foliations, we can construct a non-vanishing vector field which will
be transversal to the boundary of the disk made up of y and a, but this is

obviously absurd. Hence, the geodesic 03C3 must intersect y at most once. 0

THEOREM 3.2.2014 A simply connected Lorentzian surface (S, g) is geode-
sically connected if it is globally hyperbolic.

Proof. - Let p, q be two distinct points in S and let R be the rectangle
made up of the null geodesics through p and q as in figure 1. Since (S, g) is
globally hyperbolic it follows that R is compact.

CLAIM 1.2014 Every geodesic starting at p and going in ~Z must go out.

Proof. - Let y : 0 , b [ ~ S, b  ~, be an inextendible geodesic. We
are going to show that y does not remain in R when t -~ b.

Since R is compact, if y were entirely contained in R then there would
be a sequence sn --~ b such that -~ r, with r E R.

Thus, y intersects one of the two null geodesics through r infinitely
many times. Otherwise, y would be extendible past b, contradicting the

assumption that y is inextendible beyond b. But, according to lemma 3.1,
y cannot intersect a null geodesic twice. 0

Now, we parametrize the geodesics starting at p and going in R by the

angle between such geodesics and the fixed null geodesic joining p and b as
shown in figure 1.

Fig. 1



If A(a, q, b) denotes the reunion of the segments ] a , q ] and [ q , b ~ [ where
a, b are determined by the intersections of the null geodesics through p and
q, then we get a map ~ : : ] a, /3 ~ -~ A(a, q, b) which associates, for every
geodesic starting at p and going in R its intersection point with A(a, q, b) . .

Now, it is obvious by Claim 1 that § is well defined.

CLAIM 2.2014 The map ~ is continuous.

Proof. - Since (S, g) is globally hyperbolic then, by Proposition 2.2,
there are global coordinates (x, y) such that null geodesics of ~’1 (for
example) are given by x = constant. .

Assume that the null geodesic joining b and q is given by x = c, and let
(t, u) ~ {~{t, u) , y(t u)) be the two parameters family of geodesics starting
at p and going in R. This provides that the map ~ is given by :

On the other hand, every geodesic starting at p and going in TZ is
transversal to A(a, q, b) and consequently, at any (t, u) such that x(t, u) = c,
8~(t, u)/~t is never vertical. But this implies that, for every (t, u) such that
x(t, u) = c, ~x(t, u)/~t # 0.

Now, for every (t, u) such that x(t, u) = c, we can apply the implicit
function theorem to guarantee the existence of a neighborhood of (t, u) for
which t can be expressed as a continuous function of u. In other words,
y(t(u), u) is continuous in u and consequently § is continuous too. D

We return now to the proof of Theorem 3.2. Since a , ~3 ~ [ is connected
and since a, b are attained by geodesics starting at p and going in 7Z, the
map ~ (which is continuous) will be onto and consequently q may be joined
to p by a geodesic, as we wished. D

3.2 Compact case

Suppose now that S is a compact surface and recall that S could be
Lorentzian if and only if its Euler-Poincaré characteristic vanishes. So,
the 2-torus 1f2 is the only orientable surface susceptible to be Lorentzian.
Furthermore, we remark that:



a) the unit disk (D, dx dy) is not geodesically complete;

b) if (M, g) is a simply connected Lorentzian surface, then there is a

smooth conformal factor 11 : M -~ ~ ] 0, oo [ such that is

geodesically complete (cf. [1]).

Because of these two facts, it might be natural to state the following
conjecture : : a simply connected complete Lorentz surface is geodesically
connected iff it is globally hyperbolic.

So, in this context we shall now prove the following.

THEOREM 3.3.2014 Let g) be a Lorentzian 2-torus. Then, its universal
covering is geodesically connected iff it is globally hyperbolic.

Proof. - By theorem 3.2, we have only to prove the converse.

Suppose that the universel covering is not globally hyperbolic. Then there
exist causally related points p  q such that J+(p) n J- (q) is noncompact.
This means, by proposition 2.2, that there exists at least a leaf of F1 which
does not meet certain leaves of :F2.

Because the surface is the universal covering of a torus, it must contain
at least one Reeb’s component.

Now, let x, y be two points as shown in figure 2.

CLAIM 3.2014 There is no geodesic joining x and y.

Proof. - We first assume that ~’1 and ~’2 are oriented as shown in

figure 2. It is clear that no null geodesic cannot join x and y.

Also, a timelike geodesic starting at x could not even cross the line I of

figure 2, otherwise, it would intersect the null geodesic lx or l y twice, which
contradicts Lemma 3.1.

Equally, a spacelike geodesic starting at x cannot neither reach the point
y, for almost the same reason. Indeed, according to lemma 3.1, if such

a geodesic meets the line I at a certain point z then it would be entirely
imprisoned in the right half-cone made up of the two null geodesics segments
lz = I and mz through the point z (fig. 2). Thus such a geodesic could not
reach the point y, which concludes the proof of Theorem 3.3. D



Fig. 2

3.3 Final remarks

1) It is obvious that global hyperbolicity is invariant (at least for surfaces)
under conformal changes. However, there is no reason for that geodesic
connectedness should be invariant by conformal changes. We can think
about the universel covering of the de Sitter space. We know that this

simply connected surface is conformal to a subset of Ef although it is not
geodesically connected.

2) In [1] and [4], we can find a result due to Seifert which says that for a
globally hyperbolic Lorentz manifold any two causally related points may
be joined by a nonspacelike geodesic.
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