cnrs   Université de Toulouse

Table of contents for this issue | Previous article | Next article
Didier Arnal; Mouna Chaabouni; Mabrouka Hfaiedh
Formalité linéaire analytique
Annales de la faculté des sciences de Toulouse Sér. 6, 28 no. 1 (2019), p. 129-143, doi: 10.5802/afst.1596
Article PDF
Class. Math.: 53D50, 53D55, 05C30
Keywords: Linear formality, Kontsevich formality, analyticity

Résumé - Abstract

In this paper, we study the restriction of the Kontsevich formality to the subalgebra of the linear polyvectors in the algebra of polyvector fields on $\mathbb{R}^d$. We prove that this formality is an analytic map.


[1] Walid Aloulou, Didier Arnal & Ridha Chatbouri, “Algèbres et cogèbres de Gerstenhaber et cohomologie de Chevalley-Harrison”, Bull. Sci. Math. 133 (2009) no. 1, p. 1-50
[2] Martin Andler, Alexander Dvorsky & Siddhartha Sahi, “Kontsevich quantization and invariant distributions on Lie groups”, Ann. Sci. Éc. Norm. Supér. 35 (2002) no. 3, p. 371-390
[3] D. Arnal, D. Manchon & M. Masmoudi, “Choix des signes pour la formalité de M. Kontsevich”, Pac. J. Math. 203 (2002) no. 1, p. 23-66  MR 1895924
[4] Nabiha Ben Amar, Mouna Chaabouni & Mabrouka Hfaiedh, “Kontsevich deformation quantization on Lie algebras”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007) no. 2, p. 365-379
[5] William Fulton & Robert MacPherson, “A compactification of configuration spaces”, Ann. Math. 139 (1994) no. 1, p. 183-225  MR 1259368
[6] Robert C. Gunning & Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965
[7] Maxim Kontsevich, “Deformation quantization of Poisson manifolds”, Lett. Math. Phys. 66 (2003) no. 3, p. 157-216  MR 2062626
Search for an article
Search within the site