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Dispersive limits in the homogenization
of the wave equation

GRÉGOIRE ALLAIRE (1)

ABSTRACT. - We address the homogenization of a scalar wave equation
with a large potential in a periodic medium (sometime called the Klein-
Gordon équation). Denoting by E the period, the potential is scaled as ~-2.
The homogenized limit depends on the sign of the first cell eigenvalue Ai.
If Àl = 0, then the homogenized problem is a standard wave equation.
If 03BB1 ~ 0, then, upon changing the time scale to focus on large times
of order ~-1, we obtain dispersive homogenized problems, i.e. equations
which are not of the second order in time. If 03BB1  0, the homogenized
equation is parabolic, while for Ai &#x3E; 0, the homogenized equation is of
Schrôdinger type.

RÉSUMÉ. - Nous étudions l’homogénéisation d’une équation scalaire
des ondes avec un fort potentiel dans un milieu périodique (ou équation
de Klein-Gordon). Si l’on désigne par E la période, le potentiel est de
l’ordre de E-2. Le comportement homogénéisé limite dépend du signe de
la première valeur propre 03BB1 du problème de cellule. Si Ai = 0, alors le
problème homogénéisé est une équation des ondes usuelle. Si 03BB1 ~ 0, alors,
sous réserve de changer l’échelle de temps afin d’observer les grands temps
d’ordre E-1, on obtient des limites dispersives, c’est-à-dire des équations
homogénéisées qui ne sont pas du deuxième ordre en temps. Si 03BB1  0,
l’équation homogénéisée est parabolique, tandis que si 03BB1 &#x3E; 0, l’équation
homogénéisée est du type de Schrôdinger.
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1. Introduction

We study the homogenization of a scalar wave equation with a large
potential (the so-called Klein-Gordon equation) and periodically oscillating
coefficients

where Ç2 C R is an open set and T &#x3E; 0 a final time. The potential term in
(1.1), i.e. the zero-order term, is used to model some repelling or attracting
effects like springs attaching an elastic membrane to a fixed support. The
coefficients A(y), c(y) and d(x, y) are real and bounded functions defined
for x e Q and y E TN (the unit torus). More precisely, the entries of
A(y) and c(y) belongs to £00 (TN), while d(x, y) is a Carathéodory function
in L~(03A9; C(yN)). Furthermore, the matrix A(y) is symmetric, uniformly
positive definite, d(x, y)  0 is non-negative while c(y) does not satisfy any
positivity assumption. Throughout this paper we assume that the initial
data are uo E H10(03A9) and u’ E L2(03A9), so there exists a unique solution
u~ E C ([0, T]; Hô (03A9)) n Cl ([0, T]; L2(03A9)).

Of course, if there is no large potential term, namely if c - 0, the ho-
mogenization of (1.1) is classical (see e.g. [5], [6], [7], [14]). When c ~ 0 it is
a more difficult problem of homogenization mixed with singular perturba-
tions. Nevertheless, the parabolic or elliptic version of (1.1), as well as the
corresponding eigenvalue problem, are well understood (see e.g. [2], [3], [4],
[10], [16]). However, the methods of these articles do not apply to the wave
equation (1.1). In order to show the differences, we first describe the main
results and ideas of these previous works in the following parabolic case

Introduce the first eigencouple of the spectral cell problem
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which, by the Krein-Rutman theorem, is simple and satisfies 03C81(y) &#x3E; 0

in TN (recall it is a scalar problem). By standard regularity results, the
coefficients of (1.3) belonging to L~(TN), the eigenfunction 03C81 is at least

continuous, so it is uniformly bounded away from 0 on the compact set TN.
As usual we normalize the eigenfunction by assuming J1fN 03C81(y)2dy = 1.

The first eigenvalue 03BB1 is interpreted as a measure of the balance between
diffusion and reaction caused by the potential term. Then, one can change
the unknown by writing a so-called factorization principle

and check easily after some algebra (see the proof of Lemma 2.1) that the
new unknown ve is a solution of a simpler equation

The new parabolic equation (1.5) is simple to homogenize since it does not
contain any singularly perturbed term, and we thus obtain the following
result.

THEOREM 1.1. - Consider the scalar parabolic problem (1 .2). The new
unknown v~, defined by (1.4), converges weakly in £2 ((0, T); Hô (03A9)) to the

solution v of the following homogenized problem

where d*(x) = TNd(x,y)|03C81|2(y)dy, A* is the classical homogenized ma-
trix of (|03C81|2 A) (see formula (4.13», and v0 is the weak limit in £2(n) of

u0~(x)03C81(x ~).
It is clear from the above brief summary of the parabolic case that the

main idea, namely the factorization principle (1.4), is not going to work in
the hyperbolic case without some improvement. Let us try a naive adap-
tation of this idea to convince the reader. Since (1.1) is of second order in
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time, the analogous time renormalization of the unknown is

where i is the square root of -1 and 03BB1 is possibly imaginary if Ai  0.

After some algebra we obtain that v, is a solution of

There is an additional difficulty in (1.8), compared to (1.5), which is the
very large first-order time derivative. Actually it is not possible to pass to
the limit in (1.8) (or to obtain uniform a priori estimates) because of this
term which scales as ~-1, except if 03BB1 = 0, of course.

Therefore, the only obvious case in the homogenization of the wave equa-
tion (1.1) occurs when ÀI = 0 (it is treated in section 2). The main new
idea to treat the remaining cases 03BB1 ~ 0 is to scale the time variable, i.e.
to look at large times of order E-1. In other words, we replace the original
wave equation (1.1) by the following rescaled version

The homogenization of (1.9) when Ai  0 yields a parabolic limit equatioi
(the imaginary root i cancels out in the factorization principle (1.7)): thi;
case is analyzed in section 3. On the other hand, if Ai &#x3E; 0, the new unknowi
v~, defined by (1.7), is complex-valued and the homogenized limit of (1.9) i;

a Schrôdinger equation. These two limit regimes are called dispersive sinc«
they differ from the usual wave equation. Let us mention that a parabolic
limit was already obtained in the homogenization of a different dampec
wave equation [13].
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Coming back to the scaling of the original wave equation (1.1) our results
can be summarized as follows. The asymptotic behavior of the solution
u~(t, x) of (1.1) is:

1. if À1 = 0, u~(t, x) ~ 03C81 x v(t, x), where v is the solution of an

homogenized wave equation,

2. if 03BB1  0, u~(t, X) e E 03C81(x ~) v(,Et, x), where v is the solution of
an homogenized parabolic equation,

3 . if Ai &#x3E; 0, u~(t, x) ~ ei 03BB1 t ~ t x ~) v (et, x where v is the solution of
an homogenized Schrôdinger equation.

Of course, the two last asymptotic behaviors make sense for large times,
i.e. when t is of order ~-1. Finally, we conclude this introduction by empha-
sizing that our results apply only for purely periodic coefficients A(y) and
c(y). If they also depends on the slow variable x, concentration and local-
ization effects are expected as already obtained for the parabolic problem
in [4].

Notation. - For any function 0(x, y) defined on IaeN x TN, we denote
by 0’ the function ~(x, x ~).

2. Hyperbolic homogenized limit

We first consider the case when the first cell eigenvalue, defined in (1.3),
is 03BB1 = 0. In such a case we homogenize the original wave equation (1.1).
Since the homogenization process is classical, we merely sketch the main
arguments. When Ai = 0, there is no time renormalization and the factor-
ization principle (1.7) reduces to

LEMMA 2.1. - Assume ÀI = 0. If u, is a solution of (1.1), then v
defined by (2. 1), is a solution of .
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Proof. - We briefly sketch the proof since it is by now classical [2],
[3], [4], [16]. To pass from (1.1) to (2.2) it is sufficient to replace u~(t, x)
by v~(t,x)03C81(x/~) and to multiply (1.1) by 03C81(x/~). Then, using equation
(1.3), defining 03C81, and the fact that

yields the equivalence between the two equations. Note also that the same
computation shows that the application u(x) ~ u(x)/03C81(x/~) is linear con-
tinuous in H10(03A9).

THEOREM 2.2. - Assume ÀI = 0 and that the initial data satisfy

Then, v~, solution- of (2.2), converges weakly in £2 ((0, T); Hô (Ç2» to the
solution v of the following homogenized problem

with d* (x) = TN d(x, y)|03C81|2(y) dy and A* is the classical homogenized ma-
trix of (|03C81|2A) (see formula (4.13)).

The proof of Theorem 2.2 is classical [5], [6], so we omit it. Remark that
one can improve the convergence in Theorem 2.2 by introducing so-called
corrector results if the initial data are well-prepared. However, in the general
case, convergence of the energy density can be obtained only by means of
geometric optics, WKB asymptotic expansions or H-measures [5], [8], [9],
[15]. We shall not discuss these issues here.

Remark 2.3. - Theorem 2.2 still holds true if we add to equation (1.1)
a source term f(t, x) E L2 ((0, T) x Q). It yields a source term
(TN 03C81(y)dy) f (t, x) in the homogenized equation (2.4).

3. Parabolic homogenized limit

We now consider the case when the first cell eigenvalue, defined in (1.3),
is negative 03BB1  0. In this case we homogenize the rescaled wave equation
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(1.9). To do so, we perform a time renormalization of the unknown analogous
to (1.7), namely we define

which is still a real-valued function since À1  0. The next lemma gives thE
equation satisfied by the new unknown v,.

LEMMA 3.1. - Assume ÀI  0. If u, is a solution of (1.9), then v,,
defined by (3.1), is a solution of

The proof of Lemma 3.1 is just a simple computation similar to that
in Lemma 2.1, so we safely leave it to the reader. Remark that the time
scaling of (1.9) is precisely chosen such that the first-order time derivative
in (3.2) is of order 1 with respect to E (compare with equation (1.8) in
the introduction). The main advantage of the new problem (3.2) is that its
solution satisfies uniform a priori estimates.

LEMMA 3.2. - Assume that the initial data satisfy the following uniform
bounds

Then the solution of (3.2) satisfies

where C &#x3E; 0 is a constant that does not depend on E.

THEOREM 3.3. - Assume that ÀI  0 and that the initial data satisfy
the a priori estimates (3.3) as well as
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Then v~, solution of (3.2), converges weakly in £2 ((0, T); Hô (03A9)) to the
solution v of the following parabolic equation

with d* (x) = J1fN d(x, y)|03C81|2(y) dy and A* is the classical homogenized ma-
trix of (|03C81|2A).

Remark 3.4. - A special case of initial data satisfving (3.3) and (3.5) is
that of well-prepared initial data, i.e. u0~(x) = 03C81 x ) v0(x) and u1~(x) =
03C81 (x ~) v1(x). In such a case, the initial velocity v1 disappear at the limit
and the factor 1/2 in front of the initial condition for the homogenized prob-
lem is quite surprising. One possible explanation is the existence of an initial
layer in time corresponding to a very fast decay of half of the initial data.
This initial layer would correspond to the alternative time renormalization

which has the opposite sign in the exponential compared to (3.1). Formally,
we would admit as an homogenized limit a backward heat equation which
is ill-posed (so all this reasoning is purely formal).

Remark also that assumption (3.5) is much weaker than the usual as-

sumption (2.3) for the homogenization of the wave equation without large
potential. In particular, it allows for very large initial velocity u1~ (x), of the
order of E-2.

Remark 3.5. - Theorem 3.3 still holds true if we add to equation (1.9)
a source term of the type

It yields a source term f*(t, x) = J1fN f (t, x, y)03C81 (y) dy in the homogenized
equation (3.6).
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Proof of Lemma 3.2. - We multiply equation (3.2) by ~v~ ~t and we

integrate by parts to obtain the usual energy estimate

with

By assumption we have E~(0)  CE-2 so that, upon integrating in time, we
deduce from (3.8) and the fact that d~  0

and

Now, we multiply equation (3.2) by ve to get

From the previous estimates, the assumption on the initial data and the
non-negativeness of d" we deduce

which gives the desired result since by the Krein-Rutman theorem and
standard regularity there exists two positive constants m, M such that
0  m  03C81(y)  M in TN. ~

Proof of Theorem 3.3. - In view of the a priori estimates of Lemma
3.2 there exist a subsequence and limits v(t, x) and v1(t,x,y) such that ve
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converges weakly to v in L2 ((0, T); H10(03A9)) and i7ve two-scale converges to
~xv(t,x) + V’yVI(t,X,y) with V1(t,x,y) E £2 (O,T) x 03A9; H1(TN)) (see [1],
[12] for the notion of two-scale convergence). We define an oscillating test
function 

where 0 and ~1 are smooth test functions defined on [0, T] x 03A9 x yN with
compact support in [0, T[ xn. We multiply (3.2) by ~~ and we integrate by
parts to obtain

The two last terms in (3.9), corresponding to the initial conditions, can be
rewritten in terms of the initial data for (1.9) as

We pass to the limit in (3.9): the first term goes to zero because of esti
mate (3.4), we use two-scale convergence for the third one, and usual weal
convergence for the other ones. Recalling that J1fN |03C81|2 dy = 1 we obtain

Eliminating VI and ~1 in (3.10) gives the usual formula for A* as the homog-
enized matrix of (|03C81|2 A) (see e.g. [1]) and delivers a variational formulation
for the homogenized problem (3.6). By uniqueness of the solution of the ho-
mogenized problem (3.6), we deduce that the entire sequence v, converges
to v. Il
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4. Schrôdinger homogenized limit

We finally consider the case when the first cell eigenvalue, defined in
(1.3), is positive Ai &#x3E; 0. In this case we homogenize the rescaled wave equa-
tion (1.9). Once again we perform a time renormalization of the unknown,
namely we define 

which is now a complex-valued function. The next lemma gives the equatio]
satisfied by the new unknown v~.

LEMMA 4.1. - Assume Ai &#x3E; 0. If u~ is a solution of (1.9), then vE
defined by (4.1), is a solution of

The proof of Lemma 4.1 is again a simple computation similar to thos(
in Lemmas 2.1 and 3.1, so we omit it. Remark that the time scaling o:

(1.9) is precisely chosen such that the first-order time derivative in (4.2’
is of order 1 with respect to E. Notice also that changing the sign of th(
exponential in the time renormalization (4.1) simply amounts to take th(
complex conjugate of the new unknown v~.

The main advantage of the new problem (4.2) is that its solution satisfies
uniform a priori estimates. Note however that they are weaker than the ones
obtained in the previous parabolic case (ÀI  0, see Lemma 3.2).

LEMMA 4.2. Assume that the initial data satisfy the following uniforrr
bounds

Then the solution of (4.2) satisfies

where C &#x3E; 0 is a constant that does not depend on E.
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THEOREM 4.3. - Assume that À1 &#x3E; 0 and that the initial data satisfy
the a priori estimates (4.3) as well as

Then, v~, solution of (4.2), converges weakly in L2((0, T) x Ç2) to the sol7J
tion v of the following Schrödinger equation

with d* (x) = J1fN d(x, y)|03C81|2(y) dy and A* is the classical homogenized ma-
trix of (|03C81|2A).

Remark 4.4. - The convergence of v, in Theorem 4.3 is weaker than
in the previous sections. In particular, it does not allow us to recover the
Dirichlet boundary condition in the homogenized Schrôdinger equation. We
shall need another argument (based on the existence theory for the wave
equation with non-smooth initial data) to obtain the boundary condition.

Remark 4.5. - Theorem 4.3 still holds true if we add to equation (1.9)
a source term of the type

It yields a source term f*(t, x) = fr, f (t, x, y)03C81 (y) dy in the homogenized
equation (4.6).

Proof of Lemma 4.2. - We multiply equation (4.2) by ~v~ ~t, we integrate

by parts and take the real part to obtain the usual energy estimate

with
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By assumption we have E~(0)  CE-2 so that we deduce from (4.7) and the
non-negative character of d’

Now, we multiply equation (4.2) by ce to get

Taking the imaginary part yields

From the previous estimâtes and the assumption on the initial data we
deduce 

which gives the desired result. ~

Proof of Theorem 4.3. - From the a priori estimates of Lemma 4.2,
there exist a subsequence and a limit v(t,x,y) E L2 ((0,T) x 03A9 ; H1(TN))
such that v~ two-scale converges to v(t,x,y) and ~~v~ two-scale converges
to B7 yv(t, x, y) [1], [12]. Since the convergence of v~ is weaker than in the

previous parabolic case (see section 3), the proof is different from that of
Theorem 3.3.

In a first step, we multiply (4.2) by a test function 6 2oe ~2 ~ t, x, x
where 0(t, x, y) is a smooth function defined on [0, T] x 03A9 x TN with compact
support in ]0, T[  03A9. After integrating by parts and because of Lemma 4.2
we obtain 

Passing to the two-scale limit in (4.8) yield
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which, for a.e. (t, x) E (0, T) x 0, is the variational formulation for

By uniqueness of the solution in H1(TN)/R, we deduce that

In a second step, we multiply (4.2) by another test function

where 0 is a smooth test function with compact support in [0, T[  03A9, and
denoting by (ej)1jN the canonical basis of RN, Xj (y) is the unique solutio]
in H1(TN)/R of the cell problem

After integrating by parts (twice in space), we obtain

Let us explain how to pass to the limit in (4.11). For the first term, we notice

that E2 |03C8~1|2 ~v~ ~t, being bounded in L°° 0 T); L2 S2 it converges weakl
in this space to a limit which is necessarily 0 since |03C8~1| 2 v~ is boundec

in the same space. On the other hand ~~~ ~t converges strongly 
to 

at 
ir

L2 ((0, T) x S2), so the first term of (4.11) goes to zero. We can use two-scale
convergence in the second term of (4.11) since, by using equation (4.10), wE
have
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We also use two-scale convergence to pass to the limit in all other terms
and the last one converges thanks to (4.5). Recalling that TN |03C81|2 dy = 1
we obtain

We recognize in the first term of (4.12) the homogenized matrix A* defined
by

Thus, (4.12) is nothing but an ultra-weak variational formulation of the
homogenized problem (4.6) which does not allow to recover variationally
the Dirichlet boundary condition for v..

To obtain the boundary condition we introduce a regularized version of
(4.2) (following a classical trick that can be found, e.g., in [11] and that I
learned from E. Zuazua). Define

where , is the unique solution in H10(03A9) of

Then, upon time integration (4.2) is formally equivalent to

The initial data of (4.16) are less oscillating than those of (4.2). Indeed,
it is easily seen that xe is uniformly bounded in H10(03A9) and that, up to a
subsequence, it converges weakly in H10(03A9) to ~* which is a solution of
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With such smoother initial data, the energy estimates of Lemma 4.2 imply
that we is uniformly bounded in L2 ((0, T) ; Hô (03A9)) and in L°° ((0, T); L2 (ç2».
Thus it is classical to show that, up to a subsequence, w, converges weakly
in these spaces to w which is the unique solution of

By standard regularity results the solution w is smooth enough to differ-
entiate (4.17) with respect to the time variable t and, using the equation
satisfied by x* (which belongs to the domain H10(03A9) n H2(03A9) of the gen-
erator of the semi-group associated to (4.17)), we deduce that ~w ~t is the

solution of the homogenized system (4.6). Since ~w~ ~t = v~, passing to the
limit we obtain that ~w ~t = v in the sense of distributions. In particular, this
implies that v satisfies the Dirichlet boundary condition. By uniqueness of
the solution of (4.17) we also deduce that there was no need to extract
subsequences and that all previous sequences were converging to the same
limits. D
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