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Singular Foliations of Toric Type(*)

MARIA ISABEL TAVARES CAMACHO and

FELIPE CANO(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, n° 1, 1999

Une singularite de type torique est reduite par une suite
d’eclatements combinatoires. Nous presentons ici un algorithme qui
permet de trouver des coordonnees privilegiees. Si la singularite est
de type torique, le polynome de Newton pour ces coordonnees donnera
directement le morphisme de reduction des singularites.

ABSTRACT. - We present here an algorithm to get privilegied coordi-
nates in order both to identify toric type singularities and to describe
explicitly the corresponding toric morphism in terms of the Newton Poly-
gon.

1. Introduction

The desingularization of a germ of singular holomorphic foliation ~’ given
by a 1-form 03C9 = f dx + g dy splits in a natural way into a composition of
local toric morphims. In the case of an analytic branch, each step destroys
a Puiseux Pair. Call Toric Type Singularities the ones corresponding to
a single toric morphism. We present here an algorithm to get privilegied
coordinates in order both to identify Toric Type Singularities and to describe
explicitly the corresponding toric morphism in terms of the Newton Polygon. .

2. Combinatorial blow-ups of C~

Let us recall here the basic language we need about toric morphisms. For
more details, see [1].
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Let Mo denote the set of nonnegative real numbers. A strongly convex
rational polyhedral cone 03C3 ~ R2 is a subset of the type 03C3 = n1R0 + n2R0,

where nj E 2 and u n (-0-) = {0}. The faces r  r are given by
r = riRo + ... + where {rl, ..., rt} C (ni, n2}~ A fan A in R~
is a collection of strongly convex rational polyhedral cones containing the
faces of all its elements and such that the intersections of two elements in

A are faces of each one.

Denote = Then

is a finitely generated additive semigroup in ~~2~ ~ . From a set of generators
..., mp } of Sa we construct the intrinsic algebraic normal variety !7y

given as subset of CP by the monomial equations

where (al = 0. If ... , mp~ are independent
(and hence p  2) we get Ua = . If n2 then U~ is non-singular iff

{n1, n2} is a -basis of Z2, in this case U03C3 is isomorphic to 2.

For o-, r E A, the variety is, in a natural way an open set of both

U~ and UT . We construct by glueing in this way the toric variety T(A). .

If ~‘ C d we have that Sq C Sql. . Then there is an intrinsic morphism

U~~ --~ U~ that can be viewed as a projection. We say that a fan D‘ refines A
if for each ~‘ E D‘ there is e A such that u’ In this case we get an

intrinsic morphism T(0‘) -~ T(A). The refinement D‘ is a subdivision of A
if each u E A is the union of several ~‘ E A’, we note this by D‘ > A. Let W
be a direct automorphism of the fan has an evident definition and

we have a natural isomorphism between and T (~(D)) , compatible
with the morphism induced by a refinement.

Take 03C3 = + and denote by e the convex hull in R2 of

~~ n ~2} ~ ~ {0, 0) } . Let ~n = no, n1, ., .. , ns, ns+l = n‘} be, in its order,
the points of Z2 contained in the compact edges of the boundary of 8.

Each Uj = njR0 is non-singular. Applying this procedure to each
r E D we get a fan A’ which is the coarsest non-singular subdivision of A:
denote it by D‘ » A. The toric morphism T {D‘) - T {D) is the minimal
desingularization of T(D..).

Given a non-singular u = nRo + with n ~ n’, the blowing-up at the

origin of U q corresponds to the subdivision induced by



Consider the standard fan Ast) associated to (0, (1 , 0)Ro and a non-
singular subdivision A’ > Ast. We get a sequence

such that each morphism T(0~) - is a quadratic blowing-up as
follows. Denote by {no = (0, 1), nl, ..., = (1, 0)} the points in Z~
such that 03C3j = njR0 are the two dimensional strongly convex
rational polyhedral cones of A’. Each {ni_1, ni} is a Z-basis of 7G2. Pick

0  j  k + 1, with biggest module. Then na = + and

nj+1} is a Z-basis of 7G2. Define to be the fan obtained from

Ak substituting Ty and by Repeat.

3. Minimal coordinates

Consider a germ of singular holomorphic foliation .~’ over (C2, 0) given
by a 1-form 03C9 = f dy and let D be a normal crossing divisor invariant

Choose adapted coordinates (x, y) such that D C (xy = 0). Hence
D = = 0) for E {0, 1}. Write

The Newton Polygon ~(~’, D; x, y) is defined to be the convex hull of

Associated to the Newton Polygon we get a fan 0{~’, D; x, y) that is a

subdivision of the standard fan Ast just taking the ortogonals of the sides
of V(7, D; x, y). The subdivision 0~(~’, D; x, y) » 0(~’, D; x, y) provides a
toric morphism

that is a sequence of quadratic blow-ups. It is a natural question to ask
under what conditions this morphism desingularizes the foliation.



Let us describe now an algorithm to obtain a set of minimal coordinates

starting with an adapted system of coordinates (x, y). . The coordinates

(x, y) will be called minimal if the algorithm stops at the initial step.

w If D = (xy = 0), the algorithm stops.
~ Assume D = (x = 0). . Denote by ~1, ~2, ..., ~~ the sides of

having slope of the , 1  j  k, where ~~ E ~
and ~j  ~j+1. If k = 0 the algorithm stops. Do a coordinate change
of the type 2/1 = y + such that the side of slope is strictly
shorter or disappears. If it is not possible, try a change of the type
2/1 = y + ~x~2 such that the side of slope -1/~2 is strictly shorter or

disappears; try this until the side ~k. If it is impossible to do that

change in all those cases, the algorithm stops. Once you are allowed to
do a coordinate change, restart the algorithm at the beginning. We get
as limit a (possibly formal) coordinate system that is a minimal one.

~ Assume D = (y = 0). Interchange at the beginning the coordinates

(x, y) and do the precedent procedure.
~ If D = 0. First proceed as in the case D = (x = 0), second change the
order of the obtained coordinates and repeat the procedure.

PROPOSITION. Take (x, y) minimal D. Let : X --~ ((~2 , 0) be

the blow-up at the origin. Put D’ = (D) and let Q1, , Q2 be the points
in X corresponding to the strict transforms of y = 0, respectively x = 0.
Take coordinates (xl = x , yl = y/x), (x2 = x / y, , y2 = y) respectively in

Ql and Q2. Denote by X’ the strict transform of F and assume that 03C0 is

non-dicritical. Then y2), i = 1, 2, are minimal for X’, D’.

Proof. - In the case D = {xy = 0) the result is obvious. Assume

D = (x = 0). The only interesting point is Qi. Let m be the minimum of
the orders of a(x, y) and b(x, y) at the origin. We have that

where a(u, v) = (u + v - m, v). Let us put yl = yi + where 1 and

y’ = y + ~’x’~+1. Since y1 = we also have that

In particular, if we can make shorter the side of ~{~’~, D’; .ci, Y1) of slope
- 1 / r~, we can do the same with the side D; x, y) of slope -1/(77+ 1). .
The case D = (y = 0) is symmetric to the above one. Also the case D = 0
is treated in the same way. The proof is ended.



4. Toric Type Singularities

The choice of coordinates (x, y) in (C2,0) provides a toric structure over
((C2, 0) that identifies it with T(Ast) (we do not pay attention to the fact
that we work in a germified way). We say that a germ of singular foliation
0 over (~2, 0) is of Toric Type iff there is a toric structure over (~2, 0),
given by a choice of coordinates, and a non-singular subdivision A > Ast
such that the toric morphism

desingularizes ~’. That is, all the singularities of the strict transform of ~’
by f are simple singularities in the sense that they have linear part with
two eigenvalues ~1 ~ ~c ~ 0 and a/~c ~ Q+.

We say that :F has a singularity of Toric Type Related to D iff, in addition,
the coordinate system (x, y) is adapted to D and D is maximal between the
normal crossing divisor invariant by .F. Actually, if ~’ has a singularity
of Toric Type, there is always a normal crossings divisor D such that 7
has a singularity of Toric Type Related to D. To see this, note that the
desingularization of F is necessarily a linear chain (the dual graph has a
single branch). Looking at the ends of this chain, we eventually modify our
coordinates in such a way that (xy = 0) contains a maximum of integral
curves.

THEOREM. - Assume that ~’ has a non-dicritical singularity of Toric
Type Related to D. Consider a coordinate system (x, y) adapted to D. Then
the following statements are equivalent.

(1) The toric morphism desingularizes ~.

(,~~ The coordinate system (x, y) is minimal.

In particular, we detect a Toric Type Singularity by choosing first the
finitely many possible divisors and second a minimal system of coordinates.



Proof of the Theorem

Induction on the number k of quadratic blowing-ups corresponding to
.

(1)=~(2) If k = 0, then D; x, y) is the standard fan and hence

~7(~’, D; x, y) has a single vertex and thus (x, y) is minimal. Assume k > 0.
If D = (xy = 0) there is nothing to prove. Consider the case D = (x = 0).
Let us reason by contradiction, assuming that (x, y) is not minimal. Then a
change y’ = y + makes shorter the side of the Newton Polygon of slope
- 1/r~. Consider the following two possible cases: r~ = 1 and r~ > 2.

1, let Q be the point in the exceptional divisor of the first blow-up 03C0
corresponding to y’ = 0. Then Q ~ Qi, where Qi is the point corresponding
to y = 0. The hypothesis that desingularizes implies that Q is either
a non-singular point for the strict transform ~’~ of ~’ or a simple singularity.
In that second possibility, we get an invariant curve I‘~, non-singular and
transversal to the divisor, that projects over a non-singular invariant curve
r transversal to D. This contradicts the maximality of D. To see that Q is

necessarily singular, put (:ci = x, y1 = y~/x). We get that

where a(u, v) = (u + v - m, v). Since has not its longest
possible side of slope -1, we deduce that (0, 0) is not a vertex of

V (~ 7r~ (D); :ci) ~) and thus Q is a singular point of ~.
Consider the case r~ ~ 2. Now Q = Qi. Put (xl = ~, yl = y/x). Then

(xl, yl) is not minimal since the change yl = yl +~~~-1 makes shorter the
side of slope -1/(~-1). Recall that the toric morphism corresponds
to a sequence of subdivisions

where Ai contains the two strongly convex rational polyhedral cones

a~1 = {1, 0)IIBo -f- (1, and 72 = (1, (0, The point Qi is the

origin of the chart corresponding to Denote by 0~ the fans obtained by
taking the strongly convex rational polyhedral cones in ~~ contained in 7i.
Let W be the direct automorphism of;Z2 given by v) = (u - v, v). The
restriction to the first chart around Qi of the toric morphism may

be interpreted as corresponding to the sequence



The fact that

implies by a direct computation that

Now, we apply induction hypothesis to get a contradiction.

The cases D = (y = 0) and D = 0 are similar to the above one.

(2)~(1) If k = 0, then ~(.~’, D; x, y) has a single vertex (s, t). Assume
that the origin P E C2 is a singularity. Then :F is given by

where (a’(0, 0), b~(0, 0)) _ (a, -~) ~ (0, 0). By a blowing-up we get the
same situation with (~ - ~, 2014/~) and (A, -(~ - A)) in the respective origins
of the two charts. If E Q+, in a finite number of steps we have ~ _ ~
and thus a dicritical singularity. Hence P is a simple singularity.

Assume that k > 0. Let respectively Q2 , be the points corresponding
respectively to (y = 0) and (x = 0) after the first blowing-up ~r. Consider
the case D = (xy = 0). Since we have a Toric Type singularity relatively
to D, the points Qi, Q2 are the only possibly non-simple singularities of .~’~
in the exceptional divisor E of ~r. The precedent proposition and the above
arguments allow us to apply induction in Qi and Q2. Consider now the
case D = (x = 0). If all the singularities in E B {Ql,Q2} are simple,
we apply induction as above. Assume that there is a non-simple singularity
Q E E B {3i, Q2}. Then Q is in the strict transform of y’ = y + (x = 0, for
some ~ ~ 0. The fact that we have a Toric Type singularity implies that Ql
is either non-singular or a simple singularity. The second possibility does
not occur, by the maximality of D. Then has the

only vertex (0, 0), where (xl = x, yl = y/x). Since

with a(u, v) = (u + v - m, v), we deduce that the side of slope -1 in
~7(~’, D; x, y) has its lower point of ordinate 0. This implies that
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and = y’/x) also has the single vertex (0, 0).
Hence Q is either a simple singularity or a non-singular point, contradiction.

The cases D = (y = 0) and D = S are similar to the above one. This
ends the proof.
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