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Real deformations and complex topology
of plane curve singularities(*)

NORBERT A’CAMPO(1)

Annales de la Faculte des Sciences de Toulouse Vol. VIII, n° 1, 1999

On associe a l’aide d’une construction hodographique a une
immersion generique et relative d’un nombre fini de copies de 1’intervalle
[0,1] dans le disque unite D un entrelât dans la sphere de dimension 3.
Un part age d’une singularite de courbes planes complexes, dont les
branches locales sont reelles, est une telle immersion. On peut obtenir
le partage en deformant les parametrisations des branches reelles. Le
resultat clef est le theoreme 2, qui amrme que F entrclat d’un partage d’une
singularite de courbes planes complexes est en fait isotope a Fentrelat
local de la singularite. L’algorithme graphique de la section 4 permet de
deduire d’un partage d’une singularite la fibre de Milnor orientee avec
un systeme ordonne de cycles evanescentes. La monodromie geometrique
est le produit ordonne des twists de Dehn droits de ce systeme. Comme
illustration, on calcule la monodromie globale geometrique d’un polynôme
particulier a deux variables ayant trois singularites de deux valeurs
critiques. L’exemple montre comment passer a l’aide d’un seul croisement
de noeud torique itere (2, 3) (2, 3) au noeud torique (4, 7). .

ABSTR.ACT. - We introduce a hodographic construction, which trans-
forms a generic relative immersion of r copies of the interval [ 0, 1 ) ] in ,

the unit disk into a classical link in the three sphere with r components.
For instance, the constuction gives the local link of the plane curve singu-
larity if we apply it to a generic deformation with the maximal possible
number of crossings of the real local parametrizations of branches of the
singularity. Keywords are: plane curve, singularity, divide, monodromy,
knot, link.

( *) Recu le 19 mars 1998, accepte le 15 septembre 1998
~ ) Universitat Basel, Rheinsprung 21, CH-4051 Basel (Suisse)



1. Introduction

The geometric monodromy T of a curve singularity in the complex plane
is a diffeomorphism of a compact surface with boundary (F, 8F) inducing
the identity on the boundary, which is well defined up to isotopy relative
to the boundary. The geometric monodromy of a curve singularity in the
complex plane determines the local topology of the singularity. As element
of the mapping class group of the surface (F, the diffeomorphism T
can be written as a composition of Dehn twists. In Section 3 of this paper,
the geometric monodromy of an isolated plane curve singularity is written
explicitly as a composition of right Dehn twists. In fact, a global graphical
algorithm for the construction of the surface (F, 8F) with a system of simply
closed curves on it is given in Section 4, such that the curves of this system
are the vanishing cycles of a real morsification of the singularity. In Section
5, as an illustration, the global geometric monodromy of the polynomial
y4 - 2y2x3 + ~s - ~7 - 4y~5 ~ which has two critical fibers, is computed.

The germ of a curve singularity in C2 is a finite union of parametrized
local branches bi : ~ -~ C~, 1  i  r. First observe, that without
loss of generality for the local topology, we can assume that the branches
have a real polynomial parameterization. The combinatorial data used to
describe the geometric monodromy of a curve singularity come from generic
real polynomial deformations of the parameterizations of the local branches

C-~C~, 1  ~ r, t e [0, I], such that:

(i) bi o = bi, 1  i  r,
(ii) for some p > 0 the intersection of the union of the branches with the

p-ball B at the singular point of curve in C~ is a representative of
the germ of the curve and B is a Milnor ball for the germ,

(iii) the images of 1  i  r, t E ( 0 , 1 ~, intersect the boundary of
the ball B transversally, 

(iv) the union of the images 1 ~ i  r, has for every t E ( 0 , 1 ~ ]
the maximal possible number of double points in the interior of B.

Such deformations correspond to real morsifications of the defining
equation of the singularity and were used to study the local monodromy in
[AC2], [AC3] and [G-Z]. Real deformations of singularities of plane algebraic
curves with the maximal possible number of double points in the real plane
were discovered by Charlotte Angas Scott ([Sl], [52]).



In Section 6, we start with a connected divide, which defines as explained
in Section 3 a classical link. We will construct a map from the complement
of the link of a connected divide to the circle and prove that this map
is a fibration. This fibration is for a divide of a plane curve singularity a
model for the Milnor fibration of the singularity. The link of most connected
divides are hyperbolic. In a forth coming paper we will study the geometry
of a link of a divide.

We used MAPLE for the drawings of parametrized curves and for the
computation of suitable deformations of the polynomial equations. Of great
help for the investigation of topological changes in families of polynomial
equations is the mathematical software SURF which has been developed by
Stefan Endrass.

2. Real deformations of plane curve singularities

Let f : ~ 2 -~ ~ be the germ at 0 E C 2 of an holomorphic map with
f(0) = 0 and having an isolated singularity S at 0. We are mainly inter-
ested in the study of topological properties of singularities, therefore we can
assume without loss of generality that the germ f is a product of locally ir-
reducible real polynomials. Having chosen a Milnor ball B(o, p) for f there
exists a real polynomial deformation family ft, t E [0, 1 ~, of f such that
for all t the 0-level of ft is transversal to the boundary of the ball B(o, p)
and such that for all t E ] 0, 1 the 0-level of f t has 6 transversal double
points in the interior of the disk D{o, p) := B(o, p) n ll~ 2, where the Milnor
number ~ and the number r of local branches of f satisfy = 26 - r + 1.
In particular, the 0-level of ft, t E ] 0 , 1 ], has in D(0, p) no self tangencies
or triple intersections. It is possible to choose for ft, t E [0, 1 ~, a family
of defining equations for the union of the images of 1  i  r. The
deformation ft, t E [0, 1] is called a real morsification with respect to the
Milnor ball B(0, p) of f. . So, the 0-level of the restriction of ft, t e] 0 , 1 ~, to
D(0, p) is an immersion without self-tangencies and having only transversal
self-intersections of r copies of an interval (see [AC2], [AC3], [G-Z]). The
0-level of the restriction of ft, t E ] 0 , 1 ], to D(0, p) is up to a diffeomor-

phism independent of t, it is called a divide ( "partage" in [AC2]) and it is
shown that for instance the divide determines the homological monodromy
group of the versal deformation of the singularity. Figure 1 represents a
divide for the singularity at 0 E C2 of the curve { ys - x3 ) ( x5 - y3 ) = 0. .



Fig. 1 A divide for (y5 - x3 ) (x5 - y3 = 0.

Remark. - The transversal isotopy class of the divide of a singularity
with real branches is not a topological invariant of the singularity. The

singularities of

have congruent but not transversal isotopic divides. The singularities

are topologically equivalent but can not have congruent divides. The

singularity y3 - x5 admits two divides, which give a model for the smallest
possible transition, according to the mod 4 congruence of V. Arnold [A]
and its celebrated strengthening to a mod 8 congruence of V. A. Rohlin
([Rl], [R2]), of odd ovals to even ovals for projective real M-curves of
even degree owe this remark to Oleg Viro [V]. More precisely, there exist a
polynomial family f S {x, y), s E I18, of polynomials of degree 6, having the
central symmetry f S {x, y) = - f _S (-x, -y) such that the levels fs {x, y) = 0,
~ =4 0, are divides for the singularity fo(x, y) = y3-x5. Moreover, for s E JR,
s ~ 0, the divide y) = 0 has for regions on which the function has the
sign of the parameter s. Therefor, at s = 0 four regions of f S {x, y) = 0
collapse and hence, four ovals of f s {x, y) = {s/2)’~ collapse and change
parity at s = 0 if the exponent E is big and odd.



Fig. 2(a) The divides {x, y) = o.

Fig. 2(b) Four ovals change parity.

In Figure 2(b) are drawn the smoothings of the divides y) = 0
and f+1 (x, y) = 0 of the singularity of fp(x, y) = y3 - x5 at 0. Each of the
smoothings = dbc} n D consists of four ovals and a chord, such
that the ovals lie on the positive, respectively on the negative side, of the
chord. Such a family 18(x, y) is for instance given by:



Problem. - Classify up to transversal isotopy, i.e., isotopy through
immersions with only transversal double and triple point crossings, the

divides for an isolated real plane curve singularity.

3. Complex topology of plane curve singularities

In this section we wish to explain how one can read off from the divide
of a plane curve singularity S the local link L, the Milnor fiber and the
geometric monodromy group of the singularity. In particular, we will give
the geometric monodromy of the singularity explicitly as a product of Dehn
twists.

Let P C D(0, p) be the divide of the singularity f . For a tangent vector
v E TD(0, p) = D(o, p) x R2 of D at the point p E D(o, p), let J(v) E (C 2
be the point p + iv. The Milnor ball B can be viewed as

Observe that



is a closed submanifold of dimension one in the boundary of the Milnor ball
B(0, p). We call L(P) the link of the divide P. Note further that

is an immersed surface in B(0, p) with boundary L(P) having only transver-
sal double point singularities. Let F(P) be the surface obtained from R(P)
by replacing the local links of its singularities by cylinders. The differential
model of those replacements is as follows: let § : ~2 -. R be a smooth bump
function at 0 E ~2; replace the immersed surface {(x, y) E ~2 ~ xy = 0}
by the smooth surface {(x, y) E C2 ~ xy = where r is a

sufficiently small positive real number. We call R(P) the singular and F(P)
the regular ribbon surface of the divide P. The connected, compact surface
F(P) has genus g := 6 - r + 1 and r boundary components. Note, that
g is the number of regions of the divide P. A region of P is a connected
component of the complement of P in D(0, p), which lies in the interior of
D(0, p). For the example drawn in Figure 1, we have r = 2, 6 = 17, g = 16.

The ribbon surface R(P) carries a natural orientation, since parametrized
by an open subset of the tangent space Hence the surface F(P) and
the link L(P) are also naturally oriented. We orient B as a submanifold of
- which is the orientation of B as a submanifold in ~2. .

THEOREM 1. - Let P be the divide for an isolated plane curve singularity
S. The submanifold (F(P), L(P)) is up to isotopy a model for the Milnor
fiber of the singularity S.

Proof. - Choose 0  p-  p such that P n D(0, p-) is still a divide
for the singularity S. Along the divide the singular level Ft,o := ~(x, y) E
B ~ ft(x, y) = 0} is up to order 1 tangent to the immersed surface R(P).
Hence, for

with 0  p’ « p, the intersections R‘(P) := ~B~ n R(P) and :=

n Ft,o are transversal and are regular collar neighbourhoods of the
divide in R(P) and in Ft,o. Therefore the nonsingular level

where ~ ~ R is sufficiently small, contains in its interior := BL n 
which is a diffeomorphic copy of the surface with boundary F(P). Since



and are connected surfaces both with r boundary components and
the intersection forms on the first homology are isomorphic, the difference
Ft,r B is a union of open collar tubular neighbourhoods of the boundary
components of the surface So, the surfaces and F(P)
are diffeomorphic. We conclude by observing that the nonsingular levels

and the Milnor fiber are connected in the local unfolding through
nonsingular levels. D

From this proof it follows also that the local link L(S) of the singularity
S in 88 is cobordant to the submanifold in . The cobordism

is given by the pair (B B B It is clear, that the
pairs L(P)) , and are diffeomorphic. One
can prove even the following result. 

’

THEOREM 2. - Let P be the divide for an isolated plane curve singularity
S. The pairs (8B, L(S)) , where L{S’) is the local link of the singularity ,5‘
and L(P)) are diffeomorphic.
The proof is given in Section 6.

Remark. - The signed planar Dynkin diagram of the divide determines
up to isotopy the divide of the singularity. It follows from Theorem 2, that
the signed planar Dynkin diagram determines geometrically the topology
of the singularity. Using the theorem of Burau and Zariski stating that the
topological type of a plane curve singularity is determined by the mutual
intersection numbers of the branches and the Alexander polynomial of each
branch, the authors Ludwig Balke and Rainer Kaenders [BK] have proved
that the signed Dynkin diagram, without its planar embedding, determines
the topology of the singularity.
We need a combinatorial description of the surface F(P). For a divide P

we define: a vertex of P is double point of P, and an edge of P is the closure
of a connected component of the complement of the vertices in P. Now we
choose an orientation of TIR 2, and a small deformation f of the polynomial
f such that the 0-level of f is the divide P. We call a region of the divide
positive or negative according to the sign of f . We orient the boundaries of
the positive regions such that the outer normal and the oriented tangents
of the boundary agree in this order with the chosen orientation of TIR 2. We
choose a midpoint on each edge, which connects two vertices. The link Pv
of a vertex v is the closure of the connected component of the complement
of the midpoints in P containing the given vertex v.



For each vertex v of P we will construct a piece of surface Fv, such that
those pieces glue together and build F(P). Let Pv be the link of the vertex v.
Call cv, c~ the endpoints of the branches of Pv, which are oriented towards
v, and dv, d~, the endpoints of the branches of Pv, which are oriented away
from v. Thus, cv, c, dv and dv are midpoints or endpoints of the divide
P (Fig. 3) Using an orientation of the divide P we label cv, c~ such that
c~ comes after cv, and we label dv, d~ such that the sector cv, dv is in a

positive region. Then Fv is the surface with boundary and corners drawn
in Figure 4. There are 8 corners and there are 8 boundary components in

Fig. 3 The link Pv .

Fig. 4 A piece of surface Fu .



between the corners, 4 of them will get a marking by cv, c~, dv, dv, which
will determine the gluing with the piece of the next vertex and 4 do not
have a marking. The gluing of the pieces Fv along the marked boundary
components according to the gluing scheme given by the divide P yields the
surface F(P). On the pieces Fv we have drawn oriented curves colored red,
white, and blue. The white curves are simple closed pairwise disjoint curves.
The surface F(P) will be oriented such that the curves taken in the order
red-white-blue have nonnegative intersections. The remaining red curves
glue together and build a red graph on F(P). The remaining blue curves
build a blue graph. After deleting each contractible component of the red
or blue graph, each of the remaining components contains a simple closed
red or blue curve. All together, we have constructed on F(P) a system of J.l
simple closed curves 61 , b~, ... , Sw, which we list by first taking red,
then white and finally blue. We denote by n+ the number of red curves
which is also the number of positive regions, by n. the number of crossing
points and by n- the number of blue which equals the number of negative
regions of the divide P.

Let Di be the right Dehn twist along the curve A model for the

right Dehn twist is the linear action (x, y) ~ (x + y, y) on the cylinder
~ (x, y) E ( 0  y  1 } with as orientation the product of the
natural orientations of the factors. A right Dehn twist around a simply
closed curve 6 on an oriented surface is obtained by embedding the model
as an oriented bicollar neighbourhood of 6 such that 6 and R/Z x {1/2}
of the model match. The local geometric monodromy of the singularity
of x y = 0 is as diffeomorphism a right Dehn twist (see the " Theoreme
Fondamental " of [L, p. 23] and [PS, p. 95]). Using as in [AC2] a local
version of a theorem of Lefschetz, one obtains the following result.

THEOREM 3. - Let P be the divide for an isolated plane curve singularity
S. The Dehn twists Di are generators for the geometric monodromy group
of the unfolding of the singularity S. The product T := ... D2D1
is the local geometric monodromy of the singularity S.. 

4. The singularity D5 and a graphical algorithm in general

We will work out the picture for the singularity D5 with the equation
x(x3 - y2) and the divide given by the deformation (x - s)(x3 + 5sx2 - y2),



Fig. 5 A divide for the singularity D5.

s 6 [0, 1 ~, which is shown for s = 1 in Figure 5. There are one positive
triangular region, one negative region and three crossings.

By gluing three pieces together, one gets the Milnor fiber with a system
of vanishing cycles as depicted in Figure 6.

Fig. 6 Milnor fiber with vanishing cycles for Ds. . 
’

An easy and fast graphical algorithm of visualizing the Milnor fiber with
a system of vanishing cycles directly from the divide is as follows: think the
divide as a road network which has 6 junctions, and replace every junction by
a roundabout, which leads you to a new road network with 48 T-junctions.
Realize now every road section in between two T-junctions by a strip with
a half twist. Do the same for every road section in between aT-junction
and the boundary of the divide. Altogether you will need 66 + r strips. The



core line of the four strips of a roundabout is a white vanishing cycle, the
strips corresponding to boundary edges and corners of a positive or negative
region have as core line a red or blue vanishing cycle.

In Figure 7 is worked out the singularity with two Puiseux pairs and
p = 16, where we used the divide from Figure 9.

We have drawn for convenience in Figure 7 only one red, white, or blue
cycle. We have also indicated the position of the arc a, which will play a
role in the next section.

Fig. 7 Milnor fiber with vanishing cycles for y4 - 2y2x3 + x6 - x7 _ 4yx5.

5. An example of global geometric monodromy

Let b : C 2014~- (C 2 , b(t) := (t6 + t7, t4) be the parametrized curve C having
at b(0) = (0,0) the singularity with two essential Puiseux pairs and with
local link the compound cable knot (2, 3)(2, 3). The polynomial

is the equation of C. The function / : C~ 2014~C has besides 0 the only other
critical value 

, , _ _ _ _ , _ _ __ _ _ _ , _ _ _ _ _

The fiber of 0 has besides its singularity at (0, 0) a nodal singularity at
(-8, -4), which corresponds to the node b(-1 + i) = b(-1 - i) = (-8, -4).



The geometric monodromy of the singularity at (0, 0), which is up to

isotopy piecewise of finite order, is described in [AC1]. The fiber of c

has a nodal singularity at (1014/343, 16 807/79 092). The singularity at
infinity of the curve C is at the point (0 : 1 : 0) and its local equation is
z3 - 2z2x4 + zx6 - x7 - 4zx5, whose singularity is topologically equivalent
to the singularity u3 - v1 with Milnor number 12. The function f has no
critical values coming from infinity. We aim at a description of the global
geometric monodromy of the function f. Working with the distance on C~
given by II (x, y) II 2 := + 4I yl 2, we have that the parametrized curve b is
transversal to the spheres

with center 0 E C2 and radius r > 0. So for 0  r  the intersection

Kr := C n Sr is the local knot in Sr of the singularity at 0 E C~ (Fig. 8),
at r = 82 the knot Kr is singular with one transversal crossing, and for
82  r the knot Kr is the so called knot at infinity of the curve C. By
making one extra total twist in a braid presentation of the knot Kr one gets
the local knot of the singularity at infinity of the projective completion of
the curve C. The crossing at the bottom of Figure 8 flips for r = 82 and
the knot Kr , r > becomes the (4, 7) torus knot.

Fig. . 8 The torus cable knot (2,3)(2,3).



From the above we get the following partial description of the global
geometric monodromy. The typical regular fiber F := f -1 (c/2) is the

interior of the oriented surface obtained as the union of two pieces A and
B, where A is a surface of genus 8 with one boundary component and B
is a cylinder. The pieces are glued together in the following way: in each
boundary component of B there is an arc, which is glued to an arc in the
boundary of A. The interior of A or B can be thought of as a Milnor fiber
of the singularity at 0 or (-8, -4). So, the geometric monodromy around
0 is a diffeomorphism with support in the interior of A and B, given for
instance by a construction as in Section 2. The piece A can be constructed
from the divide in Figure 9.

Fig. 9 The curve (xs(t), ys(t)), s := 1 as divide for the singularity of C.

Clearly, the monodromy in B is a positive Dehn twist around the simple
essential closed curve 617 in B, whereas the monodromy in A is a product
of positive Dehn twists around a system (61, ..., 616) of 16 red, white or
blue curves. The monodromy around the critical point c is a positive Dehn
twist around a simple curve 618, in F, which is the union of two simple arcs
a C A and ,Q C B. . The arcs a and j3 have their endpoints p, q E A n B
in common, and moreover the points p and q lie in different components
of A n B. . The arc /3 cuts the curve 617 transversally in one point. The

arc a intersects the curves (61, ..., 616) transversally in some way. For the
position of the system (617, /3) in B there is up to a diffeomorphism of the
pair (B, A n B) only one possibility. To obtain a complete description of
the global monodromy it remains to describe the position of the system
(61, ... , 616, a) in (A, A n B).
We consider the family with parameter s of parametrized curves with

parameter t:



where T(d, t) is the Chebychev polynomial of degree d. Let

be the equation, monic in y, for the curve ys(t)~, whose real image
is for s = 1 a divide (Fig. 9) for the singularity of C at (0, 0). The 0-level
of fs for s = 1 consists of this divide and an isolated minimum not in one
of its regions, which corresponds to the minimum of the restriction of f to
R~ at (-8,-4). For a small, we call 617,a,s C ~f9 = a} the vanishing cycle
of the local minimum of fs, s = 1, which does not belong to a region. The
curve (xs(t), ys(t)), t s = 7~/24, has 8 nodes, a cusp at t = 
(Fig. 10) and at infinity a singularity with Milnor number 12. We now vary
the parameter s E ~ [ 7~/2/24 2014 r, 1 ] from 1 to 7~/2/24 2014 r for a very small
c->0.

The value of the local minimum, which does not belong to a region,
becomes smaller and by adjusting the parameter a we can keep the cycle

Fig. 10 The curves for s := 7/2/24.



617,a,s in the new region which emerges from the cusp at s = 7~/2/24. Since
the total Milnor number of f s is

it follows that all its singularities have Milnor number 1 for s = 7~/24 - a~.
The vanishing cycle of the node, which appears when deforming the cusp
singularity, will be called 618,s and the vanishing cycle in the region of the
divide of Figure 9, in whose boundary the cusp appeared, will be called
616,s.
We label the vanishing cycles on the regular ribbon surface F- of the

divide of Figure 11 by $i, ..., 615. The cycles 617,a,s, 618,s, 616,s deform
without changing their intersection pattern and 616,s becomes the cycle 616
of the regular ribbon surface F+ of the divide of Figure 9. Observe that the
regular ribbon surface F- of the divide of Figure 11 is naturally a subset of
the regular ribbon surface F+ of the divide of Figure 9. The description of
the position of the system ($i, ... , 616, a) in (A, A n B), for which we are
looking, is the system ($i, ..., 616) on F+, where the relative cycle a is a
simple arc on F+ - F- with endpoints on the boundary of F+ and cutting
the cycle 616 transversally in one point. Observe that F+ - F- is a strip
with core 616 (Fig. 7).

Fig. 11 A divide, which does not come from a singularity.

6. Connected divides and fibered knots.

Proof of Theorem 2

In this section we assume, without loss of generality, that a divide is linear
and orthogonal near its crossing points. For a connected divide P C D(0 p),
let f p : D(0, p) -~ II8 be a generic C°° function, such that P is its 0-level



and that each region has exactly one local maximum or minimum. Such
a function exist for a connected divide and is well defined up to sign and
isotopy. In particular, there are no critical points of saddle type other then
the crossing points of the divide. We assume moreover that the function
fp is quadratic and euclidean in a neighborhood of its critical points, i.e.,
for euclidean coordinates (X,Y) with center at a critical point c of fp we
have in a neighborhood of c the expression fp(X,Y) = fp(c) + XY or
fp(X, Y) = fp (c) + X 2 + Y2. Let x : D(0, p) - ( 0 , 1 ~ be a C°°, positive
function, which evaluates to zero outside of the neighborhoods where fp is
quadratic and to 1 in some smaller neighborhood of the critical points of
fp. Let Bp : 8B(0, p) --~ C be given by

for J(v) = (x, u) E TD(0, p) = D x R2 and ~ ~ R, ~ > 0. Observe that the
Hessian H fp is locally constant in a the neighborhood of the critical points
of fp. The function is C°°. Let : 8B(0, p)~L(P) -r Sl be defined
bv

THEOREM 4. - Let P C D(0, p) be a divide, such that the system of
immersed curves is connected. The link L(P) in

is a fibered link. The map := is for r~ sufficiently small, a fibration
of the complement of L(P) over . Moreover the fiber of the fibration ~rp
is F(P) and the geometric monodromy is the product of Dehn twist as in
Theorem 3.

The map ~rp is compatible with a regular product tubular neighborhood
of L(P) in p). The map xp is a submersion, so, since already a
fibration near L(P), it is a fibration by a theorem of Ehresmann. The

graphical algorithm, see Figure 7, produces in fact, up to a small isotopy of
the image, the projection of the fiber on D{0, p). This projection is
except above the twist of the strips a submersion. The proof of Theorem
4 is given in the forthcoming paper [AC4] on generic immersions of curves
and knots.



Proof of Theorem 2

The oriented fibered links L(S) and L(P) have the same geometric
monodromies according to the Theorem 3 and 4. So, the links L(S) and
L(P) are diffeomorphic. 0

Remark. - Let f (x, y) = 0 be a singularity S, such that written in the
canonical coordinates of the charts of the embedded resolution the branches

of the strict transform have equations of the form u = a, a E M. Let

ft(x, y), t E ~ 0 , 1 ) be a morsification, with its divide Pin D(0, p), obtained
by blowing down generic real linear translates of the strict transforms, as
in [AC2]. We strongly believe that with the use of and [BC2] the
following transversallity property can be obtained, and which we state as a
following problem.

There exists po > 0, such that for all t e [0, 1] and for all p’ E ( 0 , ]
the 0-levels of ft(x, y) in ~ meet transversally the boundary of

It is easy to deduce from this transversallity statement an isotopy between
the links L(S) and L(P).

Remark. - Bernard Perron has given a proof for the triviallity of the
cobordism from L(S) to L(P), which uses the holomorphic convexity of the
balls B(0, p, p’) of the previous remark ~P~.
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