cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Alexander I. Suciu
Hyperplane arrangements and Milnor fibrations
Annales de la faculté des sciences de Toulouse Sér. 6, 23 no. 2: Numéro Spécial à l’occasion de la conférence Arrangements in Pyrénées, Pau 11-15 juin 2012 (2014), p. 417-481, doi: 10.5802/afst.1412
Article PDF | Reviews Zbl 1300.32028

Résumé - Abstract

There are several topological spaces associated to a complex hyperplane arrangement: the complement and its boundary manifold, as well as the Milnor fiber and its own boundary. All these spaces are related in various ways, primarily by a set of interlocking fibrations. We use cohomology with coefficients in rank $1$ local systems on the complement of the arrangement to gain information on the homology of the other three spaces, and on the monodromy operators of the various fibrations.

Bibliography

[1] Arapura (D.).— Geometry of cohomology support loci for local systems. I., J. Algebraic Geom. 6, no. 3, p. 563-597 (1997).  MR 1487227 |  Zbl 0923.14010
[2] Artal Bartolo (E.), Cogolludo (J.), Matei (D.).— Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17, no. 1, p. 273-309 (2013).  MR 3035328 |  Zbl 1266.32035
[3] Brieskorn (E.).— Sur les groupes de tresses (d’après V. I. Arnol’d), Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, p. 21-44, Lecture Notes in Math., vol. 317, Springer, Berlin (1973). Numdam |  MR 422674 |  Zbl 0277.55003
[4] Budur (N.), Dimca (A.), Saito (M.).— First Milnor cohomology of hyperplane arrangements, in: Topology of algebraic varieties and singularities, p. 279-292, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011).  MR 2777825 |  Zbl 1228.32027
[5] Budur (N.), Wang (B.).— Cohomology jump loci of quasi-projective varieties, arXiv: 1211.3766v1
[6] Cohen (D.), Denham (G.), Suciu (A.).— Torsion in Milnor fiber homology, Alg. Geom. Topology 3, p. 511-535 (2003).  MR 1997327 |  Zbl 1030.32022
[7] Cohen (D.), Dimca (A.), Orlik (P.).— Nonresonance conditions for arrangements, Annales Institut Fourier (Grenoble) 53, no. 6, p. 1883-1896 (2003). Cedram |  MR 2038782 |  Zbl 1054.32016
[8] Cohen (D.), Suciu (A.).— On Milnor fibrations of arrangements, J. London Math. Soc. (2) 51, no. 1, p. 105-119 (1995).  MR 1310725 |  Zbl 0814.32007
[9] Cohen (D.), Suciu (A.).— The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helvetici 72, no. 2, p. 285-315 (1997).  MR 1470093 |  Zbl 0959.52018
[10] Cohen (D.), Suciu (A.).— Characteristic varieties of arrangements, Math. Proc. Cambridge Phil. Soc. 127, no. 1, p. 33-53 (1999).  MR 1692519 |  Zbl 0963.32018
[11] Cohen (D.), Suciu (A.).— Boundary manifolds of projective hypersurfaces, Advances in Math. 206, no. 2, p. 538-566 (2006).  MR 2263714 |  Zbl 1110.14036
[12] Cohen (D.), Suciu (A.).— The boundary manifold of a complex line arrangement, Geometry & Topology Monographs 13, p. 105-146 (2008).  MR 2508203 |  Zbl 1137.32013
[13] Denham (G.).— Homological aspects of hyperplane arrangements, in: Arrangements, local systems and singularities, 39-58, Progress in Math., vol. 283, Birkhäuser, Basel (2010).  MR 3025859
[14] Denham (G.), Suciu (A.).— Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. (to appear), available at arXiv: 1209.3414v2
[15] Dimca (A.).— Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York (1992).  MR 1194180 |  Zbl 0753.57001
[16] Dimca (A.).— Sheaves in topology, Universitext, Springer-Verlag, Berlin (2004).  MR 2050072 |  Zbl 1043.14003
[17] Dimca (A.).— Characteristic varieties and constructible sheaves, Rend. Lincei Mat. Appl. 18, no. 4, p. 365-389 (2007).  MR 2349994 |  Zbl 1139.14009
[18] Dimca (A.).— Monodromy of triple point line arrangements, in: Singularities in Geometry and Topology 2011, Adv. Std. Pure Math. (to appear), available at arXiv: 1107.2214v2  MR 815487
[19] Dimca (A.), Papadima (S.).— Finite Galois covers, cohomology jump loci, formality properties, and multinets, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10, no. 2, p. 253-268 (2011).  MR 2856148 |  Zbl 1239.32023
[20] Dimca (A.), Papadima (S.), Suciu (A.).— Alexander polynomials: Essential variables and multiplicities, Int. Math. Res. Notices 2008, no. 3, Art. ID rnm119, 36 p.  MR 2416998 |  Zbl 1156.32018
[21] Dimca (A.), Papadima (S.), Suciu (A.).— Topology and geometry of cohomology jump loci, Duke Math. Journal 148, no. 3, p. 405-457 (2009).  MR 2527322 |  Zbl 1222.14035
[22] Durfee (A.).— Neighborhoods of algebraic sets, Trans. Amer. Math. Soc. 276, no. 2, p. 517-530 (1983).  MR 688959 |  Zbl 0529.14013
[23] Falk (M.).— Arrangements and cohomology, Ann. Combin. 1, no. 2, p. 135-157 (1997).  MR 1629681 |  Zbl 0941.52022
[24] Falk (M.).— Resonance varieties over fields of positive characteristic, Int. Math. Research Notices 2007, no. 3, article ID rnm009, 25 pages (2007).  MR 2337033 |  Zbl 1180.14054
[25] Falk (M.), Yuzvinsky (S.).— Multinets, resonance varieties, and pencils of plane curves, Compositio Math. 143, no. 4, p. 1069-1088 (2007).  MR 2339840 |  Zbl 1122.52009
[26] Félix (Y.), Oprea (J.), Tanré (D.).— Algebraic models in geometry, Oxford Grad. Texts in Math., vol. 17, Oxford Univ. Press, Oxford (2008).  MR 2403898 |  Zbl 1149.53002
[27] Hatcher (A.).— Algebraic topology, Cambridge University Press, Cambridge (2002).  MR 1867354 |  Zbl 1044.55001
[28] Hironaka (E.).— Abelian coverings of the complex projective plane branched along configurations of real lines, Memoirs A.M.S., vol. 502, Amer. Math. Soc., Providence, RI (1993).  MR 1164128 |  Zbl 0788.14054
[29] Hironaka (E.).— Alexander stratifications of character varieties, Annales de l’Institut Fourier (Grenoble) 47, no. 2, p. 555-583 (1997). Cedram |  MR 1450425 |  Zbl 0870.57003
[30] Hironaka (E.).— Boundary manifolds of line arrangements, Math. Annalen 319, no. 1, p. 17-32 (2001).  MR 1812817 |  Zbl 0995.32016
[31] Hirzebruch (F.).— The topology of normal singularities of an algebraic surface (after D. Mumford), Séminaire Bourbaki, Vol. 8, Exp. No. 250, p. 129-137, Soc. Math. France, Paris (1995). Numdam |  MR 1611536 |  Zbl 0126.16903
[32] Jiang (T.), Yau (S.S.-T.).— Topological invariance of intersection lattices of arrangements in $\mathbb{CP}^2$, Bull. Amer. Math. Soc. 29, no. 1, p. 88-93 (1993).  MR 1197426 |  Zbl 0847.52011
[33] Jiang (T.), Yau (S.S.-T.).— Intersection lattices and topological structures of complements of arrangements in $\mathbb{CP}^2$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26, no. 2, p. 357-381 (1998). Numdam |  MR 1631597 |  Zbl 0973.32015
[34] Libgober (A.).— On the homology of finite abelian coverings, Topology Appl. 43, no. 2, p. 157-166. (1992)  MR 1152316 |  Zbl 0770.14004
[35] Libgober (A.).— Characteristic varieties of algebraic curves, in: Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), p. 215-254, NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht (2001).  MR 1866902 |  Zbl 1045.14016
[36] Libgober (A.).— First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118, no. 1-2, p. 159-168 (2002).  MR 1877722 |  Zbl 1010.52016
[37] Libgober (A.).— Eigenvalues for the monodromy of the Milnor fibers of arrangements, Trends in singularities, p. 141-150, Trends Math., Birkhäuser, Basel (2002).  MR 1900784 |  Zbl 1036.32019
[38] Libgober (A.).— Non vanishing loci of Hodge numbers of local systems, Manuscripta Math. 128, no. 1, p. 1-31 (2009).  MR 2470184 |  Zbl 1160.14004
[39] Libgober (A.).— On combinatorial invariance of the cohomology of Milnor fiber of arrangements and Catalan equation over function field, in: Arrangements of hyperplanes (Sapporo 2009), p. 175-187, Adv. Stud. Pure Math., vol. 62, Math. Soc. Japan, Tokyo (2012).  MR 2933797 |  Zbl 1260.14035
[40] Libgober (A.), Yuzvinsky (S.).— Cohomology of Orlik-Solomon algebras and local systems, Compositio Math. 21 (2000), no. 3, 337-361.  MR 1761630 |  Zbl 0952.52020
[41] Măcinic (A.), Papadima (S.).— On the monodromy action on Milnor fibers of graphic arrangements, Topology Appl. 156, no. 4, p. 761-774 (2009).  MR 2492960 |  Zbl 1170.32009
[42] Matei (D.).— Massey products of complex hypersurface complements, In: Singularity Theory and its Applications, p. 205-219, Adv. Studies in Pure Math., vol. 43, Math. Soc. Japan, Tokyo (2007).  MR 2325139 |  Zbl 1135.32026
[43] Matei (D.), Suciu (A.).— Cohomology rings and nilpotent quotients of real and complex arrangements, in: Arrangements-Tokyo 1998, p. 185-215, Adv. Stud. Pure Math., vol. 27, Math. Soc. Japan, Tokyo (2000).  MR 1796900 |  Zbl 0974.32020
[44] Matei (D.), Suciu (A.).— Hall invariants, homology of subgroups, and characteristic varieties, Internat. Math. Res. Notices 2002, no. 9, p. 465-503 (2002).  MR 1884468 |  Zbl 1061.20040
[45] Milnor (J.).— Singular points of complex hypersurfaces, Annals of Math. Studies, vol. 61, Princeton Univ. Press, Princeton, NJ (1968).  MR 239612 |  Zbl 0184.48405
[46] Némethi (A.), Szilárd (A.).— Milnor fiber boundary of a non-isolated surface singularity, Lecture Notes in Math, vol. 2037, Springer-Verlag, Berlin Heidelberg (2012).  MR 3024944 |  Zbl 1239.32024
[47] Orlik (P.), Randell (R.).— The Milnor fiber of a generic arrangement, Arkiv für Mat. 31, no. 1, p. 71-81 (1993).  MR 1230266 |  Zbl 0807.32029
[48] Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes, Invent. Math. 56, no. 2, p. 167-189 (1980).  MR 558866 |  Zbl 0432.14016
[49] Orlik (P.), Terao (H.).— Arrangements of hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin (1992).  MR 1217488 |  Zbl 0757.55001
[50] Oxley (J.).— Matroid theory, Oxford Sci. Publ, Oxford University Press, New York (1992).  MR 1207587 |  Zbl 1115.05001
[51] Papadima (S.), Suciu (A.).— Chen Lie algebras, Intern. Math. Res. Notices 2004, no. 21, p. 1057-1086 (2004).  MR 2037049 |  Zbl 1076.17007
[52] Papadima (S.), Suciu (A.).— Algebraic invariants for right-angled Artin groups, Math. Ann. 334, no. 3, p. 533-555 (2006).  MR 2207874 |  Zbl 1165.20032
[53] Papadima (S.), Suciu (A.).— Geometric and algebraic aspects of $1$-formality, Bull. Math. Soc. Sci. Math. Roumanie 52, no. 3, p. 355-375 (2009).  MR 2554494 |  Zbl 1199.55010
[54] Papadima (S.), Suciu (A.).— Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. London Math. Soc. 100, no. 3, p. 795-834 (2010).  MR 2640291 |  Zbl 1273.55003
[55] Pereira (J.), Yuzvinsky (S.).— Completely reducible hypersurfaces in a pencil, Adv. Math. 219, no. 2, p. 672-688 (2008).  MR 2435653 |  Zbl 1146.14005
[56] Rybnikov (G.).— On the fundamental group of the complement of a complex hyperplane arrangement, Funct. Anal. Appl. 45, no. 2, p. 137-148 (2011).  MR 2848779 |  Zbl 1271.14085
[57] Sakuma (M.).— Homology of abelian coverings of links and spatial graphs, Canad. J. Math. 47, no. 1, p. 201-224 (1995).  MR 1319696 |  Zbl 0839.57001
[58] Suciu (A.).— Fundamental groups of line arrangements: Enumerative aspects, in: Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), p. 43-79, Contemp. Math., vol 276, Amer. Math. Soc., Providence, RI (2001).  MR 1837109 |  Zbl 0998.14012
[59] Suciu (A.).— Translated tori in the characteristic varieties of complex hyperplane arrangements, Topology Appl. 118, no. 1-2, p. 209-223 (2002).  MR 1877726 |  Zbl 1021.32009
[60] Suciu (A.).— Fundamental groups, Alexander invariants, and cohomology jumping loci, in: Topology of algebraic varieties and singularities, p. 179-223, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI (2011).  MR 2777821 |  Zbl 1214.14017
[61] Suciu (A.).— Geometric and homological finiteness in free abelian covers, in: Configuration Spaces: Geometry, Combinatorics and Topology (Centro De Giorgi, 2010), p. 461-501, Publications of the Scuola Normale Superiore, vol. 14, Edizioni della Normale, Pisa (2012).  Zbl 1273.14109
[62] Suciu (A.).— Characteristic varieties and Betti numbers of free abelian covers, Intern. Math. Res. Notices (2014), no. 4, p. 1063-1124 (2014).
[63] Suciu (A.), Yang (Y.), Zhao (G.).— Homological finiteness of abelian covers, Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear), available at arXiv: 1204.4873v2.
[64] Westlund (E.).— The boundary manifold of an arrangement, Ph.D. thesis, University of Wisconsin, Madison, WI (1997).  MR 2697010
[65] Yoshinaga (M.).— Milnor fibers of real line arrangements, J. Singul. 7, p. 242-259 (2013).  MR 3090727
[66] Yuzvinsky (S.).— A new bound on the number of special fibers in a pencil of curves, Proc. Amer. Math. Soc. 137, no. 5, p. 1641-1648 (2009).  MR 2470822 |  Zbl 1173.14021
[67] Yuzvinsky (S.).— Resonance varieties of arrangement complements, in: Arrangements of Hyperplanes (Sapporo 2009), p. 553-570, Advanced Studies Pure Math., vol. 62, Kinokuniya, Tokyo (2012).  MR 2933810 |  Zbl 1270.52030
[68] Zuber (H.).— Non-formality of Milnor fibers of line arrangements, Bull. London Math. Soc. 42, no. 5, p. 905-911 (2010).  MR 2728693 |  Zbl 1202.32022
Search for an article
Search within the site
top