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Existence results for quasilinear problems
via ordered sub and supersolutions(*)

MABEL CUESTA LEON(1)

Annales de la Faculte des Sciences de Toulouse Vol. VI, n° 4, 1997

RÉSUMÉ. 2014 On démontre 1’existence de solutions maximales et mini-
males dans l’intervalle form£ par une paire 03B1 ~ /3 de sous et sursolutions
faibles du probleme

Ici p > est un domaine borne regulier de et f (x, s, t) est

une fonction de Caratheodory dont la croissance en i7u est inferieure
a p - 1 + 1 ~ ~
Notre demonstration utilise une generalisation pour le p-laplacien de
1’inegalite de Kato. On etudie egalement les systemes non cooperatifs
de deux equations quasi lineaires du meme type que (P). .

ABSTRACT. - We prove the existence of maximal and minimal solu-
tions between an ordered pair of weak sub and supersolutions of the
quasilinear problem

where p > 1, Q is a smooth bounded domain of and f(x, s, t)
is a Caratheodory function whose growth in i7u is less than p - 1 +

.

Our proof relies on a generalization for the p-laplacian of Kato’s inequality.
We also study non-cooperative systems of two quasilinear equations of the
same type as (P). .
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1. Introduction

This paper is concerned with the existence of maximal and minimal

solutions between an ordered pair of weak sub and supersolutions of the
quasilinear problem:

Here Apu = p > 1, is the well-known p-laplacian operator.
We will assume throughout the paper that Q is a bounded domain of 
with smooth boundary and Caratheodory function,
i.e., f is mesurable in x E 0 and continuous in (s, t) E II8 x 

Maximal and minimal solutions can be easily found by using the method
of monotone iterations provided f satisfies a monotonicity condition like
condition (H3) in Theorem 2.1. This method is the classical approach to
the problem of the existence of solutions of (P) via sub and supersolutions.
The case p = 2, i.e., Ap = A, has been extensively studied, starting from
Keller, Amann [I], Sattinger, Amann-Crandall [2] (see references in [1]) and
more recently by Clement-Sweers [4] and Dancer-Sweers [6]. ..

The literature for the case p ~ 2 is less extensive. In the setting of
weak solutions, existence results via sub and supersolutions can be found in
Deuel-Hess [7] (see Theorem 2.2 in section 2), Hess [8], Boccardo-Murat-
Puel [3] and, when f is monotone and independent of in Diaz [5] (see
Theorem 2.1). A more systematic study of the subsolution-supersolution
method for quasilinear operators of divergence form has been done by
Kura [10]. Among other results, Kura proves the existence of maximal
and minimal solutions when the given subsolution and supersolution are
respectively locally bounded [10, Theorem 3.2] or bounded [10, Theorem
3.5] allowing, in this last case, the nonlinearity f to grow in Vu up to the
power p - ~ as in [8].

Later Dancer-Sweers [6] proved for p = 2 the existence of maximal and
minimal solutions of weak type when the sub and supersolutions are not
necessarily bounded and f grows in Vu at most linearly. The approach of
[6] is shorter than in Kura’s paper.
We present in this paper a generalization to the p-laplacian of the result

of Dancer-Sweers [6] for weak solutions (cf. Theorem 3.1 in Section 3). Our



result improves slightly a similar result of Kura [10, Theorem 3.2] since, as
in [6], we do not assume the pair of subsolution and supersolution to be
locally bounded. Moreover we prove as a consequence of Proposition 3.2
and corollary 3.3 that, according to the notation of [10], W-subsolutions
(respectively L-subsolutions), are actually weak subsolutions (respectively
locally bounded subsolutions) and similarly for supersolutions. The proof
of Theorem 3.1 uses Zorn’s Lemma and an inequality of Kato type which
is stated in Proposition 3.2. This generalization of Kato’s inequality will
be the key point of the proof. We also give the analogue of Theorem 3.1
for quasimonotone systems of two quasilinear equations. We have mainly
followed here the results of Mitidieri-Sweers [11] for the case p = 2.

This note is organised as follows. In Section 2, we briefly recall two
classical existence results using sub and supersolutions. The first theorem,
Theorem 2.1, uses monotone iterations in a p-laplacian setting. The second
theorem, Theorem 2.2, is close to the result of [7] already mentioned. In

Section 3, we prove our main result. In Section 4 we generalize our result
for a class of quasimonotone systems.

2. Two classical existence results using sub
and supersolutions

Let p > 1 and Wo’p(S2) the usual Sobolev space. We denote by II . ~p the
norm of and by = IIVullp the norm of Wo’p(S2). We denote

We define = s E I~.

We recall that the operator Apu satisfies the well known condition (S+):

V un - u in with limsup(-Apun , un - u) ~ 0

We will also use the following useful inequality:



DEFINITION. - A function u E is called a solution (subsolution,
supersolution) of (P) if f( ~ , u, E 

and

The condition on 8Q is understood in i.e, in the sense of
traces (see Remark 5.1~.

By an ordered pair of sub and supersolutions, we mean a subsolution a
and a supersolution 03B2 such that a  03B2 a.e.

The next theorem is only stated for functions f = f(x, s). A similar
result can be found in [5, Theorem 4.14~. .

THEOREM 2.1.- Let us assume the following conditions:

there exists an ordered pair a  ~i of sub and supersolutions of (P);
H~°~ 

(H3) ~ M > 0 such that ‘d sl, s2 : a(x)  sl  s2  ,Q(x), we have

Then there exist U, V solutions of (P) such that:

(I) c+  U  V  Q a. e. in Q;

(it) U is minimal and V is maximal in the following sense:

V u d solution of (P) with c+  u  Q a.e.

then c+  U  u  V  Q a. e.

Proof.- Let I = ( u e ] c+  u  Q a.e. ) . Define the map
T : I - by T(u) = v where v is the unique solution of



with g(x, u) = f(x, u) + It is easy to check that T is well defined

since E I we have that g(x, u) E W-~~p~(S2).
Let us prove that T is increasing. Take u, v E I with u  v. By (H3),

f(x, u) +  f(x, v) + M~(v) and since the operator -Op + M~
satisfies the weak comparison principle (see [11, Lemma 3.1~), we conclude
that T(u)  T(v). The same principle proves that a  T( a)   /3,

We construct the following monotone sequences:

We claim that the sequences (un), (vn) are convergent. In order to prove

that, let us check that (un) is bounded in Wo’p(S2) (the proof for (vn) will
be similar). Multiplying the equation (2.4) by un = and using
(H2’) we find

and, since a  u  ,Q a.e., then

where C depends only on M, Ii , a, ~.

By Rellich’s compact imbedding theorem we deduce the existence of a
subsequence (still denoted un) and U E Wo’p(S2) such that (un) converges
to U weakly in Wo’p(S2), a.e. in S2, and strongly in both and Lp(S2).

Using again that Un = is a solution of (2.4) we obtain, after
multiplying (2.4) by v = un - U,

and by (2.4) and the strong convergence in and we have



Using condition (5+) we finally get that limn~~ un = U in Wo’p (S2) .
Therefore U is a solution of (P) which clearly satisfies a ~ U  ,Q.

Let us check that U is a minimal solution in the interval [~, , ~3 ~ . Let u

be a solution of (P). Then T(u) = u. If moreover a  u  ,Q then, by the
monotonicity of T, a  u, V n. Hence U = limu~~ un ~ u and U is
minimal.

Similarly we construct the maximal function V from the sequence ~

The next theorem and corollary are originally due to [7]. We have slightly
changed the growth condition on f with respect to in [7] it is at most
p - 1 which is strictly less than our growth p/ {p*) ’ in (H2). The proof
of Theorem 2.2 in this case follows from [7] using Sobolev’s imbedding
theorems.

We point out that there are other existence results between sub and
supersolutions that allow f to grow in up to the power p - ~ or even

up to p. The hypothesis on the sub and supersolutions are however more
restrictive than ours. See Remark 5.3 at the end of this paper.

Note that in the next theorem the monotonicity condition (H3) has been
removed and that we consider functions f which may depend on Vu.

(H2) K(x) + a|t|r a.e., x E 03A9, d s : : a(x)  s  and

V t E where

Then (P) has at least one solution W1,p0(03A9) between a and Q.

Proof. - We introduce the function g defined by:



A lemma in [7] proves that the map u -> g(x, u, Vu) from to itself

is bounded and continuous. If we set f = max{q’, p/(p - r)} - 1 then
1  ~ + 1  p* and Holder’s inequality gives

for some ci, c~ > 0.

Let us define the following penalty term (different from the one used in
[7]):

for x E S2, d s E Ilg . Then for any E Wo ’p (S2) , we have

and

E for some c3, c4, C5, c6 > 0.

Consider now the map B : Wo’p{S2) ~ W-1~~~{S2) defined by

for some M > 0 that will be fixed later on.

The map B is well defined by (2.7) and (2.9). It is also bounded,
i.e., the image by B of a bounded set of Wo’p(S2) is a bounded set in

Moreover the inequality (2.1) implies that B is pseudomonotone
[12, Theoreme 3.3.42]. Let us prove that, for M large enough B is coercive,
that is B(u, -> 0 as goes to +00. Using (2.7) and (2.10) we have

We pick any 0  6:  1/c2 and we use now Young’s inequality to evaluate
the term the inequality above to obtain



and since p/(p - r)  ~ + 1 we get

where d(~) and c(e) are some constants depending on ë. Similarly 

~u~l+1l+1 +c-r. Replacing in (2.11) we get

Choose now M > 0 large enough to have Mc5 > 020(6’) + cl. We conclude
that

Whence B is coercive.

All these properties imply [12, Theorem 3.3.42] the surjectivity of B. In
particular, there exists Wo’p(S2) such that B(u, v) = 0, b’ v E 
Thus u is a weak solution of the following problem:

Let us prove that u is a solution of problem (P) i.e., that a ~ u ~ ,Q.
Consider the test function v = (u - /3). E Wo’p(S2). After multiplying in
(2.12) by v we have 

Since /~ is a supersolution of (P) and (u - (3) + is positive it follows that

By combining these two last results we have

which implies that ~u - (3) + = 0, i.e., u  ~3. The proof of u > a runs
similarly. 0



COROLLARY 2.3.- There exists some constant C = 

such that  C for any solution of (P) with a  u  ,Q a.e.

Proof. - The conclusion of the corollary follows easily after multiplying
the equation of (P) by u and using (H2). ~

3. Maximal and minimal solutions of weak type

The main result of this paper is the following theorem.

THEOREM 3.1.- Assume (Hl) and (H2). Then there exist U, V
solutions of (P) such that:

(i~ 
(ii) U is minimal and V is maximal in ~a, /3~.

The proof of [6] of this theorem in the case p = 2 uses the following
Kato’s inequality:

where the inequality has to be interpreted in one of the following senses:

(i) for u E it means

(ii) (weak version) for u E H1(S2) such that .~u E it means

For p ~ 2, we vill prove in the next proposition a generalization of the
weak version of Kato’s inequality. We don’t know if any such result exists
in the literature.

PROPOSITION 3.2. ~et ui, u2 E such that there exist f1,
f2 E satisfying



Let us define

Then

Proof. - Fix any § E ~’o (SZ), ~ > 0. We write

where

Let us take a sequence of functions ~n : ~8 -~ R such that

We now introduce the following sequence of functions:

for x The function qn e since 03BEn E C1(R), 03BE’n C Co(II8) and u1,
u2 ~ W1,p(03A9). It is clear that qn converges pointwise to the characteristic
function ofQi: 

-

Moreover since (I qn I) ~  1 by Lebesgue Theorem of dominated convergence
we have 

_

Besides the function 0  E because qn E n 

and § E Co {S2) . Integrating by parts the above integral we obtain



Hence

since Vqn = 0 on S2 ~ ~~ where

Similarly, for 12 we have

and after integrating by parts it becomes

We have that:

(a) the first two terms on the left hand side of (3.4) (3.6) give at infinity,

by Lebesgue Theorem of dominated convergence;

(b) the sum of the second terms on the left hand side of (3.4)-(3.6) can
be estimated as follows. We replace Vqn = u2)0(ul - ~2)
and we use that ~n > 0, ~ > 0; then it follows from condition (2.1)
that

Finally, adding (3.3), (3.5) and using (3.4)-(3.8) we get, after going to
infinity, 

- - -

and the proof is completed. D



COROLLARY 3.3.- Let ul, u2 E be two subsolutions of (P) and
define u = max{u1, u2}. Then u is a subsolution of (P).

A similar statement holds for the minimum of two supersolutions.

Proof of Corollary 3.3

Condition 3.1 is automatically satisfied. Moreover we have that g(x) =
u(x), a.e. x E ~ and the corollary follows from (3.2). ~

Proof of Theorem 3.1

Let us consider the following set

N = {u E I a(x)  ~(.r) ~ a.e. and u is a solution of (P)} .

We first prove the existence of the maximal solution V. In order to do that,
we show that N satisfies the hypothesis of Zorn’s Lemma. Let be a

completely ordered family of N. Let be a sequence that is cofinal with

respect to the ordering ~ . . By corollary 2.3, C. Then there exists

a subsequence (still denoted un) converging to some u weakly in 
a.e. and strongly in where s is any fixed real number such that

Observe that, since un is increasing, we have

We claim that u is a solution of (P), that is, u EN. In order to prove
the claim it will be enough to show that the sequence un converges strongly
to u in Wo’p~~2). We first observe that the sequence II f (x, un, is

bounded because of the growth condition (H2) and that ~un~ is bounded

as well. Using the L S convergence we deduce that

Then testing (P) (for the solution un) by v = un - u and using (3.9) we get



By (S+) we conclude

By Zorn’s Lemma there exists a maximal element V EN. . We want to prove
now that V is maximal in the sense of Theorem 2.1. For this purpose let

ui be any function of N and put u2 = V in Proposition 3.2. Since

then condition (3.1) is immediately satisfied. By corollary 3.3, u =

max{ul,u2} is a subsolution of (P). We now apply Theorem 2.2 between
( u , ~3 ~. Hence there exists a solution z of (P) such that

Hence z E N . From the inequalities

and the fact that V is maximal in N, we conclude that V = z. Therefore
Ul ~ V as claimed.

The existence of U can be proved in a similar way. D

4. Quasimonotone systems

It is not very hard to extend the corresponding result of Theorem 3.1 for
quasimonotone systems. For sake of simplicity we consider systems of two
equations of the form: 

.

where R are Caratheodory functions, that is:

~ measurable in x 

~ continuous in (sl , s2 , ti ).

We recall that system (S) is quasimonotone if
g(x, s2, tl ) is increasing in s2 E II8 for all fixed x E SZ, s1 E 1I8, tl E 
h( x, s2, t2) is increasing in s1 E Ilg for all fixed x E S~, s2 E t2 E 



When g (resp. h) is a function satisfying a (H3) type condition in u
(resp. v), is increasing in v (resp. u) and it does not depend on ~u (resp.
Vt?), it is possible to prove the existence of maximal and minimal solutions
between a pair of sub and supersolutions using monotone iterations as in
Theorem 2.1

For p = q = 2 maximal and minimal solutions of weak type for

quasimonotone systems has been obtained in [11]. See [11] for references on
this subjet. We give here a generalization of this result to the system (S).

Let us recall some definitions. For simplicity we write X = x

Xo - and II ( u, v)I) - d (u~ v) E Xp.

DEFINITION. - The pair (uo, vo) E X is called a subsolution of (S) if
g(x, uo, Lp~(S2)~ h(x, uo , vo , E and

Similarly we will define supersolutions of (S) reversing all the inequalities
above. By (uo, vo)  v~) we will mean up  u~ and vo  v~ a.e. in S2.

THEOREM 4.1.- Assume that:

(Hl) there exists a subsolution (uo, vo) E X and a supersolution (u°, v~) E
X of (S) with (uo, vo)  vo);

(H2) |g(x,s1,s2,t1) ]  lil(x) + a1|t1|r1, Ih(x,sl,s2,t1)I ]  K2(x) +
a2|t2|r2, b’ sl, s2 E R such that

and for some

Then there exists a maximal solution (U, V) E Xo and a minimal solution
(Z, W) E Xo between (uo, vo) and v~).



Proof. - As in ~11~ we start proving the following result.

1) There exists M > 0 depending on uo, vo, uo, vo, S2, k’i, ai such that
for every subsolution (ic, v) with (uo, vo)  (u, ’v’~  (uo, vo), then there

exists a subsolution (u*, v*) satisfying  (u*, v*)  (uo, vo) and

v*) II  M.

In order to prove 1 ) . consider the following problems:

We then apply Theorem 2.2 to (4.1) taking ~ ~ ~ as the ordered pair
of sub and supersolutions and to (4.2) with the pair ? ~ ~. It turns

out that there exists M = u* C and

solutions of (4.1), (4.2), respectively, with

and

Since ic  u* and v  v* one finds g(x, u*, v, ’Du*)  g(x, u*, v*, and

h(x, i~, v*, ~v*)  h(x, u* v*,’Ov*) and hence (u*, v*) is a subsolution of

(S).

2) Zorn’s lemma.

Consider the set N of (u*, v*) E xa such that there exists a subsolution
(E, ’v’~ of (S) satisfying

We now apply Zorn’s Lemma to N. Take an ordered sequence { {u~,, 
of sub solutions in N. Since II {un,  M there exists a subsequence (still
denoted (un, vn)) such that the subsequence converges to some (u, v) E Xo
weakly in Xo, strongly in LP(Q) x Lq(O) and pointwise a.e. In fact we can
prove that the sequence (un, vn) converges strongly to (u, v) in Xo arguing



as in the proof of Theorem 3.1. One has to write u~ (resp. vn) as a solution
of the auxiliary problem (4.1) (resp. (4.2)) and repeat the proof. Finally
we choose a (sub)sequence such that ~vn) converges pointwise a.e.
in Q.

It is easy to see that (u, v) is a subsolution of (S). This is a straightforward
consequence of the inequality

for any § E Co (S2), ~ > 0 and for any n E N. We can pass to the limit
inside both integrals using the strong convergence in the right hand side and
the continuity of g (jointly with (H2)) in the left hand side. By the result
of 1) there exist (u*, v*) C N with ~o ~ ~ ~ ~ ~ ~B ~ ~ : ~.
Hence the sequence has an upper bound in N. By Zorn’s Lemma, AT has a
maximal element (U, V) in the sense of the ordering.

3) The maximum of two subsolutions in N is a subsolution.

Let (u1, v1), (u2, v2) E N. Call u = u2}, v = max{v1, v2}.
Apply Proposition 3.2 to the functions f1 = g{ ~ , u1, v, and f2 =

9( ’ ~ u2~ v~ ~u2) (resp. fl = h{ ~ , u, v1,’Ov1) and /2 = h{ ~ , u, v2, ~v2))~
It follows that g(x, u, v,’Du) and -0394qv  h(x, u, v, that is,
(u, v) is a subsolution.

4) A maximal element in N is a solution of (S) and it is a maximum.
Let ( U, V) be a maximal element in N . . First we prove that it is a solution

of (S). If this was not the case then, by the result of 1) there would exist
(u*, v*) subsolution of (S) such that:

(i) (U~ ~)  (u*~ v*)
(ii) u*, v* are solutions respectively of (4.1), (4.2), for the pair (U, V).

Since (U, V) is maximal then necessarily (U, V) = (u*, v*) and therefore
(U, V) is a solution of {S).
Now we show that (U, V) is a maximum. Let (u, v) be any solution of

(S) between (uo, vo) and Then trivially {u, v) is a subsolution of

(S) and u, v are solutions respectively of (4.1) and (4.2) for 5 = u and
v = v. Hence (u, v) E N. Using the result of 3) (max~u, U~ V~)
is a subsolution of (S), and by 1) there exists an element (u*, v*) E N
such that (max{u, i7} , , max~v, ~~)  (u*, v*). Then (U, V)  (u*, v*) and
hence U = u*, V = v* which implies (u, v)  (U, V). The proof is now
completed. D



5. Final comments and remarks

Remark 5.1.- We impose the regularity of the domain 0 only to give a
sense to the inequalities defined on the boundary of Q. Inequalities on 8Q
can be defined in a different way as in Kinderlehrer and Stampacchia (see
[6]). This entails only minor changes in the proofs.

Remark 5.2. - The results of Proposition 3.2 and Theorem 3.1 are also
true if we replace Ap by any other operator

satisfying conditions (A1)-(A3) as in [7] and [8] :

(Al) each Ai is a Caratheodory function and there exist co > 0, Iip E
LP (S2) such that

Notice that the key point in the proof in Proposition 3.2 is inequality
(3.8) which will follow from hypothesis (A2). .

Remark 5.3.- In Remark 1 of [6] the authors prove that their result
on maximal weak solution for problem (P) with p = 2 can be extended to
nonlinearities of the form f ( x u, Du) with:

provided a, ,Q belong to and ~2 has a C2-boundary.
For quasilinear problems, the existence of solutions between an ordered

pair of sub and supersolutions a, ,~ E W1~°°(S~2) for nonlinearities of the
form
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for a.e. x a(x)  s  (3(x) and li e has been established by
[3]. However, we can not still assert the existence of maximal and minimal
solutions (see [10, Remark 3.1]).
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