cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Johannes Sjöstrand
Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations
Annales de la faculté des sciences de Toulouse Sér. 6, 19 no. 2 (2010), p. 277-301, doi: 10.5802/afst.1244
Article PDF | Reviews MR 2674764 | Zbl 1206.35267 | 1 citation in Cedram

Résumé - Abstract

In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds

Bibliography

[1] W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/
[2] W. Bordeaux Montrieux, J. Sjöstrand, Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, Ann. Fac. Sci. Toulouse, to appear. http://arxiv.org/abs/0903.2937 arXiv
[3] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999).  MR 1735654 |  Zbl 0926.35002
[4] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969).  MR 246142 |  Zbl 0181.13504
[5] A. Grigis, J. Sjöstrand, Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994).  MR 1269107 |  Zbl 0804.35001
[6] M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2)(2006), 243–280. Cedram |  MR 2244217 |  Zbl 1131.34057
[7] M. Hager, Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6)(2006), 1035–1064.  MR 2267057 |  Zbl 1115.81032
[8] M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1)(2008), 177–243.  MR 2415321 |  Zbl 1151.35063
[9] L. Hörmander, Fourier integral operators I, Acta Math., 127(1971), 79–183.  MR 388463 |  Zbl 0212.46601
[10] A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3)(2002), 337–362.  MR 1909649 |  Zbl pre01804060
[11] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods and Applications of Analysis, 9(2)(2002), 177-238.  MR 1957486 |  Zbl 1082.35176
[12] D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston, Inc., Boston, MA, 1987.  MR 897108 |  Zbl 0621.35001
[13] R.T. Seeley, Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) pp. 288–307 Amer. Math. Soc., Providence, R.I.  MR 237943 |  Zbl 0159.15504
[14] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr., 221(2001), 95–149.  MR 1806367 |  Zbl 0979.35109
[15] J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations, Annales Fac. Sci. Toulouse, 18(4)(2009), 739–795. Cedram |  MR 2590387 |  Zbl pre05663022
[16] J. Sjöstrand, M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3)(2007), 381-459. Article |  MR 2309150 |  Zbl pre05154881
[17] J. Sjöstrand, M. Zworski, Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7)(2007), 2095–2141. Cedram |  MR 2394537 |  Zbl 1140.15009
[18] J. Wunsch, M. Zworski, The FBI transform on compact $C^\infty $ manifolds, Trans. A.M.S., 353(3)(2001), 1151–1167.  MR 1804416 |  Zbl 0974.35005
Search for an article
Search within the site
top