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Discrete Löwner evolution (*)

ROBERT O. BAUER (1)

ABSTRACT. - We study a one parameter family of discrete Lôwner
evolutions driven by a random walk on the real line. We show that it con-
verges to the stochastic Lôwner evolution (SLE) under rescaling. We show
that the discrete Lôwner evolution satisfies Markovian-type and symme-
try properties analogous to SLE, and establish a phase transition property
for the discrete Lôwner evolution when the parameter equals four.

RÉSUMÉ. - Nous étudions une famille d’évolution de temps discret des
transformations conforme qui dépend d’une marche aléatoire sur les nom-
bres réels. Nous démontrons que l’évolution stochastique de Lôwner (SLE)
est la limite d’échelle de cette famille. Nous démontrons que l’évolution

en temps discret est Markovien et qu’elle a une propriété de symétrie
comme SLE, et nous établissons une transition de phase pour l’évolution
de temps discret quand le paramètre égal quatre.
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1. Introduction

In this paper we study a discrete version of the stochastic Lôwner evolu-
tion (SLE03BA) introduced by O. Schramm in [18]. Whereas SLE is driven by a
one dimensional Brownian motion, our discrete Lôwner evolution is driven
by a random walk. SLE is a one parameter family of processes of growing
random sets in a domain in the plane. We will only consider chordal SLE
and our discrete version, where the random sets grow in the upper half-plane
from 0 to oo.

It has been shown that, in a sense that can be made precise ([8]), any
random process of growing sets in the plane that satisfies a certain Marko-
vian type property is given by SLEX for some K E [0,~). Since SLE is
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amenable to computations this led to some spectacular calculations of var-
ious quantities long believed out of reach for mathematicians. For example,
in a sequence of papers [9],[10],[11],[12], Lawler, Schramm, and Werner cal-
culated all intersection exponents for Brownian motion in the plane. Many
of these exponents had been predicted by physicists based on non-rigorous
methods from conformal field theory. In particular, Lawler, Schramm, and
Werner confirmed a conjecture of Mandelbrot, that the Brownian frontier
has Hausdorff dimension 4/3. Furthermore, SLE has been shown to be the
scaling limit of various discrete systems, e.g. loop-erased random walk and
the outer boundar y of critical percolation clusters on the triangular lattice,
and is conjectured to give the scaling limit of others, such as the self-avoiding
random walk. To confirm the conjectures the existence of the scaling limit
and the conformal invariance of the scaling limit need to be established, the
latter usually being the main obstacle.

In this paper we study a discrete (in time) approximation of SLE. Instead
of a continuous family of conformal maps {ft}t~[0,~) from the upper half-
plane H into IHI so that ft (H) 2 fs(H) if t  s, we consider a sequence

{f(m)}~m=0 of such maps. The "increments" f m 1 o fm+1 are all of the form

where {S(m)}~m=0 is a random walk on R with centered increments of vari-
ance r,. We show in Theorem 2.10 that the law of {f(m)}~m=0, properly
rescaled, converges weakly to SLE,,. The proof relies on Donsker’s invari-
ance principle and continuity properties of Lbwner’s differential equation,
considered as a map from piecewise continuous curves e to 1-parameter
families of conformal maps f : H - H.

To establish continuity, we first choose a topology on the space of con-
formal maps f : H ~ H. One natural choice is the topology of uniform
convergence on compacts. In fact, in our context, this is equivalent to uni-
form convergence on {z E H : (z) &#x3E; a} for every a E (0, ~). However,
the regularity of the Lôwner equation allows us to choose a stronger topol-
ogy that also takes some of the boundary behavior of f into account. We
introduce this topology in the context of Cauchy transforms of probability
measures in Lemmas 2.2, 2.3, and 2.4.

In Section 3 we study properties of the sequence {f(m)}~m=0. We show
in Theorem 3.1 that if the increments S(m+1)-S(m) have the appropriate
properties, then {f(m)}~m=0 has the same Markovian-type and symmetry
properties as SLE. We call {f(m)}~m=0 a discrete Lôwner evolution with
parameter r, (DLEX), if the increments S(m + 1) - S(m) are centered, in-
dependent and identically distributed random variables with variance r,.
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Next, we study the dependency of the discrete Lôwner evolution on 03BA. In
the paragraphs following Proposition 3.3 we describe, graphically, DLE in
the special case when the increments S(m + 1) - S(m) are Bernoulli ran-
dom variables. The behavior of the omitted set, i.e. the image of H under
f (m), is rather easily understood in terms of the underlying random walk
{S(m)}. In our view this connection is not as apparent in the continuous
case and making it more explicit is one of our motivations for this paper.
In Proposition 3.3 we note the transition from connected to disconnected
complement of the image at K = 4. In Theorem 3.4 we show that Markov
chains (with uncountable state space) naturally associated to DLE have a
transition from transient to recurrent at K = 4. These Markov chains are
the discrete analogues of Bessel processes naturally occurring in the study
of SLE [20].

Finally, we collect in the appendix some facts about monotonic indepen-
dence in noncommutative probability and its relation to the (deterministic)
Lôwner evolution. The impetus to build a discrete Lôwner evolution from
the maps z - a + z - a)2 - 4 came from the preprint [16], which H.
Bercovici had kindly brought to our attention. We would also like to thank
an anonymous referee for bringing V. Beffara’s thesis to our attention, where
essentially the same discrete approximation is introduced, [2, Section 5.3]

2. A discrète approximation of SLE

Denote 03B2(R) the space C([0, ~); R) of continuous paths 03C8 : [0, oo) ~ R
and endow 03B2(R) with the topology of uniform convergence on compact
intervals. Let {Xn}~m=1 be a sequence of independent real-valued random
variables on a probability space (Ç2, F, P), and assume that the Xn’s have
mean-value 0, variance r, &#x3E; 0 and satisfy

Next, for n E Z+, define w ~ 03A9 ~ Sn(·,03C9) ~ 03B2(R) so that Sn(0,03C9) = 0
and, for each m E Z+, Sn(·,w) is linear on the interval [m-1 n, m n] with slope
n1/2Xm(03C9). That is,

and
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for t E (m-1 n, m n ). Finally, let

denote the distribution of 03C9 ~ 03A9 ~ Sn(·, 03C9) ~ 03B2 (R) under P. Then it is well
known, see [19], that pn - Wx as n ~ 00, where Wk is the distribution
of 03C8 ~ 03B2(R) ~ 03BA03C8 E 03B2(R) under Wiener’s measure W on 03B2(R).

Denote H the upper half-plane {z ~ C : F(z) &#x3E; 0}. For z E H, and
03C8 E 03B2(R) consider the chordal Lôwner equation

Then

and

The inequalities imply in particular that for each z E IHI and 03C8 ~ 03B2(R)
the solution is well defined up to a time z) E (0, ~], and that if

03C4(03C8;z)  oo, then limt03C4(03C8;z) F(g(t,03C8;z)) = 0. Let K(t, 03C8) be the closure
of fz E IHI : 03C4(03C8; z)  tl.

PROPOSITION 2.1 ([7]). - For every t E (0, oo) and 1/J E 03B2(R), g(t, 03C8;·)
is a conformal transformation of H/K(t, 03C8) onto 1HI satisfying

Let Mi (R) be the set of Borel probability measures on R and de-
note M01(R) the subset of Borel probability measures with compact sup-
port. if y ~M01(R) let [A03BC, 1 Bm denote the convex closure of supp(03BC). For
J.l, v EMÕ(Iae) let

where

is the Lévy distance between y and v. Then p is a metric on M01(R).
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LEMMA 2.2. (M01(R), 03C1) is a separable metric space.

Proof. It is easy to see that the set of all convex combinations

03A3nk=1 03B1k03B4xk, where n E Z+, {03B1k}nk=1 ~ [0,1] ~ Q with 03A3nk=1 03B1k = 1, and

{xk}nk=1 C Q, is a countable p-dense set in M01(R).

Given J1 ~M1(R), denote G03BC its Cauchy transform

Note that G. is analytic, and that G03BC(z) = G03BC(z). Furthermore, G03BC cannot
be extended analytically beyond CBsupp(03BC). Indeed, if G03BC extends analyti-
cally to x E R then it must extend to a neighborhood (x - 03B4, x + 03B4) for some
03B4 &#x3E; 0. By continuity we then have limy,o s(G(a + ly) ) = 0, uniformly
on compact subsets of (x - 03B4, x + 03B4). But by Stieltjes’ inversion formula [3,
2.20], for any - oo  x  x’  ~

Hence 03BC((x - 5, x + J)) = 0 and x 0 supp(03BC).

Since G03BC(z) ~ 0 for all z E H we may define the reciprocal Cauchy
transform f03BC : H - H by f03BC(z) = 1/G03BC(z).

LEMMA 2.3. 2013 An analytic function f : H ~ H is the reciprocal Cauchy
transform of some compactly supported probability measure J.l on R, if and
only if 

and G = 1 / f extends analytically to C/[-N, N] for some N E N.

Proof. - By [14, Proposition 2.1], f is the reciprocal Cauchy transform
of a probability measure y on R if and only if (2.5) holds. If y has compact
support K C R and f = f03BC, then G = 1/ f extends to C/K. Conversely, if f
satisfies (2.5) and G = 1/ f extends analytically to C/[-N, N], then by [14,
Proposition 2.1], f = fm = 1 / G,, for some M ~M1(R), and then by Stieltjes’
inversion formula supp(03BC) C [-N, N]. D 

Recall that for a domain D C C a function f : D ~ C is univalent if it
is analytic and 1-1. Let
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If f : IHI -i H is univalent, then we may extend f to CBR as a univalent
function by the Schwarz reflection principle. We say f has a univalent ex-
tension to CB[a, b], if f extends as a univalent function to CB[a, b]. Finally,
define A f , B f E R by

whenever the right-hand side is nonempty.

LEMMA 2.4. 2013 If 03BC ~MU, A03BC ~ B03BC and f = f03BC, then [Af, Bf] =
[A03BC, B03BC]. Furthermore, MU is a closed subset of (M10(R),03C1). Finally, if
{03BCn}~n=1 U {03BC} ~MU and f = f03BC, fn = f03BCn, n E Z+, then 03C1(03BCn, 03BC) ~ 0,
as n ~ ~, if and only if fn ~ f uniformly on {z E C : F(z) &#x3E; a} for any
a E (0, ~), and max{|Af 2013 Afn|, |Bf 2013 Bfn|} converges to 0, as n ~ 00.

Proof. 2013 If 03BC E MU and G = G03BC, then it is easy to see that [AG, BG] =
[A03BC,B03BC]. Indeed, since G03BC cannot be extended analytically beyond CBsupp(03BC),
it is clear that [Ac, Be] 2 [A03BC, B03BC]. Furthermore, G((B03BC, ~)) C R+ and
G  (B03BC, ~) is strictly decreasing. Similarly, G((-~, A03BC)) C Iae- and

G  (-~, A03BC) is strictly increasing. Hence [AG, BG] = [A03BC, B03BC]. Finally,
since G does not assume the value zero outside of [AG , BG] , it follows that
f extends as a univalent function to CB[AG, BG]. Now note that f, on a
domain of univalence, can only assume the value zero once. Since AG ~ BG
we get [Af, Bf] = [AG, BG].

For the following statements, we begin by checking that weak conver-
gence of a sequence {03BCn}~n=1 C M1(R) to a probability measure 03BC is equiv-
alent to the uniform convergence G03BCn(z) ~ G03BC(z) on {z E C : F(z) &#x3E; a}
for any a &#x3E; 0. By [14, Theorem 2.5], 03BCn ~ 03BC as n ~ 00, if and only if
there exists y &#x3E; 0 such that

To complete this part assume now that pn - p as n --t oo. Then

Now note that |Gv(z)|  1/F(z) for all z E H, and all v E Mi(R). Hence the
family {Gv, v E Mi (R)} is locally bounded in IHI and it follows from Vitali’s
theorem, [5], that G,,, (z) ~ G03BC(z) uniformly on compacts. Since J-ln ~ J-l
as n ~ oo, for any E &#x3E; 0 there exists N &#x3E; 0 so that SuPn 03BCn(RB[-N, N])  E.
Hence |G03BCn(z)|  1/N + E/a on {z ~ C : F(z) &#x3E; a and 1 z21 | &#x3E; 2N} and it
follows that G03BCn(z) ~ G,(z) uniformly on {z E C : F(z) &#x3E; a}. Since
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uniform (on compacts) limits of univalent functions are either univalent or
constant ([5]), and since G, cannot be constant as G03BC(z) ~ 0 as z ~ oo, it
follows that MU is p-closed in M10(R).

Next, given a compact A C H,

and there is an N E Z+ such that for all n  N, infz~A |G03BCn(z)|  d/2.
Hence, for n  N,

as n ~ 00. Since U~n=1 supp(03BCn) is compact it follows in particular that the
mean values {mn}~n=1 of {03BCn}~n=1 converge to the mean value m of 03BC and
from Taylor’s formula that there exists an N &#x3E; 0 and a function cn(z) such
that sup|z|&#x3E;N supn |cn(z)|  oo and so that

This implies that fn (z) = z - mn + en(z)/z, where supn len(z)1 is uniformly
bounded for 1 z | &#x3E; N’ for some N’ &#x3E; 0. Together with the uniform con-
vergence on compacts this gives the uniform convergence of {fn}~n=1 on
{z ~ C : F(z) &#x3E; a} for a &#x3E; 0. ~

Remark 2.5. - Based on the above proof it is easy to show that

03C1(03BCn, 03BC) ~ 0, as n ~ oc, if and only if for every E &#x3E; 0 there exists an

integer N so that

and

whenever n  N.

Remark 2.6. 2013 Note that f = fil extends as a univalent function to C
if and only if y is a point mass, 1.e. p = 03B4a for some a E R, and then
f (z) = z + a, z ~ C.

Denote E the space of univalent functions f : H ~ H such that f is
the reciprocal Cauchy transform of some y E MU and endow E with the
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metric p’ induced from p, i.e. if f1, f2 ~ 03A3 and fi = f03BC1, f 2 = f03BC2, then
pl (fI, f2) = 03C1(03BC1, 03BC2). That p’ is well-defined is a consequence of Stieltjes’
inversion formula. Let 03B2(03A3) denote the space C([0,~);03A3) of continuous
paths 03A8 : [0, ~) ~ 03A3 with the topology of uniform convergence on compact
intervals induced for example by the metric

Then 03B2(03A3) is a separable metric space. If g(t,03C8;·) are the values of the
solutions of the Lôwner equation (2.1) for fixed (t, 03C8) E [0, oo) x çp (R),
and where z ranges over H/Kt, then it follows from Proposition 2.1 and [1,
Lemma 2] that f - g-l E E. Finally, let L be the map defined by

Then the probability measure Sk ~ L*Wk on 03B2(03A3) is the distribution of a
stochastic Lôwner evolution with parameter k (SLEk).

PROPOSITION 2.7. The sequence {LoSn}~n=1 converges in distribution
to SLEk, i. e.

Proof. - Since (Sn)*P ~ Wk as n ~ oo, it is enough to show that
L : i3(R) -i 03B2(03A3) is continuous. For t E [0, ~), 03C8 E 13 (R) and z E H,
consider the initial value problem

Thei )) and

In particular, the initial value problem has a solution for 0  s  t. Given
03C8, ~ E 03B2(R), let ul = h(v 03C8; z), u2 = h(., p; z), and set

Then
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and it follows from (2.7) that for s E [0, t]

Note also that

Thus, by [4, 10.5.1.1], if n E Z+, then

Since the initial value problem (2.6) describes the reverse flow to the Lôwner
equation (2.1 ), we have f(t, 03C8;·) ~ h(t,03C8;·). Thus, for n E Z+,

Consider now the initial value problem (2.6) with z = x E R and let

By continuity, A(t, 03C8) is connected. In fact, A(t, 03C8) = [Af(t,03C8;·), Bf(t,03C8;·)].
Indeed, it is clear that

and also

Since K(t, 03C8) = H|f(t, 03C8; HBA(t, 03C8)) and IHI n K(t, 03C8) = K(t, 03C8) we have
f(t, 1/J; A(t, 03C8)B[Af(t,03C8;·), Bf(t,03C8;·)]) = 0. It now follows from Lemma 2.8 that
we can make the Hausdorff distance between A(t, 03C8) and A(t, p) as small
as we like by choosing 03C8 close to ~. n

LEMMA 2.8. 2013 The Hausdorff distance between A(t, 03C8) and A(t, ~) is

less or equal à &#x3E; 0 whenever
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Proof. 2013 Let 6 &#x3E; 0 be given. For x, y e A(t, 03C8) we have,

It follows that if for example x &#x3E; y &#x3E; maxs~[0,t] 03C8(t-s) and d(y, A(t, 03C8)) &#x3E; 0,
then mins~[0,t] 1 h (s, 03C8; x) - 03C8(t - s)|  x - y. In particular, d(y, A(t, 03C8))  03B4
implies min,E[O,t] |h(s, 03C8; x) - 03C8(t - s)|  6. We will show that the latter
together with (2.10) implies that x tt A(t, ~). Then

By symmetry we then also have supx~A(t,03C8) d(x, A(t, ~))  03B4.

If (2.10) holds, then |03C8(0)-~(0)|  Ó/3. Since also |H(0,03C8;x)-03C8(t)|03B4,
there exists to E (0, t] such that mins~[0,t0] |h(s,~;x) - ~(t - s)| &#x3E; 0. We

claim that we may choose to = t. For if not, then there exists to  t’  t such
that lims/tf h(s, ~; r) = cp(t - t’). Let u = h(s, 03C8; x) and set v(s, ~; u) =
-2 u-~(t-s). Then

since |h(s, 03C8; x) - ~(t - s)|  2S/3. Furthermore,

and so

Again by [4, 10.5.1.1]

Thus, if to  t, then |h(t0,03C8;x)-03C8(t - t0) |  7 9 03B4, a contradiction. Hence
x ~ A(t,~).
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Remark 2.9. 2013 Since

the above proof together with (2.10) and (2.12) implies that

For t E [0, oo), e E 03B2(R), z E H and n E Z+, consider the initial value
problem hn(0, 03C8; Z) = z and

if 0  s  t and t-s E 1 M, m+1 n) for some m ~ N. Then |(~/~s)hn(s, 03C8; z)| 
2/F(hn(s, 03C8; z)) and 

In particular, the initial value problem has a solution for 0  s  t.

Proposition 2.1 extends to piecewise continuous 03C8 and thus fn(t, 03C8;·) ~
hn(t, 03C8;·) ~ 03A3. Let Ln be the map defined by

We can consider the family of random variables {(Ln o Sn)(m n)}~m=0 as a
random walk on 03A3 as follows. For a E R let rn(a;·) be the conformal map
given by

Then

For n E Z+, w E n, and z E H set Dn (0, w; z ) = z and défine . inductively

if m &#x3E; 0. Then, for every n E Z+ and 03C9 E Q, {Dn(m, 03C9;·)}~m=0 is a family
of conformal maps from H into H and,
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In fact, rn(a; z) is the solution at time t = 1/n of the initial value problen
(8/8s)h(s, a; z) = - 2 / (h(s, a; z) - a), h (0, a; z) = z. Thus rn(a;· ~ 03A3 fo

every a E R, Dn(m,w;.) ~ 03A3 for every m ~ N and cv E Ç2, and finally

By boundary correspondence, Dn (m, w; .) maps the real axis to a finite num-
ber of Jordan arcs. All prime ends are of the first kind and hence Dn (m, 03C9;·)
extends continuously to H, see [13, Theorem 2.21].

THEOREM 2.10. 2013 The sequence {Ln o Sn}~n=1 converges in distribution
to SLEk, i. e.

Proof. - With the notation from above we have

and it follows from (2.13) that for s E [0, t]

where p(n, t; 03C8) ~ supt{|03C8(r) - 03C8(s)|: 0  s  r  t with r - s  -LI is the
modulus of continuity of 03C8. Thus, from [4, 10.5-1-1], if N e Z+, 

Similarly, the proof of Lemma 2.8 extends to show that A(t, 03C8n) ~ A(t, 03C8)
in the Hausdorff distance, as n ~ oo, where 1/Jn is defined by 03C8n(t - s) -
03C8(m/n) if t - s E [m/n, (m + 1)/n), and where we now define A(t, 03C8) as
the convex closure of RB{x E R : mins~[0,t] |h(s,03C8;x) - 03C8(t - 8)1&#x3E; 0}. It
follows that, for each e E 03B2(R), D(fn(·,03C8; .), f(·, 1/J; ·)) ~ 0 as n - 00. In
particular, D(Ln o ,S’n, L o Sn) ~ 0 in probability as n ~ oo and by the
principle of accompanying laws, [19, 3.1.14], and Proposition 2.7 we get
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3. Properties of discrète Lôwner evolution

For all n E Z+,

and

Using

it follows by induction that

Thus to study the families {Dn(m)}~m=0 we mayas well restrict to n = 1.

Writing D, S, r for D1, S1, and ri, respectively, (D(m)}~m=0 is defined
by

and

if m ~ Z+.

THEOREM 3.1.- For (m, n) E N2 such that m  n, and 03C9 En, define
conformal maps H(m, n, VJ; .) : H ~ IHI by

and set

Then the family {(m,n)}~n=m is independent of the family {D(k)}m+1k=0.
Furthermore, if the random variables {Xk}~k=0 are identically distributed,
then the distribution of the random variable w E f2 t---+ il (m, n, w; .) E E
under P is the same as the distribution of w E 03A9 ~ D(n - m, w; .) E E
under P. Finally, if Xk is symmetric for each 03BA ~ N, then, for each m ~ N,
w E f2 t---+ D(m, w;.) ~ E and w E 03A9 ~ x o D(m, w;.) o x E E have the same
distribution under P, where the map X is given by
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Proof. - For the first statement, note that the case n = m is trivial and
consider the case n &#x3E; m. From (3.2) and induction on n it follows that

In particular, for any m E Z+, D (m) is 03A3(X1, ... , ,Xm-1)-measurable. Fur.
thermore, we now get

Applying repeatedly the identity r(a - b; z - b) + b = r(a; z) gives

This implies the first statement because the random variables {Xk}~k=0 are
mutually independent. The expression (3.4) also implies the second state-
ment, under the assumption that the Xk’s are identically distributed. Re-
garding the third statement, note that r(a;·) o ~ = ~ o r(-a;·) and that
lx -1 = x. Thus it follows from (3.3) that

where D(m) is defined as D(m) in (3.2), with -S(m) in place of S(m),
m ~ N. The symmetry of the Xk’s implies the symmetry of the S(m)’s and
so the distributions of w E S2 H D(m, 03C9) E E and w E 03A9 ~ D(m, 03C9) e E
under P are equal. D

Remark 3.2. - The above theorem gives the discrete version of corre-
sponding results for SLE, see [7]. The first statement shows that (D (m)}~m=0
has, up to a shift, independent increments relative to composition of maps,
the second statement shows that the shifted increments are stationary (as-
suming the Xk’s are identically distributed) and the third statement is a
kind of reflection symmetry of D (m) (for symmetric Xk’s) . Note that if we
look at the images of the maps D(m, w; .), then we find that w - D (m, w ; IHI)
and w - ~(D(m, w; H) have the same distribution under P on a suitably
defined space of domains in the upper half-plane, because ~(H) = IHI. Equiv-
alently, the distributions of the "hulls" IHIBD (m; IHI) is invariant under X. This
is the reflection symmetry statement in [7]. In fact, the weak convergence of
the increments and the continuity of the map L imply that the continuous
results for SLE can be deduced directly from Theorem 3.1.



- 447 -

Assume now that {Xn}~n=0 is a sequence of independent and identically
distributed random variables of mean-value 0 and variank k  0 on a

probability space (03A9,F,P). In that case we call the family {D(m)}~m=0 a
discrete Löwner evolution with parameter k (DLEk).

When the Xn’s are Bernoulli random variables, i.e.

then the corresponding discrete Lôwner evolution has a trivial "phase tran-
sition" at k = 4.

PROPOSITION 3.3. Let f D(m)l’ 0 be a discrete Lôwner evolution
with parameter K driven by a sequence of Bernoulli random variables as
above. If k  4, then HBD(m, 03C9; H) is connected in IHI for all w E f2 and
m (E N. If K &#x3E; 4, then IHIBD(m, w ; IHI) is not connected in H, for all cv E Q
and m  2.

Proof. - This follows immediately by considering the composition of
maps r(0;·) o r(k;·). The closure of the complement of the image of H
under this map is connected in H if and only if k  4. D

Graphically, for k  4 the omitted set, i.e. HBD(m, w; H), is a single
tree made up of m curvy branches. The tree grows one branch at each step.
Orient the branches in the direction of the root and label the end-point
closest to the root "bottom" and the other end-point "top". If 0  k  4,
then the (m+1)st branch "branchés off" the mth branch somewhere between
the mth branch’s top and bottom. We call the segment of the mth branch
between the branch-point to the (m + 1)st branch and the top of of the
mth branch the overshoot. For K = 4 the branch-point is at the bottom and
the tree looks like a bushel, all branches emanating from the point z = 0,
while for K = 0 the branch point is at the top and the tree degenerates to
a vertical line segment in the closed upper half-plane beginning at z = 0.
As K decreases from 4 to 0 the branch-point increases from bottom to top.
Using the orientation to wards the root, the (m + 1 )st branch branches off
to the right of the mth branch if Xm &#x3E; 0, and to the left if Xm  0.

If K &#x3E; 4, lHIBD(m, w; H) consists of m branches forming at least min(m, 2)
trees and at most m trees. The latter will be the case for instance if the

driving random walk makes all of its first m - 1 steps in one direction,
while the former picture emerges if the walk changes direction at every step.
Typically, for large m neither will be the case and it would be interesting
for example to calculate the expected number of trees, or the distribution of
the distance of the roots of neighboring trees. For example, by first letting
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the random walk alternate directions for a long time and then stepping only
in one direction for a long time, it is easy to see that roots may be spaced
arbitrarily far apart.

If Xn is centered and of variance r, but not necessarily a Bernoulli ran-
dom variable then the above picture should still be approximately right. Of
course, even for k  4 we may now get several trees. But their number or
spacing should be small as m ~ oo compared to the case when r, &#x3E; 4.

The phase transition for ,S’LE at r, = 4 is the fact that J’C(t) is a simple
curve for k  4, P-a.s., and that it is not a simple curve for r, &#x3E; 4, P-a.s,
[17]. Thus, in the scaling limit, the overshoots disappear, creating a simple
curve if k  4. For K ) 4, the disjoint trees become connected in the scaling
limit (if they are too small, some might also disappear).

We now study a question related to this phase transition following ideas
in [7].

that is

In particular, if we set

then

Note that Y1(m, 03C9;·) = nYn(m,03C9;·) and X£ m Xm/k is centered with
variance 1. For z = x E RB{0} set Y0 = x and Yr,.t = Y1(m,03C9;x). Then
{Ym}~m=0 is a Markov chain satisfying the evolution equation

or equivalently
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THEOREM 3.4. - Suppose that the moment generating function of X’
has a positive radius of convergence. Then the Markov chain {Ym}~m=0 is

-transient if r,  4, and it is recurrent if k  4.

Proof. - It is easy to see that lim supm~~ Ym = +~, P-a.s. Using
Taylor series together with the assumption that the moment generating
function of X’1 has a positive radius of convergence, we see that

Furthermore,

as y ~ oo. Thus, by [6, Theorem 3.2], the result follows. D

The continuous analogoue of the Markov chain {Ym}~m=0 is a Bessel

process of dimension 1 + 4/K. It is well known that Bessel processes are

recurrent for dimension d  2 and transient for d &#x3E; 2. The above result

thus is exactly as expected.

A. Monotonic Independence and Lôwner Map

The following definition is taken from [15]. Let (A, ~) be a C*-probability
space consisting of a unital C*-algebra A and a state 0 over .4. The elements
X of A are called random variables and O(X) their expectation.

DEFINITION A.1. 2013 A family {Xi}i~I C A of random variables on (A, ~)
with totally ordered index set I is said to be monotonically independent with
respect to a state 0 if the following two conditions are satisfied.
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(b) Wheneverim &#x3E;... &#x3E; i1 &#x3E; i, jn &#x3E; ... &#x3E; j1 &#x3E; i, and p,pk,qi E N,
then

THEOREM A.2. - Let Xl, X2, ..., Xn E A be monotonically independent
self-adjoint random variables on (A, ~), in the natural order of {1, 2, ..., ni .
If fXk : H ~ IHI denotes the reciprocal Cauchy transform of the distribution
of Xk, for 1  k  n, then

Define for a pair of probability measures /.1, v on R the monotonic con-
volution A of /.1 and v, denoted by 03BB = /.1  v, as the unique probability
measure A satisfying fA(z) = f03BC(f03BD(z)).

COROLLAY A.3. 2013 For 03C8 E 03B2(R) let f(t, 03C8) = g-1 (t, 03C8) be the solution

to the Lôwner equation (2. 1). For 0  s  t set fs,t = 9s 0 ft. Then fs,t =
f03BCs,t for a unique probability measure /.1s,t, and, for r  s  t,

Similarly, for w E f2 and 0  m  n, H(m, n, cv) is the reciprocal Cauchy
transform of a unique probability measure 03BCm,n , and if 1  m  n, then

Thus {f(t,03C8}:t ~ [0, ~)} and f D (m, 03C9) : m E NI correspond to mono-
tonically independent increment processes in some noncommutative prob-
ability space (A, ~). In fact, the "building blocks" for our discrete Lbwner
evolution, the functions rn (a; z) = a + (z - a)2 - 4/n, are the reciprocal
Cauchy transforms of some well known distributions: the arcsine distribu-
tion supported in (-2/n, 2 / fl) if a = 0, and a deformation of the arcsine
distribution if a ~ 0. Note that the arcsine distribution plays for monotonic
convolution the role the Gaussian distribution plays for "classical convolu-
tion." For example, the monotonic central limit theorem establishes conver-
gence to an arcsine distribution.
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