cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Next article
Cyril Imbert; Tianling Jin; Roman Shvydkoy
Schauder estimates for an integro-differential equation with applications to a nonlocal Burgers equation
Annales de la faculté des sciences de Toulouse Sér. 6, 27 no. 4 (2018), p. 667-677, doi: 10.5802/afst.1581
Article PDF

Résumé - Abstract

We obtain Schauder estimates for a general class of linear integro-differential equations. The estimates are applied to a scalar non-local Burgers equation and complete the global well-posedness results obtained in [6].

Bibliography

[1] Luis Caffarelli, Chi Hin Chan & Alexis Vasseur, “Regularity theory for parabolic nonlinear integral operators”, J. Am. Math. Soc. 24 (2011) no. 3, p. 849-869
[2] Luis Caffarelli & Luis Silvestre, “Regularity theory for fully nonlinear integro-differential equations”, Commun. Pure Appl. Math. 62 (2009) no. 5, p. 597-638
[3] Hongjie Dong & Hong Zhang, “On Schauder estimates for a class of nonlocal fully nonlinear parabolic equations”, https://arxiv.org/abs/1604.00101, 2016
[4] Matthieu Felsinger & Moritz Kassmann, “Local regularity for parabolic nonlocal operators”, Commun. Partial Differ. Equations 38 (2013) no. 9, p. 1539-1573
[5] Mariano Giaquinta & Enrico Giusti, “On the regularity of the minima of variational integrals”, Acta Math. 148 (1982), p. 31-46
[6] Cyril Imbert, Roman Shvydkoy & Francois Vigneron, “Global well-posedness of a non-local Burgers equation: The periodic case”, Ann. Fac. Sci. Toulouse, Math. 25 (2016) no. 4, p. 723-758
[7] Tianling Jin & Jingang Xiong, “Schauder estimates for solutions of linear parabolic integro-differential equations”, Discrete Contin. Dyn. Syst. 35 (2015) no. 12, p. 5977-5998
[8] Tianling Jin & Jingang Xiong, “Schauder estimates for nonlocal fully nonlinear equations”, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33 (2016) no. 5, p. 1375-1407
[9] Héctor Chang Lara & Gonzalo Dàvila, “Regularity for solutions of non local parabolic equations”, Calc. Var. Partial Differ. Equ. (2014), p. 1-2
[10] Frédéric Lelièvre, Approximation des equations de navier-stokes préservant le changement d’échelle, Ph. D. Thesis, Université d’Évry Val d’Essonne (France), 2010
[11] Frédéric Lelièvre, “A scaling and energy equality preserving approximation for the 3D Navier-Stokes equations in the finite energy case”, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011) no. 17, p. 5902-5919
[12] Remigijus Mikulevicius & Henrikas Pragarauskas, “On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem”, Potential Anal. 40 (2014) no. 4, p. 539-563
Search for an article
Search within the site
top