cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Graham Denham
Toric and tropical compactifications of hyperplane complements
Annales de la faculté des sciences de Toulouse Sér. 6, 23 no. 2: Numéro Spécial à l’occasion de la conférence Arrangements in Pyrénées, Pau 11-15 juin 2012 (2014), p. 297-333, doi: 10.5802/afst.1408
Article PDF | Reviews MR 3205595 | Zbl 06297894

Résumé - Abstract

These lecture notes survey and compare various compactifications of complex hyperplane arrangement complements. In particular, we review the Gel$^{\prime }$fand-MacPherson construction, Kapranov’s visible contours compactification, and De Concini and Procesi’s wonderful compactification. We explain how these constructions are unified by some ideas from the modern origins of tropical geometry.

Bibliography

[1] Ardila (F.), Benedetti (C.), Doker (J.).— Matroid polytopes and their volumes, Discrete Comput. Geom. 43, no. 4, p. 841-854 (2010).  MR 2610473 |  Zbl 1204.52016
[2] Ardila (F.),  Klivans (C. J).— The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96, no. 1, p. 38-49 (2006).  MR 2185977 |  Zbl 1082.05021
[3] Blasiak (J.).— The toric ideal of a graphic matroid is generated by quadrics, Combinatorica 28, no. 3, p. 283-297 (2008).  MR 2433002 |  Zbl 1212.05030
[4] Cohen (D. C.), Denham (G.), Falk (M. J.), Schenck (H. K.), Suciu (A. I.), Terao (H.), Yuzvinsky (S.).— Complex arrangements: algebra, geometry, topology, in preparation.
[5] Cohen (D. C.), Denham (G.), Falk (M. J.), Varchenko (A.).— Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63, no. 5, p. 1038-1057 (2011).  MR 2866070 |  Zbl 1228.32028
[6] Catanese (F.), Hoşten (S.), Khetan (A.), Sturmfels (B.).— The maximum likelihood degree, Amer. J. Math. 128, no. 3, p. 671-697 (2006).  MR 2230921 |  Zbl 1123.13019
[7] Cox (D. A.), Little (J. B.), Schenck (H. K.).— Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI (2011).  MR 2810322 |  Zbl 1223.14001
[8] De Concini (C.), Procesi (C.).— Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1, no. 3, p. 459-494 (1995).  MR 1366622 |  Zbl 0842.14038
[9] Delucchi (E.), Dlugosch (M.).— Bergman complexes of lattice path matroids, arXiv:1207.4700. 5.2
[10] Denham (G.), Garrousian (M.), Schulze (M.).— A geometric deletion-restriction formula, Adv. Math. 230, no. 4-6, p. 1979-1994 (2012).  MR 2927361 |  Zbl pre06060960
[11] Denham (G.), Garrousian (M.), Tohăneanu (Ş.).— Modular decomposition of the Orlik-Terao algebra of a hyperplane arrangement, Ann. Combin., to appear, arXiv:1211.4562. 5.1.  MR 1771613
[12] Feichtner (E. M.).— De Concini-Procesi wonderful arrangement models: a discrete geometer’s point of view, Combinatorial and computational geometry, MSRI Publ., vol. 52, Cambridge Univ. Press, Cambridge, p. 333-360 (2005).  MR 2178326 |  Zbl 1120.52009
[13] Feichtner (E. M.), Kozlov (D. N.).— Incidence combinatorics of resolutions, Selecta Math. (N.S.) 10, no. 1, p. 37-60 (2004).  MR 2061222 |  Zbl 1068.06004
[14] Feichtner (E. M.), Müller (I.).— On the topology of nested set complexes, Proc. Amer. Math. Soc. 133, no. 4, p. 999-1006 (2005) (electronic).  MR 2117200 |  Zbl 1053.05125
[15] Feichtner (E. M.), Sturmfels (B.).— Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.) 62, no. 4, p. 437-468 (2005).  MR 2191630 |  Zbl 1092.52006
[16] Feichtner (E. M.), Yuzvinsky (S.).— Chow rings of toric varieties defined by atomic lattices, Invent. Math. 155, no. 3, p. 515-536 (2004).  MR 2038195 |  Zbl 1083.14059
[17] Fulton (W.), MacPherson (R. D.).— A compactification of configuration spaces, Ann. of Math. (2) 139, no. 1, p. 183-225 (1994).  MR 1259368 |  Zbl 0820.14037
[18] Gel$^{\prime }$fand (I. M.), Goresky (M.), MacPherson (R. D.), Serganova (V. V.). — Combinatorial geometries, convex polyhedra, and Schubert cells, Adv. in Math. 63, no. 3, p. 301-316 (1987).  MR 877789 |  Zbl 0622.57014
[19] Gel$^{\prime }$fand (I. M.), Kapranov (M. M.), Zelevinsky (A. V.).— Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, (1994).  MR 1264417 |  Zbl 1138.14001
[20] Gel$^{\prime }$fand (I. M.), MacPherson (R. D.).— Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math. 44, no. 3, p. 279-312 (1982).  MR 658730 |  Zbl 0504.57021
[21] Grayson (D.), Stillman (M.).— Macaulay2–a software system for algebraic geometry and commutative algebra, available at http://www.math.uiuc.edu/Macaulay2.
[23] Gaiffi (G.), Serventi (M.).— Families of building sets and regular wonderful models, European Jornal of Combinatorics, 36, p. 17-38 (2014).  MR 3131872
[24] Hacking (P.).— The homology of tropical varieties, Collect. Math. 59, no. 3, p. 263-273 (2008).  MR 2452307 |  Zbl 1198.14059
[25] Horiuchi (H.), Terao (H.).— The Poincaré series of the algebra of rational functions which are regular outside hyperplanes, J. Algebra 266, no. 1, p. 169-179 (2003).  MR 1994536 |  Zbl 1084.13501
[26] Huh (J.), Katz (E.).— Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math. Ann. 354, no. 3, p. 1103-1116 (2012).  MR 2983081 |  Zbl 1258.05021
[27] Huh (J.), Sturmfels (B.).— Likelihood Geometry, arXiv:1305.7462. 5.3.  MR 2524076
[28] Huh (J.).— The maximum likelihood degree of a very affine variety, Compos. Math., Compositio Math, 149, p. 1245-1266 (2013).  MR 3103064 |  Zbl pre06213919
[29] Kapranov (M. M.).— Chow quotients of Grassmannians. I, I. M. Gel$^{\prime }$fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, p. 29-110 (1993).  MR 1237834 |  Zbl 0811.14043
[30] Kashiwabara (K.).— The toric ideal of a matroid of rank 3 is generated by quadrics, Electron. J. Combin. 17, no. 1, Research Paper 28, 12 (2010).  MR 2595488 |  Zbl 1205.05041
[31] Katz (E.).— A tropical toolkit, Expo. Math. 27, no. 1, p. 1-36 (2009).  MR 2503041 |  Zbl 1193.14004
[32] Katz (E.).— Tropical intersection theory from toric varieties, Collect. Math. 63, no. 1, p. 29-44 (2012).  MR 2887109 |  Zbl pre06112440
[33] Lenz (M.).— The f-vector of a realizable matroid complex is strictly log-concave, Advances in Applied Mathematics 51, no. 5, p. 543-454 (2013).  MR 3118543
[34] Looijenga (E.).— Compactifications defined by arrangements. I. The ball quotient case, Duke Math. J. 118, no. 1, p. 151-187 (2003).  MR 1978885 |  Zbl 1052.14036
[35] Mikhalkin (G.).— Tropical geometry and its applications, ICM Lectures, Vol. II, Eur. Math. Soc., Zürich, p. 827-852 (2006).  MR 2275625 |  Zbl 1103.14034
[36] Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer-Verlag, Berlin (1992).  MR 1217488 |  Zbl 0757.55001
[37] Oxley (J.).— Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford (2011).  MR 2849819 |  Zbl 1254.05002
[38] Postnikov (A.).— Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN, no. 6, p. 1026-1106 (2009).  MR 2487491 |  Zbl 1162.52007
[39] Proudfoot (N. J.), Speyer (D.).— A broken circuit ring, Beiträge Algebra Geom. 47, no. 1, p. 161-166 (2006).  MR 2246531 |  Zbl 1095.13024
[40] Richter-Gebert (J.), Sturmfels (B.), Theobald (T.).— First steps in tropical geometry, Idempotent mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, p. 289-317 (2005).  MR 2149011 |  Zbl 1093.14080
[41] Schrijver (A.).— Combinatorial optimization. Polyhedra and efficiency. Vol. B, Algorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, Matroids, trees, stable sets, Chapters p. 39-69 (2003).  MR 1956925 |  Zbl 1041.90001
[42] Sanyal (R.), Sturmfels (B.), Vinzant (C.).— The entropic discriminant, Advances in Mathematics 244, p. 678-707 (2013).  MR 3077886
[43] Schenck (H.), Tohăneanu (Ş O.).— The Orlik-Terao algebra and 2-formality, Math. Res. Lett. 16, no. 1, p. 171-182 (2009).  MR 2480571 |  Zbl 1171.52011
[44] Sturmfels (B.).— Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI (1996).  MR 1363949 |  Zbl 0856.13020
[45] Sturmfels (B.).— Equations defining toric varieties, Algebraic geometry–Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, p. 437-449 (1997).  MR 1492542 |  Zbl 0914.14022
[46] Sturmfels (B.).— Solving systems of polynomial equations, CBMS Regional Conference Series in Mathematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC (2002).  MR 1925796 |  Zbl 1101.13040
[47] Suciu (A. I.).— Hyperplane arrangements and Milnor fibrations, this volume (2013).
[48] Tevelev (J.).— Compactifications of subvarieties of tori, Amer. J. Math. 129, no. 4, p. 1087-1104 (2007).  MR 2343384 |  Zbl 1154.14039
[49] Varchenko (A.).— Quantum integrable model of an arrangement of hyperplanes, SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 032, 55 (2011).  MR 2804564 |  Zbl 1217.82026
[50] White (N. L.).— The basis monomial ring of a matroid, Advances in Math. 24, no. 3, p. 292-297 (1977).  MR 437366 |  Zbl 0357.05031
[51] White (N. L.).— A unique exchange property for bases, Linear Algebra Appl. 31, p. 81-91 (1980).  MR 570381 |  Zbl 0458.05022
[52] Ziegler (G. M.).— Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York (1995).  MR 1311028 |  Zbl 0823.52002
Search for an article
Search within the site
top