cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Thibaut Delcroix
Les groupes de Burger-Mozes ne sont pas kählériens
Annales de la faculté des sciences de Toulouse Sér. 6, 23 no. 1 (2014), p. 115-127, doi: 10.5802/afst.1399
Article PDF | Reviews MR 3204733 | Zbl 1290.32017

Résumé - Abstract

Burger and Mozes constructed examples of infinite simple groups which are lattices in the group of automorphisms of a cubical building. We show that there can be no morphism with finitely generated kernel from a Kähler group to one of these groups. We obtain as a consequence that these groups are not Kähler.

Bibliography

[1] Amorós (J.), Burger (M.), Corlette (K.), Kotschick (D.), and Toledo (D.).— Fundamental groups of compact Kähler manifolds, volume 44 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1996).  Zbl 0849.32006
[2] Burger (M.), Mozes (S.).— Lattices in product of trees. Inst. Hautes Études Sci. Publ. Math., (92) p. 151-194 (2001), (2000).  MR 1839489 |  Zbl 1007.22013
[3] Campana (F.).— Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes. J. Inst. Math. Jussieu, 10(4) p. 809-934 (2011).  MR 2831280 |  Zbl 1236.14039
[4] Corlette (K.), Simpson (C.).— On the classification of rank-two representations of quasiprojective fundamental groups. Compos. Math., 144(5) p. 1271-1331 (2008).  MR 2457528 |  Zbl 1155.58006
[5] Delzant (T.), Py (P.).— Kähler groups, real hyperbolic spaces and the Cremona group. Compos. Math., 148(1) p. 153-184 (2012).  MR 2881312 |  Zbl pre06007113
[6] Greenberg (L.).— Discrete groups of motions. Canad. J. Math., 12 p. 415-426 (1960).  MR 115130 |  Zbl 0096.02102
[7] Griffiths (H. B.).— The fundamental group of a surface, and a theorem of Schreier. Acta Math., 110 p. 1-17 (1963).  MR 153832 |  Zbl 0119.18902
[8] Gromov (M.l), Schoen (R.).— Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math., (76) p. 165-246 (1992). Numdam |  MR 1215595 |  Zbl 0896.58024
[9] Korevaar (N.), Schoen (R.).— Sobolev spaces and harmonic maps into metric space targets. Comm. Anal. Geom., 1 p. 561-659 (1993).  MR 1266480 |  Zbl 0862.58004
[10] Korevaar (N.), Schoen (R.).— Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom., 5(2) p. 333-387 (1997).  MR 1483983 |  Zbl 0908.58007
[11] Napier (T.), Ramachandran (M.).— Filtered ends, proper holomorphic mappings of Kähler manifolds to Riemann surfaces, and Kähler groups. Geom. Funct. Anal., 17(5) p. 1621-1654 (2008).  MR 2377498 |  Zbl 1144.32017
[12] Pays (I.), Valette (A.).— Sous-groupes libres dans les groupes d’automorphismes d’arbres. Enseign. Math. (2), 37(1-2) p. 151-174 (1991).  MR 1115748 |  Zbl 0744.20024
[13] Py (P.).— Coxeter groups and kähler groups. Math. Proc. Cambridge Philo. Soc., 155(3) p. 557-566 (2013).  MR 3118420
[14] Serre (J.-P.).— Arbres, amalgames, SL2. Société Mathématique de France, Paris, 1977. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.  MR 476875 |  Zbl 0369.20013
[15] Simpson (C.).— Lefschetz theorems for the integral leaves of a holomorphic one-form. Compositio Math., 87(1) p. 99-113 (1993). Numdam |  MR 1219454 |  Zbl 0802.58004
[16] Stein (K.).— On factorization of holomorphic mappings. In Proc. Conf. Complex Analysis (Minneapolis, 1964), pages 1-7. Springer, Berlin (1965).  MR 178161 |  Zbl 0151.09901
[17] Sun (X.).— Regularity of harmonic maps to trees. Amer. J. Math., 125(4) p. 737-771 (2003).  MR 1993740 |  Zbl 1043.58007
Search for an article
Search within the site
top