cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Christian Miebach
Sur les quotients discrets de semi-groupes complexes
Annales de la faculté des sciences de Toulouse Sér. 6, 19 no. 2 (2010), p. 269-276, doi: 10.5802/afst.1243
Article PDF | Reviews MR 2674763 | Zbl pre05799091

Résumé - Abstract

Let $X=G/K$ be an irreducible Hermitian symmetric space of the non-compact type and let $S\in G^\mathbb{C}$ be the associated compression semigroup. Let $\Gamma \subset G$ be a discrete subgroup. We give a sufficient condition for $\Gamma \backslash S$ to be Stein. Moreover, we show that $\Gamma \backslash S$ is not Stein in general which disproves a conjecture by Achab, Betten and Krötz.

Bibliography

[ABK04] D. Achab, F. Betten & B. Krötz – « Discrete group actions on Stein domains in complex Lie groups », Forum Math. 16 (2004), no. 1, p. 37–68.  MR 2034542 |  Zbl 1044.22007
[BCR98] J. Bochnak, M. Coste & M.-F. RoyReal algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998, Translated from the 1987 French original, Revised by the authors.  MR 1659509 |  Zbl 0912.14023
[BR01] B. E. Breckner & W. A. F. Ruppert – « On asymptotic behavior and rectangular band structures in ${\rm SL}(2,\mathbb{R})$ », J. Lie Theory 11 (2001), no. 2, p. 559–604.  MR 1851807 |  Zbl 0982.22005
[Hei91] P. Heinzner – « Geometric invariant theory on Stein spaces », Math. Ann. 289 (1991), no. 4, p. 631–662.  MR 1103041 |  Zbl 0728.32010
[Hel01] S. HelgasonDifferential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original.  MR 1834454 |  Zbl 0993.53002
[HN93] J. Hilgert & K.-H. NeebLie semigroups and their applications, Lecture Notes in Mathematics, vol. 1552, Springer-Verlag, Berlin, 1993.  MR 1317811 |  Zbl 0807.22001
[Mie08] C. Miebach – « Quotients of bounded homogeneous domains by cyclic groups », 2008, arxiv :math.CV/0803.4476v1.
[Nee00] K.-H. NeebHolomorphy and convexity in Lie theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000.  MR 1740617 |  Zbl 0936.22001
[Pal57] R. S. Palais – « A global formulation of the Lie theory of transformation groups », Mem. Amer. Math. Soc. No. 22 (1957), p. iii+123.  MR 121424 |  Zbl 0178.26502
Search for an article
Search within the site
top