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An Existence Result on
Noncoercive Hemivariational Inequalities(*)

GEORGE DINCA(1), PANAGIOTIS D. PANAGIOTOPOULOS(2)
and GABRIELA POP(1)

Annales de la Faculte des Sciences de Toulouse Vol. VI, nO 4, 1997

R~SUM~. - On donne des resultats concernant l’existence de la solu-
tion des inegalites hemivariationnelles non coercives sur des ensembles
convexes dans un espace hilbertien de dimension infinie. Les demonstra-
tions utilisent essentiellement l’existence de la solution en dimension finie
et certaines techniques de regularisation.

ABSTRACT. - In the present paper nonc0153rcive hemivariational in-
equalities on convex sets are studied. Applying the method of recession
cones using a regularisation procedure and beginning from a finite di-
mensional problem we derive sufficient conditions for the existence of the
solution.

1. Introduction -

The theory of hemivariational inequalities has begun some years ago
with the works of the second author (see [20]) concerning the derivation
of variational expressions for nonconvex nonsmooth energy functions. Such
variational expressions are called hemivariational inequalities and their
derivation is based on the notion of generalized gradient of F. H. Clarke
[7]. For a complete list of references on the subject we refer to [21].

The aim of the present paper is to give an existence result for noncoercive
hemivariational inequalities on convex sets in a real Hilbert space. For

variational inequalities which are noncoercive such results can be found in
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the works of Fichera ([10], [11]), and Lions and Stampacchia [17]. In [2],
Baiocchi, Gastaldi and Tomarelli extend and unify these well-known results.
There is partial overlapping of their results and those contained in Brezis
and Haraux [3] and Brezis and Nirenberg [4]. Some ideas from a paper
of Goeleven [12] will be used in the present paper. Our framework is the
following:

Q is an open bounded subset in V is an infinite dimensional real

Hilbert space with the scalar product ( . , . ) and norm ]] . ]] , such that

V C L2(S2) C V*, , the injection of V in L2(52) being compact; (1)

the duality pairing between V and V* will be denoted by ( ~ , ~ );

is a bilinear continuous form on V with values in R;

K C V is a closed, non-empty convex set ; (3)

i : v -~ ~.~, v) is a linear continuous functional on V ; (4)

,Q E ,Q(~ ~ 0) exist for any / E R and there is ~o E R such that

j is defined by

We consider the functions:

They are increasing and decreasing functions of respectively; therefore,
the limits 0+ exist. We denote them by ,D(~) and _,Q(~) respectively.
Chang [6] has shown that if ,Q E L~ and ,Q(~ ~ 0) exist for every ç E R,
then a locally Lipschitz function j : I~8 -~ R can be determined by simple
integration, i.e., j (~) = fo dt, such that

where (aC j )(~) stands for the generalized gradient of Clarke for j at point
ç (cf. Clarke [7], Aubin [1]).



According to Rockafellar (see [23, p. 62]), we call recession cone of K
(asymptotic cone, according to Bourbaki’s book, [5, p. 125]) the set

(see also Baiocchi, Gastaldi and Tomarelli [2, p. 623]).
This definition is independent of xo . The following results hold:

is a closed convex cone with vertex at the origin; (9)

if ~~ is a cone, then = K; (10)

if 0 ~ K, then K~ ~ K. (11)

An element w E V belongs to if and only if either of the following
conditions is satisfied:

Let T * E ,C ( t~, V*) be the adjoint ofT: :

We denote by

and by

We say that K+ (T, K) is solid if its topological interior is not empty:



Remark 1.1.- Let us assume that N(T, li) ~ f 0} and denote by

Then we get

2) if Ker(T+T*) is finite dimensional, then K+(T, K) = K)}.

Proof
o

_

1) Let xa E (T, K). There exists £ > 0 such that xo + x* E K+ (T, ~i )
for any x* E V* for which  £. Let y E N(T, ~~), y ~ 0 and x1 E V*
be defined as follows:

Since ~x*1~ ~ ~ we get x*0 + x*1 E K+(T, h’) . Consequently , y~ > 0,
which implies .

the last inequality entailing .eg E int { (T, ~~’) } .

2) Next we prove that in case Ker(T + T*) is finite dimensional, the
inclusion

holds. Since C it is enough to show that

int ~ ~i ) ~ is open (or, equivalently V* B int ~ K+ (T, ~1’) ~ is closed).
In order to prove it let (x~) n C V* B int ~ K+ (T, .~’) } be a sequence such

that xn -~ x* in V*. Then, for any n there exists yn e N(T, K),
0, such that (xn, yn ~  0. Let the sequence (n = I E N (T, J{). .

Since Ker(T + T*) is finite dimensional, we can assume (passing to a
subsequence if necessary) that (n 2014~ ( E , ~ ~ ~ ~ ~ = 1. Using
~x~, (n) _ 0, we obviously get {x*, ~~  0, where ( E N(T, Ii), ~ ~ 0,
that is x* E V * B int ~ IZ’+ (T, ~i ) ~ .



DEFINITION 1.1. - We say that T E £(V, V*) is "positive plus" on ~1’ if
the following conditions are fulfilled:

~ >_~~ ;

and

Remark 1.2 (Mironescu, ~18)).- If T E £(V, V*), then

Obviously, only the "only if" part should be proved.
Let x E If x = 0, then (Tz, , x ~ = 0. .

Suppose :c ~ 0 and let xo be any point in Then, for any t > 0,
xo + tx E J{. . Consequently,

Taking the limit as t ~ ~, we further get x~ > 0.

According to this remark, the Definition l.l is equivalent to Goeleven’s
definition [12] where the condition (i) is formulated as x} > 0, d x E
~~ U 

The Definition 1.1 of "positive plus" operators seems to be a technical
one. Note that the classe of "positive plus" operators, basically introduced
by Goeleven in [12], includes the classes of copositive plus matrices (cf.
Lemke [16]), of copositive plus operators (cf. Gowda and Seidman [14])
and also the class of semi coercive operators (cf. Fichera [11]; see also the
concluding remarks of the present paper).

2. The main result

THEOREM 2.1. Suppose that conditions (1)-(5) are satisfied. More-

over, let the following conditions hold true:

(i~ T is positive plus on K;

(it ) h’+(T, is solid;



(iii) the map x --~ x~ is weakly lower semicontinuous;

(iv) every sequence C V such that = 1 and lim infTxn, xn~
= 0 has a subsequence k, such that xnk ~ x in V and x ~ 0.

Then, for every l E K), the solution set of hemivariational
inequality:

is nonempty.

(In (15),

stands for the directional Clarke derivative).

Remark 2.1.- Let us remark first, that hypothesis (iv) in Theorem 2.1
implies that Ker(T + T*) is of finite dimension.

Indeed, in case it were not true, there would exist C Ker(T+ T*)
such that

But {Txn = 0, hence, using the hypothesis (iv), it follows that there

exists a subsequence C such that

which obviously contradicts the previous equation.

Remark 2.2. - From the Remarks 1.1, 2.1 and using the hypothesis (iv)
in the Theorem 2.1 too, it follows that if N(T, h’) ~ ~0~, then

The previously derived result will be systematically used as an argument in
proving the Theorem 2.1.



We will prove first the following intermediate result.

PROPOSITION 2.1. ~et us assume the hypotheses of Theorem ,~.1 to be
satisfied and let ~ E (0,1) be arbitrarily chosen. Then, there is uE E ~~ (not
necessarily unique) such that:

where ,QE is the mollification of ,Q, i. e., ~3~ = with

and

Proof
o

-

Step I. Since K+(T, K) is solid (hypothesis (it)), we get R’+ (T, K) # 0.
o

-

Using the hypothesis £ e T(K) - Ii+(T, Ii), we further infer that there
exists zo e K such that

Step 2. Denote by the family of all finite dimensional subspaces of V
which contain xo. If F E then there is uF E Ii n F such that

For the proof, let J . F -~ F*, defined as follows:

F being endowed with the norm induced from V. We shall show that J is
continuous. Indeed, if un ~ u, then is easily seen that



c being the constant used to express the continuous imbedding of V into

L2(0), and the problem reduces to showing that

But, the injection of V into L2(S2) being continuous, we have

and, consequently, there exists a subsequence C such that

unk "~ ~ a.e. on Q. It is easily seen that for any tl , t2 E we have:

Consequently,

On the other hand, |03B2~(t)| ~ ~03B2~L~(R), for any t ~ R and, from the classical
dominated convergence theorem, it follows that

So, we have the following result: if u~ -~ u, then there exists a

subsequence C such that

It follows from this that

Indeed, if one assumes on the contrary that the above limit is false, then
one easily obtains a contradiction to the result stated above.

For each n E N, let Bn = {u E V n } . As xo E F, for n

sufficiently large, the compact convex set = KnFnBn contains :co. By
using a classical result (see Theorem 3.1 in Kinderlehrer and Stampacchia
[15]) for any such n there is un E Iin such that

that is



We shall show that the sequence is bounded. Suppose to the
contrary, that is unbounded, i.e. (passing to a subsequence if

necessary) --~ oo and let

Passing (if necessary) to a subsequence, we can suppose that

Let us show that ? e N(T, K) = n Ker(T + T*). We show first that
x E K° . According to (13) it is sufhcient to show that for any v E K and

Let v E K and a > 0. For n sufficiently large, we have E ~ 0 , 1 ~ ]
and, by the convexity of ~i ,

that is

Passing to the limit one obtains v + ax E ~i .

As x E and T is positive plus on K, in order to prove that
x E Ker(T + T*) it is sufficient to prove that ~~ = 0.

According to (21) we have

for n sufficiently large.
At this moment we need the following auxiliary result (see the proof of

Lemma 2.1 in Panagiotopoulos [22] or Rauch and McKenna [19]): there are
the constants pi > 0, p2 = which do not depend ofc, such that:



Consequently, one has

By combining (22) and (24) one obtains

Now, divide by in (25) and pass to the limit. One obtains ~~  0

that is, in fact, (Tx, , ~~ = 0 and, consequently, x E Ker(T + T*).
Let us resume: assuming that the sequence is not bounded we

infer the existence of x such that

hold. But this entails a contradiction.

Indeed, the case N(T, K) = {0} is inconsistent with ? E N(T, and

~~x~~ = 1.
If N(T, Ii ) ~ {0} then, from (17) and Remark 2.2, we get

On the other hand by the positivity of T, 0, so that, taking
into account (25) it follows that

Dividing by and passing to the limit one obtains

But, taking into account that ? E Ker(T + T*), we also have

therefore,

which contradicts (26).



The sequence (Un)n with un E n F n Bn and satisfying (21) is,
consequently, bounded. We can suppose (passing to a subsequence if

necessary) that

To conclude the proof for Step 2 we shall show that such an u satisfies

Indeed, let v be an arbitrary element in K n F.

For n sufficiently large, v E Kn = ~i n F n and, consequently,

Taking into account the previous results, we have:

Consequently, passing to the limit in (28), inequality (27) follows.
Let us underline the result obtained above: if F is a finite dimensional

subspace of V such that xo E F, then there exists uj~ E K n F such that
(18) is satisfied.

Step 3. Let F e and

For every F e the set ~~ is (nonempty and) bounded.
Indeed, let us suppose the contrary: there exist un e h, ~ (un ( ~ -~ oo and

F~ D F such that :

By using the same arguments as above, we have:



As x0 ~ Ii n F n F’n for any n, we have, in particular,

Let Xn = Passing to a subsequence, if necessary, we can suppose

We shall prove that x e N(T, = n Ker(T + T*).
We show first that x E .

To do it, let v be an arbitrary element in Ii and a > 0. For n sufficiently
large, we have E [0, 1] and, consequently,

which can also be written as

Taking the weak limit, it follows that v + o;? (being convex and closed,
~1’ is weakly closed), which implies x E 

As T is positive plus on in order to prove that x e Ker(T+ T*), it is
sufficient to show that x~ = .0. To do it, let us divide (31) by 
One obtains:

Taking the sup-limit in this inequality one has:



On the other hand, by using the positivity of T and condition (iii), it follows
that:

therefore, ~~ = 0.
Let us observe that ~ ~ 0. This is a simple consequence of

and hypotesis (iv).
Let us resume: assuming that YF were not bounded, the element x

obtained as above would be such that, simultaneously, ~ ~ 0 and ? E
N(T, ~~). But this entails a contradiction. Indeed, the case N(T, = ~0~
is inconsistent with x E N (T, and ~ ~ 0. If N (T, ~~ ) ~ ~ 0 ~ then, from
(17) and Remark 2.2, we obtain

On the other hand, by the positivity of T, one has

By combining this last inequality with (31) and dividing by one derives:

Passing to the limit in (33) (and taking into the account that operator T is
"weak to weak continuous" ) one obtains:

With the technique used for Step 2 we derive from this the inequality below

which contradicts (32).



Step 4. Now we are able to indicate an element uE E K which satisfies

(16). To do it, we proceed as follows: according to the previous result,
for every F E , V~, is a (nonempty) bounded set contained in ~~ .

Consequently, the weak closure of V~ 
~’ 

is weakly compact and also
contained in K.

Fix Fo E and consider the family {V~F
03C9 
n V~F0

03C9 

( F E (it is a

family of weakly closed subsets contained in the weakly compact set ~’).
Obviously, this family has the finite intersection property. Consequently,

Consider an element u~ E V~F 03C9. We shall show that such an

element satisfies (16).
Indeed, let v and F E such that v E F. Because u~ E ,

there is a sequence (Un) n C V~ such that un ~ Uê. Taking (29) into

account, this implies: there exist Fn E Fn J F such that

In particular,

Because un ~ ue and T is weak to weak continuous,

Moreover, by using hypothesis (iii), it follows that

Finally, we shall show that



Indeed, because the imbedding of V into L~(Q) is compact, we have:

F (passing possibly to a subsequence) un -~ u~ a.e. on Q .

By using estimation (20), it follows that a.e. on Q.

On the other hand

therefore, by using Fatou’s lemma one has:

which is precisely (37).

Passing to the sup-limit in (34), and taking into account (35), (36) and
(37), we obtain (16) and the proof is complete.
Now we are able to give the following proof.

Proof of Theorem 2.1
0

Let f E T(Ii) - li+(T, li~ and let xp E Ii be such that

According to Proposition 2.1, for every 6; E (0,1) the set satisfies

(16)} is nonempty. Moreover, we shall show that

is bounded.



Indeed, if we suppose on the contrary that this family is unbounded, we
have: there exists a sequence C (0,1) and a sequence C K
such that 

~ 

with ~u~n II ~ 00’

By using the estimations (23) again, we easily derive from (38)

In particular,

Let us set xn = We can suppose xn ~ x. By using
arguments like those used for Step 3 in the proof of Proposition 2.1

(inequality (39) replacing (31) this time) one obtains:

But this entails a contradiction. Indeed, the case N(T, ~~) = ~0~ is
inconsistent with x E N(T, .Fi ) and x ~ 0 . If N (T, ~ ~ 0 ~ then, from

0

Txo - f E K) and Remark 2.2, we get .~ , ~~ > 0 which is
inconsistent with the already established inequality (Txo - .~ , x~  0.

Now, the family U = E ~~’ ~ ~ E (0,1), Uê satisfies (16)} being
bounded, there is ~n ~ 0+ and a sequence C U such that

u E .

We shall show that u satisfies ( 15) .
Indeed, let v be an arbitrary element in K. We have:



With the (same) arguments used in order to obtain (35), (36), (37) we can
write:

The essential point consists in showing that for any y E II$,

Since we can suppose (passing, possibly, to a subsequence) 
a.e. on H, for the proof of (44) it is sufficient to show that for any
x E 0 such that -~ u( x) and for any convergent subsequence
y~ = {u~~ {x)) (y - u~n (x)) inequality

holds.

First, we shall show that

belong to (8C j) ~u(x)~ . As a consequence, we shall have:

For the proof, let x E Q, with ~ u(x) and  > 0 be given. There
exists such that, for every n > one has



Consequently,

Therefore

and, passing to the limit 0+, we derive

Analogously, one obtains

Thus,

Now, we are able to prove (45).
If y = u(x), then y - uEn(x) -~ 0. Because for any

t E R and any ~ > 0, it follows that yk -> 0. Thus, (45) is verified.

If y > u(x), then

the last inequality being justified by (46).
For the case y  u(x), a similar procedure can be used (by using the

inf-limit this time). So (44) is proved.
From (43) and (44) it follows that

Finally, passing to the sup-limit in (40) and taking into account (41), (42),
(47), inequality (15) follows.



3. Some comments and remarks

The hypotheses concerning operator T associated to the bilinear form a
are those formulated by Goeleven [12] for the study of variational inequality

In Goeleven [12], both V and !{ are supposed to be separable and the
functional § : V -~ R satisfies the following assumptions

(a) ~ is convex and lower semicontinuous;

(b) ~{au) = a~(u), V a > 0, b’ u E Ii .

In our paper, instead of inequality (48) we consider the hemivariational
inequality (15) and the hypothesis concerning the separability of V and !{
is removed. Consequently, our technique is quite different from that used
by Goeleven in [12].

Note that the assumption on the separability of V and K was deleted
also by Goeleven in [13].

Let us also remark that in [12], sufficient conditions are given, which
guarantee the satisfaction of hypotheses of Theorem 2.1. To the extent that
these conditions concern only operator T, they remain valid in our case.

To complete the picture, we give these conditions (adding some comments
too) in the next.

7.2014 If T E ,C(V, V *) is positive on V, i.e.,

or T is compact, assumption (iii) is satisfied.

II. - If T is positive on V, then T is positive plus on Ii .

III. - Let P be the continuous projector of V onto [Ker(T + T*)~ 1. If
T is semicoercive on h’ U IZ’°°, i.e.,

then T is positive plus on 



It can be proved without difficulties that T is semicoercive on K U 
if and only if T is semicoercive on K:

Obviously, we need to prove only the "~=" part. Let uo E It follows

that u + tuo E V t > 0, VuE K. Using (T(u + tuo), u + tuo~ >
we derive

therefore

IV. - If T is semi coercive on V and dim~Ker T + T*~  oo then

assumption (iv) is satisfied.
Since in Remark 2.1 we showed : hypothesis (iv) =~ dim[KerT + T*] 

oo, consequently, we have the conclusion: if T is semicoercive on V then the

assumption (iv) in Theorem 2.1 holds if and only if dim[Ker T + T**]  oo.

V.- If there exist al > 0, a2 > 0 and a real Hilbert space Z with V

compactly imbedded in Z such that

then the assumption (iv) is satisfied. Notice that, in this case, Ker(T + T*)
is also finite dimensional (indeed, it is easily seen that if condition (49)
holds, then the unit ball in Ker(T + T * ) is compact).

VI (Proposition 3.1 in [12]). - Let C be a closed subset of V. If T is

semicoercive on C and dim ~Ker(T + T* )~  oo, then from every sequence
C C such that ~xn~ = 1 and lim inf Txn, xn ~ = 0, there exists a

subsequence such that w - lim xnk = x in V and x ~ 0.

VII. - If T is symetric (T = T*) then



Indeed,

Consequently, there exists E > 0 such that, for any x * E V* with  6;

one has ~Tx~ -.~+x* , y~ > 0, V y E N(T, K). As (Txo, y) = (T*y, xo~ = 0
0

one deduces that ~-.~ + x* , y~ > 0, V y E N(T, K), that is -~ E k’+ (T, I~).
For the converse implications, similar arguments can be used.

0

VIII. - If (a) Ker(T + T*) = ~o~ or (b) k’°° _ ~o~, then k’+(T, k~) =
V*. Consequently, inequality (15) has a solution for every £ E V*. We
have (a) if, for example, (Tx, x) > 0, V x E V, x 7~ 0 ; ; we have (b) if Ii is
bounded closed convex set.

IX . Let us examine the particular case Ii = V.

Obviously, in this case

and the hypotheses formulated in the Theorem 2.1 become:

(i) T is positive plus on V ~ T is positive on V ((Tu, u~ > 0, V).

For obvious reasons only the part "«" has to be proved.
In other words, we have to prove that, if T is positive on V then

Indeed, let x E V be such that (Tx, x) = 0 and let y be an arbitrary element
of V. Then, for any A > 0, since

we get



Taking the limit as a -~ 0+, we obtain

Since y is an arbitrary element of V, the previously considered inequality
entails ((T + T*)x, y) = 0, that is (T + T*)x = 0.

The argument is somehow a standard one.

The assumption (iii) is implied by the assumption (i): if T is positive on
V then the mapping .c 2014~ (Tx, x) is weakly lower semicontinuous.

Note that

The "«" is straightforward. Moreover, if T is coercive then there exists no
sequences such that ~xn~ = 1 and lim infTxn, xn~ = 0 .

The argument to justify the "~" part can be as follows. Let c =

inf(Tx, x~, hence c > 0. Assuming that c = 0, there exists a sequence
such that = 1 and xn~ - 0.

According to (iv) there is a subsequence C such that

But, using (i) and its outcome (iii) it folows:

hence x~ = 0, that is x E Ker (T + T * ) _ ~ 0 ~ , which is, obviously, a
contradiction.

Now, let us notice that since V ) = V * , the condition £ E
o .

Ii+ (T, K) can be expressed as "for any .~ E V * " . .

Finally, using the previously described developments, we arrive at the
following conclusion.



THEOREM 3.1.- Let a(u, v) = (Tu, v) be a bilinear continuous coercive

form on V and /~ E L°°(II8) such that the conditions (5) hold. Then, for any
~ E V*, the solution set of

where j is defined by = fo dt, V ~ E R, is not empty (to be compared
to the Theorem 2.1, (22J~.
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