cnrs   Université de Toulouse
With cedram.org

Table of contents for this issue | Previous article | Next article
Lucien Guillou
On the structure of homeomorphisms of the open annulus
Annales de la faculté des sciences de Toulouse Sér. 6, 20 no. 2 (2011), p. 367-378, doi: 10.5802/afst.1295
Article PDF | Reviews MR 2847887 | Zbl 1223.37056

Résumé - Abstract

Let $h$ be a without fixed point lift to the plane of a homeomorphism of the open annulus isotopic to the identity and without wandering point. We show that $h$ admits a $h$-invariant dense open set $O$ on which it is conjugate to a translation and we study the action of $h$ on the compactly connected components of the closed and without interior set ${\bf R}^2 \setminus O$.

Bibliography

[Br] Brouwer (L.E.J.).— Beweis des ebenen Translationssatzes, Math. Ann., 72, p. 37-54 (1912).  MR 1511684 |  JFM 43.0569.02
[BCL] Béguin (F.), Crovisier (S.) and LEROUX (F.).— Pseudo-rotations of the open annulus, Bull. Braz. Math. Soc. 37, p. 275-306 (2006).  MR 2266384 |  Zbl 1105.37029
[B] Bourbaki (N.).— Topologie générale, Hermann, Paris (1971).  MR 358652
[G1] Guillou (L.).— Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology, 33, p. 331-351 (1994).  MR 1273787 |  Zbl 0924.55001
[G2] Guillou (L.).— Free lines for homeomorphisms of the open annulus, Trans. AMS, 360, p. 2191-2204 (2008).  MR 2366979 |  Zbl 1135.37016
[HK] Homma (T.), Terasaka (H.).— On the structure of the plane translation of Brouwer, Osaka Math. J. 5, p. 233-266 (1953). Article |  MR 58963 |  Zbl 0051.14701
[LC] Le Calvez (P.).— Rotation numbers in the infinite annulus, Proc. Amer. Math. Soc. 129, p. 3221-3230 (2001).  MR 1844997 |  Zbl 0990.37029
[LR1] Leroux (F.).— Bounded recurrent sets for planar homeomorphisms, Ergodic theory Dynam. Systems 19, p. 1085-1091 (1999).  MR 1709432 |  Zbl 1031.37038
[LR2] Leroux (F.).— Structure des homéomorphismes de Brouwer, Geometry and Topology 9, p. 1689-1774, (2005).  MR 2175156 |  Zbl 1087.37035
[M] Moore (R.L.).— Foundations of Point Set Theory, AMS Colloquium Publications volume XIII (1962).  MR 150722 |  Zbl 0192.28901 |  JFM 58.0637.02
[W] Winkelnkemper (H.).— A generalisation of the Poincaré-Birkhoff theorem, Proc. AMS, 102, p. 1028-1030 (1988).  MR 934887 |  Zbl 0656.54032
Search for an article
Search within the site
top