cnrs   Université de Toulouse

Table of contents for this issue | Previous article | Next article
Carine Lucas; James C. McWilliams; Antoine Rousseau
Large scale ocean models beyond the traditional approximation
Annales de la faculté des sciences de Toulouse Sér. 6, 26 no. 4 (2017), p. 1029-1049, doi: 10.5802/afst.1559
Article PDF

Résumé - Abstract

This work corresponds to classes given by A. Rousseau in February 2014 in Toulouse, in the framework of the CIMI labex. The objective is to describe and question the models that are traditionaly used for large scale oceanography, whether in 2D or 3D. Starting from fundamental equations (mass and momentum conservation), it is explained how (thanks to approximations for which we provide justifications) one can build simpler models that allow a realistic numerical implementation. We particularly focus on the so-called traditional approximation that neglects part of the Coriolis force.


[1] Alfred J. Bourgeois & J.Thomas Beale, “Validity of the Quasigeostrophic Model for Large-Scale Flow in the Atmosphere and Ocean”, SIAM J. Math. Anal. 25 (1994) no. 4, p. 1023-1068 Article
[2] Joseph Valentin Boussinesq, Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, Gauthier-Villars, 1903
[3] Alewyn P. Burger, “The potential vorticity equation: from planetary to small scale”, Tellus A 43 (1991) no. 3, p. 191-197 Article
[4] Chongsheng Cao & Edriss S. Titi, “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. Math. 166 (2007) no. 1, p. 245-267 Article
[5] Carl Eckart, Hydrodynamics of oceans and atmospheres, Pergamon Press, 1960
[6] Pedro F. Embid & Andrew J. Majda, “Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers”, Geophysical and Astrophysical Fluid Dynamics 87 (1998) no. 1-2, p. 1-50 Article
[7] T. Gerkema, J. T. F. Zimmerman, L. R. M. Maas & H. van Haren, “Geophysical and astrophysical fluid dynamics beyond the traditional approximation”, Rev. Geophys. 46 (2008) no. 2 Article
[8] Keith Julien, Edgar Knobloch, Ralph Milliff & Joseph Werne, “Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows”, Journal of Fluid Mechanics 555 (2006), p. 233-274 Article
[9] Carine Lucas, James C. McWilliams & Antoine Rousseau, “On nontraditional quasi-geostrophic equations”, ESAIM, Math. Model. Numer. Anal. 51 (2017) no. 2, p. 427-442 Article
[10] Carine Lucas, Madalina Petcu & Antoine Rousseau, “Quasi-hydrostatic primitive equations for ocean global circulation models”, Chin. Ann. Math., Ser. B 31 (2010) no. 6, p. 939-952 Article
[11] Carine Lucas & Antoine Rousseau, “New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-Geostrophic Equations”, Multiscale Model. Simul. 7 (2008) no. 2, p. 796-813 Article
[12] Joseph Oliger & Arne Sundström, “Theoretical and practical aspects of some initial boundary value problems in fluid dynamics”, SIAM J. Appl. Math. 35 (1978) no. 3, p. 419-446 Article
[13] Madalina Petcu, Roger M. Temam & Mohammed Ziane, Some mathematical problems in geophysical fluid dynamics, in P.G. Ciarlet, ed., Handbook of Numerical Analysis. Special Issue on Computational Methods for the Ocean and the Atmosphere, Elsevier, 2009, p. 577-750
[14] Norman A. Phillips, “The equations of motion for a shallow rotating atmosphere and the “traditional approximation””, Journal of the Atmospheric Sciences 23 (1966) no. 5, p. 626-628 Article
[15] Norman A. Phillips, “Reply (to George Veronis)”, Journal of the Atmospheric Sciences 25 (1968) no. 6, p. 1155-1157 Article
[16] Antoine Rousseau, Roger M. Temam & Joseph Tribbia, “The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case”, J. Math. Pures Appl. 89 (2008), p. 297-319 Article
[17] Antoine Rousseau, Roger M. Temam & Joseph Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in P.G. Ciarlet, ed., Handbook of Numerical Analysis, Special volume on Computational Methods for the Oceans and the Atmosphere, Elsevier, 2009, p. 481–575 Article
[18] Roger M. Samelson, The Theory of Large-Scale Ocean Circulation, Cambridge University Press, 2011
[19] Andrew L. Stewart & Paul J. Dellar, “Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane”, Journal of Fluid Mechanics 651 (2010), p. 387-413 Article
[20] Roger M. Temam & Joseph Tribbia, “Open boundary conditions for the primitive and Boussinesq equations”, Journal of the Atmospheric Sciences 60 (2003) no. 21, p. 2647-2660 Article
[21] George Veronis, “Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere”, Journal of the Atmospheric Sciences 25 (1968) no. 6, p. 1154-1155 Article
[22] Roald K. Wangsness, “Comments on “the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’ ””, Journal of the Atmospheric Sciences 27 (1970) no. 3, p. 504-506 Article
[23] A. A. White, B. J. Hoskins, I. Roulstone & A. Staniforth, “Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic”, Q. J. R. Meteorol. Soc. 131 (2005), p. 2081-2107 Article
Search for an article
Search within the site