cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article
Xavier Buff; Adam L. Epstein; Sarah Koch; Daniel Meyer; Kevin Pilgrim; Mary Rees; Tan Lei
Questions about Polynomial Matings
Annales de la faculté des sciences de Toulouse Sér. 6, 21 no. S5: Numéro Spécial à l’occasion du “Workshop on polynomial matings” 8-11 juin 2011, Toulouse (2012), p. 1149-1176, doi: 10.5802/afst.1365
Article PDF | Reviews MR 3088270 | Zbl 06167104

Résumé - Abstract

We survey known results about polynomial mating, and pose some open problems.

Bibliography

[1] Aspenberg (M.) & Yampolsky (M.).— Mating non-renormalizable quadratic polynomials, Commun. Math. Phys. 287, p. 1-40 (2009).  MR 2480740 |  Zbl 1187.37065
[2] Brock (J.), Canary (R.), and Minsky (Y.).— The classification of Kleinian surface groups II: the ending lamination conjecture, To appear, Annals of Mathematics.  MR 2925381 |  Zbl pre06074012
[3] Buff (X.), Epstein (A.L.) & Koch (S.).— Twisted matings and equipotential gluing, in this volume.
[4] Blé (G.) & Valdez (R.).— Mating a Siegel disk with the Julia set of a real quadratic polynomial, Conform. Geom. Dyn. 10, p. 257-284 (electronic) (2006).  MR 2261051 |  Zbl 1185.37104
[5] Bers (L.).— Simultaneous uniformization, Bull. Amer. Math. Soc. 66, p. 94-97 (1960).  MR 111834 |  Zbl 0090.05101
[6] Bullett (S.).— Matings in holomorphic dynamics, in Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser. 368, p. 88-119. Cambridge Univ. Press, Cambridge (2010).  MR 2665006 |  Zbl 1206.30002
[7] Cannon (J.) and Thurston (W.).— Group invariant Peano curves, Geometry and Topology 11, p. 1315-1355 (2007).  MR 2326947 |  Zbl 1136.57009
[8] Chéritat (A.).— Tan Lei and Shishikura’s example of non-mateable degree $3$ polynomials without a Levy cycle, in this volume.
[9] Douady (A.) & Hubbard (J.H.).— A Proof of Thurston’s characterization of rational functions, Acta. Math. 171, p. 263-297 (1993).  MR 1251582 |  Zbl 0806.30027
[10] Dudko (D.).— Matings with laminations, arXiv:1112.4780
[11] Epstein (A.).— Quadratic mating discontinuity, manuscript (2012).
[12] Exall (F.).— Rational maps represented by both rabbit and aeroplane matings, PhD thesis, University of Liverpool (2011).
[13] Hruska Boyd (S.).— The Medusa algorithm for polynomial matings, arXiv:1102.5047.
[14] Hubbard (J.).— Matings and the other side of the dictionary, in this volume.
[15] Hubbard (J.).— Preface, in The Mandelbrot set, Theme and Variations, London Math. Soc. Lecture Note Series 274, p. xiii-xx. Cambridge University Press (2000).  MR 1765081 |  Zbl 1107.37304
[16] Haïssinsky (P.) & Tan (L.).— Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181, p. 143-188.  MR 2070668 |  Zbl 1048.37045
[17] Kameyama (A.).— On Julia sets of postcritically finite branched coverings. II. S1-parametrization of Julia sets. J. Math. Soc. Japan 55, p. 455-468 (2003).  MR 1961296 |  Zbl 1162.37319
[18] Kiwi (J.) & Rees (M.).— Counting hyperbolic components, submitted to the London Mathematical Society.
[19] Luo (J.).— Combinatorics and holomorphic dynamics: Captures, matings, Newton’s method, Ph.D. Thesis, Cornell University (1995).  MR 2691795
[20] Minsky (Y.).— On Thurston’s ending lamination conjecture, in Low-dimensional topology (Knoxville, TN, 1994), Conf. Proc. Lecture Notes Geom. Topology, III, p. 109-122. Int. Press, Cambridge, MA (1994).  MR 1316176 |  Zbl 0846.57010
[21] Mashanova (I.) & Timorin (V.).— Captures, matings, and regulings, arxiv:1111.5696.
[24] Meyer (D.).— Expanding Thurston maps as quotients, http://arxiv.org/abs/0910.2003.
[25] Meyer (D.).— Invariant Peano curves of expanding Thurston maps, to appear, Acta. Math., http://arxiv.org/abs/0907.1536.
[26] Meyer (D.).— Unmating of rational maps, sufficient criteria and examples, arXiv:1110.6784, (2011), to appear in the Proc. to Milnor’s 80th birthday.
[27] Meyer (D.) & Petersen (C.).— On the notions of matings, in this volume.
[28] Milnor (J.).— Pasting together Julia sets; a worked out example of mating, Experimental Math 13 p. 55-92 (2004).  MR 2065568 |  Zbl 1115.37051
[29] Milnor (J.) and Tan (L.).— Remarks on quadratic rational maps (with an appendix by Tan Lei), Experimental Math 2, p. 37-83 (1993).  MR 1246482 |  Zbl 0922.58062
[30] Mj (M.).— Cannon-Thurston maps for surface groups II: split geometry and the Minsky model, http://lists.rkmvu.ac.in/intro/academics/matsc_website/mahan/split.pdf, preprint; accessed June 11 (2012).
[31] Mj (M.).— Cannon-Thurston maps for surface groups, http://arxiv.org/pdf/math.GT/0607509.pdf, preprint.
[32] Petersen (C.).— No elliptic limits for quadratic rational maps, Ergodic Theory Dynam. Systems 19, p. 127-141 (1999).  MR 1676926 |  Zbl 0921.30019
[33] Rees (M.).— Realization of matings of polynomials of rational maps of degree two, Manuscript (1986).
[34] Rees (M.).— Components of degree two hyperbolic rational maps, Invent. Math., 100, p. 357-382 (1990).  MR 1047139 |  Zbl 0712.30022
[35] Rees (M.).— A partial description of parameter space of rational maps of degree two: part I, Acta Math., 168 p. 11-87 (1992).  MR 1149864 |  Zbl 0774.58035
[36] Rees (M.).— Multiple equivalent matings with the aeroplane polynomial, Erg. Th. and Dyn. Sys., 30, p. 1239-1257 (2010).  MR 2669420 |  Zbl pre05772361
[37] Sharland (T.).— Rational Maps with Clustering and the Mating of Polynomials, PhD thesis, Warwick (2010).
[38] Sharland (T.).— Constructing rational maps with cluster points using the mating operation, Preprint (2011).
[39] Shishikura (M.).— On a theorem of M. Rees for matings of polynomials, London Math. Soc. Lecture Note Ser., 274. CMP 2000:14.  MR 1765095 |  Zbl 1062.37039
[40] Shishikura (M.) & Tan (L.).— A family of cubic rational maps and matings of cubic polynomials, Experiment. Math. 9, p. 29-53 (2000).  MR 1758798 |  Zbl 0969.37020
[41] Tan (L.).— Branched coverings and cubic Newton maps, Fund. Math. 154, p. 207-260 (1997).  MR 1475866 |  Zbl 0903.58029
[42] Tan (L.).— Matings of quadratic polynomials, Erg. Th. and Dyn. Sys. 12, p. 589-620 (1992).  MR 1182664 |  Zbl 0756.58024
[43] Tan (L.).— On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. 35, p. 353-370 (2002). Numdam |  MR 1914001 |  Zbl 1041.37022
[44] Wittner (B.).— On the bifurcation loci of rational maps of degree two, Ph.D. thesis, Cornell University (1988).  MR 2636558
[45] Yampolsky (M.) & Zakeri (S.).— Mating Siegel quadratic polynomials, Journ. of the A.M.S., vol 14-1, p. 25-78 (2000).  MR 1800348 |  Zbl 1050.37022
[46] Zhang (G.).— All David type Siegel disks of polynomial maps are Jordan domains, manuscript (2009).
Search for an article
Search within the site
top