cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Jérôme Lohéac; Enrique Zuazua
From averaged to simultaneous controllability
Annales de la faculté des sciences de Toulouse Sér. 6, 25 no. 4 (2016), p. 785-828, doi: 10.5802/afst.1511
Article PDF

Résumé - Abstract

We consider a linear finite dimensional control system depending on unknown parameters. We aim to design controls, independent of the parameters, to control the system in some optimal sense. We discuss the notions of averaged control, according to which one aims to control only the average of the states with respect to the unknown parameters, and the notion of simultaneous control in which the goal is to control the system for all values of these parameters. We show how these notions are connected through a penalization process. Roughly, averaged control is a relaxed version of the simultaneous control property, in which the differences of the states with respect to the various parameters are left free, while simultaneous control can be achieved by reinforcing the averaged control property by penalizing these differences. We show however that these two notions require of different rank conditions on the matrices determining the dynamics and the control. When the stronger conditions for simultaneous control are fulfilled, one can obtain the later as a limit, through this penalization process, out of the averaged control property.

Bibliography

[1] Boyer (F.).— On the penalised hum approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM: Proc., 41, p. 15-58 (2013).  MR 3174955
[2] Fernández (L. A.) and Zuazua (E.).— Approximate controllability for the semilinear heat equation involving gradient terms. J. Optim. Theory Appl., 101(2), p. 307-328 (1999).  MR 1684673 |  Zbl 0952.49003
[3] Helmke (U.) and Schönlein (M.).— Uniform ensemble controllability for one-parameter families of timeinvariant linear systems. Syst. Control Lett., 71, p. 69-77 (2014).  MR 3250383 |  Zbl 1296.93025
[4] Lazar (M.) and Zuazua (E.).— Averaged control and observation of parameter-depending wave equations. C. R. Math. Acad. Sci. Paris, 352(6), p. 497-502 (2014).  MR 3210131 |  Zbl 1302.35043
[5] Li (J.-S.).— Ensemble control of finite-dimensional time-varying linear systems. IEEE Trans. Automat. Control, 56(2), p. 345-357 (2011).  MR 2761101
[6] Li (J.-S.) and Khaneja (N.).— Ensemble control of Bloch equations. IEEE Trans. Automat. Control, 54(3), p. 528-536 (2009).  MR 2191545
[7] Lions (J.-L.).— Controlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, volume 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, 1988. Controlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch.  Zbl 0653.93002
[8] Lions (J.-L.).— Remarques sur la controlâbilité approchée. In Spanish-French Conference on Distributed-Systems Control (Spanish) (Málaga, 1990), p. 77-87. Univ. Málaga, Málaga (1990).  MR 1108876 |  Zbl 0752.93037
[9] Lohéac (J.) and Zuazua (E.).— Averaged controllability of parameter dependent wave equations. submitted, Mar. 2015.
[10] Petersen (I. R.).— A notion of possible controllability for uncertain linear systems with structured uncertainty. Automatica J. IFAC, 45(1), p. 134-141 (2009).  MR 2531502 |  Zbl 1154.93319
[11] Russell (D. L.).— The Dirichlet-Neumann boundary control problem associated with Maxwell’s equations in a cylindrical region. SIAM J. Control Optim., 24(2), p. 199-229 (1986).  MR 826513 |  Zbl 0594.49026
[12] Savkin (A. V.) and Petersen (I. R.).— Uncertainty-averaging approach to output feedback optimal guaranteed cost control of uncertain systems. J. Optim. Theory Appl., 88(2), p. 321-337 (1996).  MR 1373097 |  Zbl 0853.93065
[13] Schirmer (S. G.), Pullen (I. C. H.), and Solomon (A. I.).— Controllability of multi-partite quantum systems and selective excitation of quantum dots. Journal of Optics B: Quantum and Semiclassical Optics, 7(10), S293 (2005).
[14] Schwartz (L.).— Étude des sommes d’exponentielles réelles. Actualités scientifiques et industrielles. 959. Paris: Hermann & Cie. 89 p. (1943).  MR 14502 |  Zbl 0061.13601
[15] Trélat (E.).— Contrôle optimal. Mathḿatiques Concrètes. [Concrète Mathematics]. Vuibert, Paris, 2005. Théorie & applications.
[16] Triggiani (R.).— Controllability and observability in banach space with bounded operators. SIAM Journal on Control, 13(2), p. 462-491 (1975).  MR 394386 |  Zbl 0268.93007
[17] Turinici (G.) and Rabitz (H.).— Optimally controlling the internal dynamics of a randomly oriented ensemble of molecules. Phys. Rev. A, 70:063412, Dec 2004.
[18] Ugrinovskii (V. A.)pointir Robust controllability of linear stochastic uncertain systems. Automatica J. IFAC, 41(5), p. 807-813 (2005).  MR 2157711 |  Zbl 1098.93006
[19] Zuazua (E.).— Averaged control. Automatica, 50(12), p. 3077-3087 (2014).  MR 3284142
Search for an article
Search within the site
top